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Abstract

We relate matroid connectivity to Tutte-connectivity in an infinite graph. More-
over, we show that the two cycle matroids, the finite-cycle matroid and the cycle
matroid, in which also infinite cycles are taken into account, have the same con-
nectivity function. As an application we re-prove that, also for infinite graphs,
Tutte-connectivity is invariant under taking dual graphs.

1 Introduction

This work is part of a project to develop a theory for infinite matroids that is analogous
to its finite counterpart. In the initial paper of this project [8], we extended previous
work of Higgs [13, 12] and Oxley [14] by giving equivalent definitions of (finite or infinite)
matroids in terms of independence, bases, circuits, closure and (relative) rank, just as one
is used to for finite matroids. Since then, in a series of papers [3, 5, 2, 4, 1], several other
aspects of infinite matroids have been explored, among them graphic matroids [7] and
matroid connectivity [10].

These two last aspects are the focus of the current work: Connectivity in graphic
matroids. For cycle matroids of finite graphs matroid connectivity translates into a purely
graph theoretic notion. A graph G is k-Tutte-connected if for every ` 6 k and every
partition X, Y of its edge set into sets of at least ` edges each, the number of vertices
incident with both an edge in X and an edge in Y is greater than `. Tutte [16] proved
that a finite graph is k-Tutte-connected if and only if its cycle matroid is k-connected.

The main result of this work is an extension of this fact to infinite graphs and matroids.
For this, let us define the finite-cycle matroid of any graph by declaring to be independent
any edge set that does not contain the edge set of a finite cycle.

Theorem 1. Let k > 2 be an integer. A graph is k-Tutte-connected if and only if its
finite-cycle matroid is k-connected.

the electronic journal of combinatorics 21(2) (2014), #P2.14 1



If the graph in the theorem is infinite, the finite-cycle matroid clearly will be infinite as
well. But what does it mean for an infinite matroid to be k-connected? A finite matroid
M is k-connected if for any ` 6 k and any partition of its ground set into two sets X, Y
of at least ` elements each it follows that r(X) + r(Y )− r(M) > `. Clearly, this definition
is useless for infinite matroids as the involved ranks will usually be infinite. In [10] we
therefore gave a rank-free definition that carries over to infinite matroids. To argue that
our definition is the right one, we showed that this notion of connectivity has the same
properties as in finite matroids and we, furthermore, extended Tutte’s linking theorem to
at least a large subclass of infinite matroids. Theorem 1 substantiates our claim further.

Let us call a graph G finitely separable if any two vertices may be separated by the
deletion of finitely many edges. In [7], we observed that any finitely separable graph has
not one but two cycle matroids: the finite-cycle matroid and the cycle matroid, in which
any edge set containing a finite or infinite cycle is said to be dependent. Here, an infinite
cycle in the graph is the homeomorphic image of the unit circle in a natural topological
space obtained from the graph (often by compactifying it). This definition was proposed
by Diestel and Kühn in a completely graph-theoretical context and was subsequently seen
to be extremely fruitful as it allows to extend virtually any result about cycles in a finite
graph to at least a large class of infinite graphs; see Diestel [11] for an introduction.

The cycle matroid and the finite-cycle matroid coincide in a finite graph but will
usually be different in infinite graphs. However, as we shall observe in Theorem 6, they
always have the same connectivity and even the same connectivity function.

Finally, as an application of our argumentation, we get another extension of a result
known for finite graphs: Tutte-connectivity is invariant under taking duals.

Theorem 2. [9] Let G and G∗ be a pair of dual graphs, and let k > 2. Then G is
k-Tutte-connected if and only if G∗ is k-Tutte-connected.

We remark that this is not a new result. In [9] we gave a graph-theoretical proof.
Here, we will see a matroidal variant.

2 Infinite cycles

Let us fix a finitely separable graph G = (V,E) in this section.
A ray of G is a one-way infinite path. Two rays are edge-equivalent if for every finite

set of edges F there is a component of G − F that contains subrays of both rays. The
equivalence classes of this relation are the edge-ends E(G) of G.

