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Abstract

For every h ∈ N, a graph G with the vertex set V (G) and the edge set E(G) is
said to be h-magic if there exists a labeling l : E(G) → Zh\{0} such that the induced
vertex labeling s : V (G) → Zh, defined by s(v) =

∑

uv∈E(G) l(uv) is a constant map.
When this constant is zero, we say that G admits a zero-sum h-magic labeling. The
null set of a graph G, denoted by N(G), is the set of all natural numbers h ∈ N

such that G admits a zero-sum h-magic labeling. In 2012, the null sets of 3-regular
graphs were determined. In this paper we show that if G is an r-regular graph, then
for even r (r > 2), N(G) = N and for odd r (r 6= 5), N \ {2, 4} ⊆ N(G). Moreover,
we prove that if r is odd and G is a 2-edge connected r-regular graph (r 6= 5), then
N(G) = N \ {2}. Also, we show that if G is a 2-edge connected bipartite graph,
then N \ {2, 3, 4, 5} ⊆ N(G).

1 Introduction

Let G be a finite and undirected graph with vertex set V (G) and edge set E(G). A
graph in which multiple edges are admissible is called a multigraph. An r-regular graph
is a graph each of whose vertex has degree r. The degree of a vertex u in G is denoted
by dG(u). A cut-edge of G is an edge in E(G) such that its deletion results in a graph
with one more connected component than G has. A graph G is n-edge connected if the
minimum number of edges whose removal would disconnect G is at least n. We denote
the complete graph and the cycle of order n by Kn and Cn, respectively. A wheel is a
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graph with n vertices, formed by connecting a single vertex to all vertices of Cn−1 and
denoted by Wn. A pendant edge is an edge incident with a vertex of degree 1.

A subgraph F of G is a factor of G if F is a spanning subgraph of G. If a factor F is
k-regular for some integer k > 0, then F is a k-factor. Thus a 2-factor is a disjoint union
of cycles that cover all vertices of G. A k-factorization of G is a partition of the edges
of G into disjoint k-factors. For integers a and b with 1 6 a 6 b, an [a, b]-multigraph is
defined to be a multigraph G such that for every v ∈ V (G), a 6 dG(v) 6 b. For a set
{a1, . . . , ar} of non-negative integers an {a1, . . . , ar}-multigraph is a multigraph each of
whose vertices has degree from the set {a1, . . . , ar}. Analogously, an [a, b]-factor and an
{a1, . . . , ar}-factor can be defined.

Let G be a graph. A zero-sum flow for G is an assignment of non-zero real numbers
to the edges of G such that the sum of values of all edges incident with each vertex is
zero. Let k be a natural number. A zero-sum k-flow is a zero-sum flow with values from
the set {±1, . . . ,±(k − 1)}.

For an abelian group A, written additively, any mapping l : E(G) → A is called a
labeling of a graph G. Given a labeling on the edge set of G, one can introduce a vertex
labeling s : V (G) → A, defined by s(v) =

∑

uv∈E(G) l(uv), for v ∈ V (G). A graph G is

said to be A-magic if there is a labeling l : E(G) → A \ {0} such that for each vertex v,
the sum of the labels of edges incident with v is all equal to the same constant, that is
there exists constant c such that for all vertices v, s(v) = c ∈ A. We call this labeling an
A-magic labeling of G. In general, an A-magic graph may admit more than one A-magic
labeling. For every positive integer h > 2, a graph G is called an h-magic graph if there
is a Zh-magic labeling of G. A graph G is said to be zero-sum h-magic if there is an edge
labeling from E(G) into Zh \ {0} such that the sum of values of all edges incident with
each vertex is zero. If s(v) = 0 for a fixed vertex v ∈ V (G), then we say that zero-sum
h-magic rule holds in v. The null set of a graph G, denoted by N(G), is the set of all
natural numbers h ∈ N such that G admits a zero-sum h-magic labeling.

Recently, Choi, Georges and Mauro [6] proved that if G is 3-regular graph, then N(G)
is N \ {2} or N \ {2, 4}. In this article, we extend this result by showing that if G is an r-
regular graph, then for even r (r > 2), N(G) = N and for odd r (r 6= 5), N\{2, 4} ⊆ N(G).
Moreover, we prove that if r (r 6= 5) is odd and G is a 2-edge connected r-regular graph,
then N(G) = N \ {2}.

The original concept of A-magic graph is due to Sedlacek [14], who defined it to be a
graph with a real-valued edge labeling such that have distinct non-negative labels, and,
in the manner described above, the sum of the labels of the edges incident to vertex v is
constant over V (G). Stanley considered Z-magic graphs and showed that the theory of
magic labeling can be put into the more general context of linear homogeneous diophantine
equations, [16, 17]. Recently, there have been considerable research articles in graph
labeling. Interested readers are referred to [7, 11, 12, 13, 18].