We view the edges of G as disjoint homeomorphic images of the unit interval [0, 1],
and define the quotient space XG by identifying these copies of [0, 1] at their common
endvertices. Let us define a topological space ||G|| on XG ∪ E(G) by specifying the basic
open sets: these are all sets of the form C̃, which consists of a topological component of
XG−Z for some finite set Z of inner points of edges together with all edge-ends that have
a ray lying entirely in C. We remark that normally this space will not be Hausdorff: no
edge-end can be separated from a vertex that sends infinitely many edge-disjoint paths
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to one of its rays. However, and this is the reason for imposing finite separability, two
vertices may always be topologically distinguished. For a locally finite G, that is, a graph
in which every vertex has finite degree, the space ||G|| coincides with the Freudenthal
compactification.

For us a cycle of ||G|| is a homeomorphic image of the unit circle S1 in ||G||. This
definition of cycles includes the traditional finite cycles but allows also other cycles, which
then contain necessarily infinitely many vertices and edges. A standard subspace of ||G||
is the closure of a subgraph of G in ||G||. The set of edges that are completely contained
in a standard subspace X are denoted by E(X). Cycles are standard subspaces [15]. A
topological spanning tree of ||G|| is a standard subspace that is path-connected in ||G||
and which contains every vertex of G but no cycle. For more details see [7].

In Figure 1 some of the introduced concepts are illustrated. The graph there, the
double ladder, has two edge-ends, one to the left and one to the right. The infinite cycle
C in bold lines goes through these two edge-ends. Moreover, while C + f is a spanning
tree of the graph it is not (even including the two edge-ends) a topological spanning tree,
simply because it contains the infinite cycle C. On the other hand, C − e can be seen to
be one. Its connectivity is ensured by the edge-ends.

f

e

Figure 1: An infinite cycle in the double ladder

3 Infinite matroids

As finite matroids, infinite matroids come with a number of different axiom systems. We
only describe here the independence axioms. Let E be a set, let I ⊆ 2E be a set of subsets
of E, and denote by Imax the sets in I that are maximal under inclusion. We say that
M = (E, I) is a matroid with independent sets I if the following axioms are satisfied:

(I1) ∅ ∈ I.

(I2) I is closed under taking subsets, that is if I ∈ I and J ⊆ I then J ∈ I.

(I3) For all I ∈ I \ Imax and I ′ ∈ Imax there is an x ∈ I ′ \ I such that I ∪ {x} ∈ I

(IM) The set { I ′ ∈ I : I ⊆ I ′ ⊆ X } has a maximal element, whenever I ⊆ X ⊆ E and
I ∈ I.

Infinite matroids show the same properties as finite matroids. In particular, they possess
bases (⊆-maximal independent sets), circuits (minimal dependent sets) and a natural
notion of duality, in much of the same way as finite matroids, see [8]. In particular,
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B ⊆ E is a base of M if and only if E \ B is a base of the dual matroid M∗. We
will use the normal matroid terminology. For instance, for any subset X of the ground
set E of a matroid M we will write M |X for the restriction of M to X, and we write
M −X = M |(E \X) for the matroid obtained by deleting the elements in X from M .

In [10], the connectivity function κ is extended to infinite matroids. For anyX ⊆ E(M)
in a matroid M , choose a base B of M |X and a base B′ of M−X, and pick a set F ⊆ B∪B′
so that (B ∪ B′) \ F is a base of M . Then we set κM(X) := |F | ∈ N ∪ {∞} (we do not
distinguish between different infinite cardinalities). We remark that the value κM(X) is
independent of the choice of the bases and of the choice of F . Moreover, F may be chosen
to be a subset of B or of B′, if necessary. This definition of the connectivity function has
similar properties as the traditional connectivity function of a finite matroid. For finite
matroids, the two notions coincide. More details and proof that κ is well-defined can be
found in [10].

We call a partition (X, Y ) of E a `-separation if κM(X) 6 `− 1 and |X|, |Y | > `. The
matroid M is k-connected if there exists no `-separation with ` < k.

Infinite graphs are a natural source of infinite matroids. Two dual matroids are nor-
mally associated with a finite graph, the cycle matroid and the bond matroid. These
matroids can be extended verbatim to an infinite graph G = (V,E). Let I be the set of
all edge sets I ⊆ E not containing the edge set of any finite cycle of G. Then I is the set
of independent sets of a matroid MFC(G), the finite-cycle matroid of G. Its circuits are
precisely the edge sets of finite cycles, and its bases coincide with the spanning forests,
the sets that form a spanning tree on every component. In a similar fashion, we may
now define a matroid whose circuits are the finite bonds, the finite-bond matroid MFB(G).
However, MFC(G) and MFB(G) are no longer dual. If G is finitely separable, then the
dual of MFB(G) is the cycle matroid MC(G), whose circuits are precisely the edge sets of
(finite or infinite) cycles of ||G||. If G is connected then the bases of MC(G) are the edge
sets of topological spanning trees of ||G|| and vice versa; see [7].

If the graph G is infinite and 2-connected then the two matroids MFC(G) and MC(G)
will differ. As an illustration, consider again the double ladder in Figure 1. The set of
edges in bold will be independent in MFC(G) but not in MC(G).

4 Matroid connectivity in infinite graphs

In a graph G, denote for X ⊆ E(G) by V [X] the set of vertices that are incident with an
edge in X. Let c(X) be the number of components of the subgraph (V [X], X) of G.

Our first aim is the following theorem:

Theorem 3. Let G be a 2-connected graph, and let X ⊆ E(G), and Y := E(G) \ X.
Then the following statements hold:

(i) κMFC(G)(X) =∞ if and only if |V [X] ∩ V [Y ]| =∞; and
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(ii) if κMFC(G)(X) <∞ then

κMFC(G)(X) = |V [X] ∩ V [Y ]| − c(X)− c(Y ) + 1.

Statement (ii) is exactly as for finite graphs when the traditional connectivity function
is used, see Tutte [16].

Proof of Theorem 3. (i) We first consider the case when |V [X]∩V [Y ]| =∞. Starting with
a cycle G1 that intersects both X and Y , we inductively construct connected subgraphs
Gn of G as follows. Pick two edges e ∈ X and f ∈ Y with a common endvertex v that
lies in (V [X] ∩ V [Y ]) \ V (Gn). Observe that, as G is 2-connected, there is a (finite)
cycle passing through e and f . If the cycle meets Gn in at most one vertex, we set Pn+1

to be the cycle together with a shortest path from the cycle to Gn (equal to the single
common vertex between the cycle and Gn if there is such a vertex). If the cycle meets
Gn in at least two vertices, there is a path Pn+1 through e and f whose endvertices are
in Gn but for which none of the internal vertices are contained in Gn. In both cases,
Gn+1 := Gn∪Pn+1 is connected and, as can be seen inductively, neither E(Gn+1)∩X nor
E(Gn+1) ∩ Y contains a (finite) cycle. Moreover, if F is a set of edges so that Gn+1 − F
is devoid of cycles then |F | > n+ 1: suppose there is such a set F of cardinality at most
n. Then F ⊆ E(Gn) as, by induction, already n edges are needed to meet every cycle
of Gn. In fact, since Gn is connected, the graph Gn − F is a tree. In particular, Pn+1

cannot contain a cycle. Therefore, Pn+1 is a path with its two endvertices in Gn that is
internally disjoint from Gn. The two endvertices of Pn+1 in Gn are connected by a path
Q in Gn − F . But then Pn+1 ∪Q is a cycle in Gn+1 − F , which is impossible.