In [11], the null set of some classes of regular graphs are determined.

Theorem 1. If n > 4, then N(Kn) =

{

N, if n is odd;
N \ {2}, if n is even.
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Theorem 2. N(Cn) =

{

N, if n is even;
2N, if n is odd.

Recently, the following theorem was proved, in [2] and [3].

Theorem 3. Let r > 3 be a positive integer. Then every r-regular graph admits a zero-
sum 5-flow.

This theorem implies that if G is an r-regular graph (r > 3), then N\{2, 3, 4} ⊆ N(G).
Before establishing our results we need some theorems.

Theorem 4.[9] Let r > 3 be an odd integer and let k be an integer such that 1 6 k 6
2r
3
.

Then every r-regular graph has a [k − 1, k]-factor each component of which is regular.

Also, the following theorems were proved.

Theorem 5.[4, p.179] Let r > 3 be an odd integer, and G be a 2-edge connected [r−1, r]-
multigraph having exactly one vertex w of degree r − 1. Then for every even integer k,
2 6 k 6

2r
3
, G has a k-factor.

Theorem 6.[5] Every 2-edge connected (2r + 1)-regular multigraph contains a 2-factor.

Theorem 7.[10] Every 2r-regular multigraph admits a 2-factorization.

2 Regular Graphs

Let G be an r-regular graph. In this section we prove that for every even natural number
r (r > 2), N(G) = N and for every odd natural number r (r 6= 5), N \ {2, 4} ⊆ N(G).

We start this section with the following theorem.

Theorem 8. Let r be an odd integer and r > 3. Then every r-regular multigraph with at
most one cut-edge admits a zero-sum 4-magic labeling.

Proof. Obviously, we may suppose that G is connected. First assume that G is a 2-edge
connected r-regular multigraph. By Theorem 6, G has a 2-factor, say H. Now, assign 1
and 2 to the edges of H and the edges of G\E(H), respectively. It is not hard to see that
G admits a zero-sum 4-magic labeling.

Now, suppose that G has a cut-edge, say e. Let G′ = G \ {e}. Clearly, G′ has
two components, say G1 and G2. Since both G1 and G2 are 2-edge connected [r − 1, r]-
multigraphs, by Theorem 5, G1 and G2 have 2-factors and so G has a 2-factor. Hence by
the same argument as we did before, G has a zero-sum 4-magic labeling. ✷

Remark 9. If G is a 2r-regular multigraph, then by assigning 2 to all edges of G, one
can obtain a zero-sum 4-magic labeling.
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The following remark shows that there are some regular graphs with no zero-sum
4-magic labeling.

Remark 10. Let r be an odd integer (r > 3) and G be an r-regular multigraph. If there
is a vertex u such that every edge adjacent to u is a cut-edge, then G does not admit a
zero-sum 4-magic labeling.

Proof. For contradiction assume that G admits a zero-sum 4-magic labeling, say l. Since
G admits a zero-sum 4-magic labeling it is not hard to see that there exists at least one
edge adjacent to u, say uv, with label 1 or 3. Assume that G′ is the connected component
of G \ {u} containing v. Clearly, we have

∑

x∈V (G′) s(x) = 2
∑

e∈E(G′) l(e) + l(uv). But
∑

x∈V (G′) s(x) = 0 (mod 2). On the other hand, 2
∑

e∈E(G′) l(e) + l(uv) = 1 (mod 2), a
contradiction. ✷

Lemma 11. Let G be a {1, 7}-multigraph with no component that is isomorphic to K2.
Suppose that the subgraph induced by the set of vertices of degree 7 has no cut-edge. Fix
a ∈ {1, 2}. Then if h is a fixed pendant edge of G, then there exists a function l from E(G)
into {1, 2} such that l(h) = a and for every vertex v of degree 7 in V (G), the zero-sum
3-magic rule holds in v under l.

Proof. First assume that a = 1 and G is a multigraph with exactly one pendant edge
h = uv. Assume that dG(v) = 1. Let G′ = G \ {v}. Note that G′ is a 2-edge connected
[6, 7]-multigraph in which u is the only vertex of degree 6. By Theorem 5, G′ has a 2-factor
H. Define l(e) = 2, for every e ∈ E(H) and define l(e) = 1, for every e ∈ E(G′) \ E(H).
Hence we obtain the desired labeling for G.

Now, for a = 2, we define l∗ to be the labeling defined as above, and let l = 2l∗ (mod
3).