Now,
⋃∞

n=1E(Gn)∩X does not contain any circuit of MFC(G). Thus, we may extend
this independent set to a base BX of MFC(G)|X, and we define BY analogously. Consider
a set F ⊆ BX ∪ BY so that (BX ∪ BY ) \ F is a base of MFC(G), and suppose that F
has finite cardinality n. However, by construction, Gn+1 − F still contains at least one
cycle, in contradiction to E(Gn+1) ⊆ BX ∪ BY . Therefore, |F | = ∞, which means that
κMFC(G)(X) =∞.

Secondly, we treat the case when |V [X] ∩ V [Y ]| <∞. Pick a base TX of MFC(G)|X,
and let TY be a base of MFC(G)|Y . Then TX is (the edge set of) a spanning tree on every
component of (V [X], X), and TY is such a maximal spanning forest of (V [Y ], Y ). Thus,
for any pair u, v of vertices in V [X]∩ V [Y ] there is at most one path Puv in TX from u to
v. Let F be a set of edges that chooses one edge from each Puv, where u, v are distinct
vertices in V [X] ∩ V [Y ]. Note that F is a finite set as there are only finitely many pairs
u, v. Moreover, (TX ∪ TY ) \ F contains no finite cycle of G and is therefore independent
in MFC(G). As |F | is an upper bound for κMFC(G)(X) the result follows.

(ii) Pick a spanning tree on every component of (V [X], X) and denote the union of
their edge sets by TX . We define TY for (V [Y ], Y ) in a similar way. Choose a set of edges
F ⊆ X so that T := (TX ∪ TY ) \ F is a base of MFC(G), i.e. the edge set of a spanning
tree of G.
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We claim that

if c(X) = c(Y ) = 1 then κMFC(G)(X, Y ) = |V [X] ∩ V [Y ]| − 1. (1)

Let us prove the claim. Each vertex in U := V [X]∩V [Y ] must lie in a distinct component
of (V [TX ], TX \ F ) since otherwise there exists a path in (V [TX ], TX \ F ) that starts and
ends in U but is otherwise disjoint from U . This path can be extended with edges in
TY to a finite cycle that still misses F , which is impossible as (TX ∪ TY ) \ F is the edge
set of a tree. As (V [TX ], TX) is connected and as each deletion of a single edge increases
the number of components by exactly one, we obtain |F | > |U | − 1. Suppose, on the
other hand, that |F | > |U |− 1. Then there exists a component K of (V [TX ], TX \F ) that
contains no vertex of U , which means that K is a component of (V (G), T ). However, as G
is connected the base T of MFC(G) is the edge set of a spanning tree. This contradiction
proves (1).

We now proceed by induction on c(X) + c(Y ), which is indeed a finite number as
|V [X] ∩ V [Y ]| is an upper bound for both c(X) and c(Y ). Since the induction start is
established by (1), we may assume that (V [X], X) has two components K and K ′. Insert
a new edge f between K and K ′, and set G′ := G+f and X ′ := X∪{f}. Clearly, (X ′, Y )
is a partition of E(G′). Since c(X ′) = c(X)− 1, the induction yields

κMFC(G′)(X
′, Y ) = |V [X] ∩ V [Y ]| − (c(X)− 1)− c(Y ) + 1.

We shall now show that κMFC(G′)(X
′, Y ) = κMFC(G)(X, Y ) + 1. Observe that then

TX + f is (the edge set of) a maximal spanning forest of (V [X ′], X ′) ⊆ G′. Moreover,
(TX \ F ) ∪ TY = ((TX + f) \ (F ∪ {f})) ∪ TY is a spanning tree of G′, too. Thus

κMFC(G′)(X, Y
′) = |F ∪ {f}| = |F |+ 1 = κMFC(G)(X, Y ) + 1,

which finishes the proof.

Next, let us show that the connectivity functions of MFC(G) and MC(G) coincide. For
this, we need two results, one on spanning trees and one on the connectivity function
under duality.

Theorem 4. [6] Every connected finitely separable graph G has a spanning tree whose
closure in ||G|| is a topological spanning tree of ||G||.

Lemma 5.[10] The connectivity function is invariant under duality, that is, κM(X) =
κM∗(X) for any subset X of a matroid M .

Theorem 6. Let G be a connected finitely separable graph. Then

κMC(G)(X) = κMFC(G)(X)

for all X ⊆ E(G).
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Proof. Let B be the edge set of a spanning tree as in Theorem 4. As then B is as well the
edge set of a topological spanning tree, we see that B is simultaneously a base of MFC(G)
and of MC(G).

We use (IM) to extend B ∩ X to a base BX of MC(G)|X. Since BX is independent
in MFC(G) (but not necessarily a base) we may extend BX to a base B′X of MFC(G)|X.
Analogously, we define a base BX ⊇ B \ X of MC(G) − X, and a base B′

X
⊇ BX of

MFC(G)−X. Therefore, setting F ′ := (B′X ∪ B′X) \ B, we obtain κMFC(G)(X) = |F ′|. In
a similar way, κMFC(G)(X) = |F | for F = (BX ∪BX) \B. As F ⊆ F ′, we deduce

κMC(G)(X) 6 κMFC(G)(X).

Next, we observe that E(G) \ B is a base of M∗
C(G) as well as of M∗

FC(G). Since
any independent set in M∗

FC(G) is also independent in M∗
C(G), we may use the same

arguments as above to deduce that κM∗FC(G)(X) 6 κM∗C(G)(X). Finally, the invariance of
the connectivity function under duality (Lemma 5) yields κMFC(G)(X) = κMC(G)(X).

In particular, we have the following consequence:

Corollary 7. Let G be a connected finitely separable graph, and let k > 2. Then MFC(G)
is k-connected if and only if MC(G) is k-connected.

5 Proof of main result

Let us recall the definition of Tutte-connectivity. A `-Tutte-separation of a graph G is a
partition (X, Y ) of E(G) so that |X|, |Y | > ` and so that |V [X]∩V [Y ]| 6 `. We say that
a graph G is k-Tutte-connected if G has no `-Tutte-separation for any ` < k.

Proof of Theorem 1. As matroid connectivity and Tutte-connectivity are only concerned
with edge sets, we may assume that G has no isolated vertices. Moreover, G can be
required to be 2-connected: otherwise each cut-vertex (or component) gives rise to a 1-
Tutte-separation as well as to a 1-separation. Finally, we assume G to be an infinite
graph: for finite graphs, see Tutte [16]—note that MFC(G) and MC(G) coincide in this
case. We need to prove that G has a k-Tutte-separation with k 6 m if and only if MFC(G)
has an `-separation with ` 6 m.

First, let (X, Y ) be a k-Tutte-separation (X, Y ) of G, which implies |V [X]∩V [Y ]| 6 k.
Since c(X), c(Y ) > 1 this yields with Theorem 3 that κMFC(G) 6 k − 1. Consequently,
(X, Y ) is a k-separation of MFC(G).

Conversely, let there be an `-separation in MFC(G), and choose an `-separation (X, Y )
of MFC(G) so that c(X)+c(Y ) is minimal among all `-separations of MFC(G). Note that,
by Theorem 3, for any `-separation (X, Y ) the sum c(X) + c(Y ) is finite. Since G is
infinite, we may assume that Y is an infinite set.

First, we claim that
(V [Y ], Y ) is connected. (2)

the electronic journal of combinatorics 21(2) (2014), #P2.14 7



If (V [Y ], Y ) is not connected then there is a component K of (V [Y ], Y ) so that Y ′ :=
Y \E(K) is an infinite set. With X ′ := X∪E(K) we see that both X ′ and Y ′ have at least
` elements. Moreover, it holds that |V [X]∩ V [Y ]| = |V [X ′]∩ V [Y ′]|+ |V [X]∩ V [K]| and
c(Y ) = c(Y ′) + 1. The set of components of (V [X ′], X ′) is comprised of those components
of (V [X], X) that are disjoint from K together with the union of K and those components
of (V [X], X) that have a vertex with K in common. Since there are at most |V [X]∩V [K]|
components of the latter kind, we obtain c(X) 6 c(X ′) + |V [X] ∩ V [K]| − 1. It follows
with Theorem 3 that

κMFC(G)(X
′, Y ′) = |V [X ′] ∩ V [Y ′]| − c(X ′)− c(Y ′) + 1

6 |V [X] ∩ V [Y ]| − |V [X] ∩ V [K]| − c(X)

+ |V [X] ∩ V [K]| − 1− c(Y ) + 1 + 1

= |V [X] ∩ V [Y ]| − c(X)− c(Y ) + 1 6 `− 1.

Thus, (X ′, Y ′) is an `-separation with c(X ′) + c(Y ′) < c(X) + c(Y ), contradicting the
choice of (X, Y ).

Secondly, we show that

|V [K] ∩ V [Y ]| 6 ` for every component K of (V [X], X). (3)

Suppose there exists a component M of (V [X], X) with |V [M)]∩V [Y ]| > `+1. Denoting
by K the components of (V [X], X) we get

`− 1 > |V [X] ∩ V [Y ]| − c(X)− c(Y ) + 1

>
∑

K∈K\{M}

|V [K] ∩ V [Y ]|+ (`+ 1)− c(X)− c(Y ) + 1.

That G is connected implies |V [K] ∩ V [Y ]| > 1 for every K ∈ K. Hence

`− 1 > (c(X)− 1) + (`+ 1)− c(X)− c(Y ) + 1 = `+ 1− c(Y ).

This yields c(Y ) > 2, which is impossible by (2). Therefore, (3) is proved.
Next, we see that

there is a component M of (V [X], X) with |E(M)| > |V [M ] ∩ V [Y ]|. (4)

If (4) is false then we have |V [K] ∩ V [Y ]| > |E(K)| + 1 for all K ∈ K. This, however,
implies with c(Y ) = 1 that

`− 1 > |V [X] ∩ V [Y ]| − c(X)− c(Y ) + 1

=
∑
K∈K

|V [K] ∩ V [Y ]| − c(X)

>
∑
K∈K

(|E(K)|+ 1)− c(X) = |X|.
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As (X, Y ) is an `-separation, X is required to have at least ` elements, which shows
that (4) holds.

Finally, with the component M from (4) we set X̄ := E(M) and Ȳ := E(G) \ E(M).
Then k := |V [X̄]∩V [Ȳ ]| = |V [M ]∩V [Y ]| 6 `, by (3). As |X̄| > k and |Ȳ | =∞ it follows
that (X̄, Ȳ ) is a k-Tutte-separation with k 6 `, as desired.

We remark that the arguments in the proof are not new. Indeed, (2) is inspired by
Tutte [16] and steps (3), (4) are quite similar to the proof of Lemma 5.3 in [9].

6 Tutte-connectivity and duality

In this final section, we deduce a matroidal proof of the fact that Tutte-connectivity is
invariant under duality (Theorem 2).

Two finitely separable countable graphs G and G∗ defined on the same edge set E are
a pair of duals if any edge set F ⊆ E is the edge set of a cycle of ||G|| if and only if F is
a bond of G∗. (A bond is a minimal non-empty cut.) As for finite graphs, a (countable)
finitely separable graph is planar if and only if it has a dual, see [6] for a proof and more
details.

We need a result on how graph duality relates to matroid duality:

Theorem 8.[7] Let G and G∗ be a pair of countable dual graphs, each finitely separable,
and defined on the same edge set E. Then M∗

C(G) = MFC(G∗).

Consider a pair of countable dual graphs G and G∗. Then, by Theorem 1, G is k-
Tutte-connected if and only if MFC(G) is k-connected. Since MFC(G) = (MC(G∗))∗ by
Theorem 8 and since matroid connectivity is invariant under taking duals (Lemma 5)
this is precisely the case when MC(G∗) is k-connected. Finally, Theorem 1 in conjunction
with Corollary 7 shows that MC(G∗) is k-connected if and only if G∗ is k-Tutte-connected.
This proves Theorem 2.
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