Next, suppose that the number of pendant edges of G is at least two and a = 1.
Consider two copies of G, say G1 and G2. Assume that uivi, 1 6 i 6 k (k > 2) are all
edges of G1, such that ui, vi ∈ V (G1) and dG1

(vi) = 1. Also, suppose that u′

i and v′i are the
vertices corresponding to ui and vi (i = 1, . . . , k) in G2. Let G

∗ be the multigraph obtained
by removing the vertices v1, . . . , vk and v′1, . . . , v

′

k and joining ui and u′

i in G1 ∪ G2, for
i = 1, . . . , k. Since none of the connected components of G is K2, G

∗ is a 2-edge connected
7-regular multigraph. Thus by Theorem 6, G∗ has a 2-factor, say H. If the edge in G∗

corresponding to h belongs to E(H), then let l(e) = 2 for every e ∈ E(G∗) \ E(H) and
l(e) = 1 for every e ∈ E(H). Otherwise, define l(e) = 1 for every e ∈ E(G∗) \ E(H) and
l(e) = 2 for every e ∈ E(H). Hence we obtain the desired labeling.

Now, for a = 2, we define l∗ to be the labeling defined as above, and let l = 2l∗ (mod
3), we obtain the desired labeling and the proof is complete. ✷

In the following theorem, we prove that for every r-regular graph G (r > 3, r 6= 5),
3 ∈ N(G).

Theorem 12. Let r be an integer such that r > 3 and r 6= 5. Then every r-regular graph
admits a zero-sum 3-magic labeling.
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Proof. First assume that r is an even positive integer and r 6= 2. The proof is by
induction on r. If r = 4, then by Theorem 7, G is decomposed into 2-factors G1 and G2.
Now, assign 1 and 2 to all edges of G1 and G2, respectively. Thus G admits a zero-sum
3-magic labeling. If r = 6, then assign 1 to the edges of G to obtain a zero-sum 3-magic
labeling. Now, suppose that r > 8. So, by Theorem 7, G is decomposed into 2-factors.
Choose two 2-factors G1 and G2. Now, by induction hypothesis G \ (E(G1) ∪ E(G2))
admits a zero-sum 3-magic labeling. On the other hand, by the case r = 4, G1 ∪ G2

admits a zero-sum 3-magic labeling and the proof is complete.
Now, assume that r is an odd positive integer. If r is divisible by 3, then assign 1 to

all edges of G to obtain a zero-sum 3-magic labeling.
If r is not divisible by 3, then r ≡ 1, 5, 7, 11 (mod 12).
First, suppose that r = 7. For finding a zero-sum 3-magic labeling we construct a

rooted tree T from G, where every maximal 2-edge connected subgraph of G is considered
as a vertex of T and every edge of T is corresponding to a cut-edge of G. Now, by
traversing T , level by level, we find a zero-sum 3-magic labeling for G. We start from the
root of T say H (The root can be taken to be any vertex). Let h be an arbitrary cut-edge
incident with H. Assign the label 1 to h. By Lemma 11, one can assign 1 or 2 to each
edge of H and cut-edges of G which are incident with H such that every cut-edge of G
incident with H has value 1 or 2 and moreover the zero-sum 3-magic rule holds in every
vertex of H. Now, we move to the next vertex level of T . Let H ′ be a vertex adjacent to
H in T . At this stage there exists just one cut-edge of G incident with H ′ which has been
labeled by 1 or 2. Now, by Lemma 11, we can label each edge of H ′ and each cut-edge of
G that is incident to H ′ (except h which is already labeled 1 or 2) with 1 or 2 such that
the zero-sum 3-magic rule holds in every vertex of H ′. By continuing this procedure we
obtain a zero-sum 3-magic labeling for G, as desired.

Now, assume that r = 11. Then by Theorem 4, G has a [6, 7]-factor, say H whose
components are regular. Let H1 and H2 be the union of 6-regular components and 7-
regular components of H, respectively. Also, by Theorem 7, H1 is decomposed into
2-factors G1, G2 and G3. Now, assign 2 to all edges of H2, G1 and G2 and assign 1 to
the edges of G \ (E(H1) ∪ E(H2)) and G3. Then it is not hard to see that G admits a
zero-sum 3-magic labeling.

Now, suppose that r = 12k + 1 or r = 12k + 7, and k > 1. By Theorem 4, G has a
[6k−2, 6k−1]-factor, say H, whose components are regular. Let H1 and H2 be the union
of (6k−2)-regular components and (6k−1)-regular components of H, respectively. Since
6k − 2 is even, H1 admits a zero-sum 3-magic labeling. Now, assign 2 to the edges of H2

and assign 1 to all edges of G \ (E(H1) ∪ E(H2)). Then G admits a zero-sum 3-magic
labeling.

Now, assume that r = 12k + 5 or r = 12k + 11, and k > 1. By Theorem 4, G has
a [6k + 1, 6k + 2]-factor, say H, whose components are regular. Let H1 and H2 be the
union of (6k+1)-regular components and (6k+2)-regular components of H, respectively.
Since 6k + 2 is even, H2 admits a zero-sum 3-magic labeling. Now, assign 2 to all edges
of H1 and assign 1 to all edges of G \ (E(H1) ∪E(H2)). Therefore, G admits a zero-sum
3-magic labeling, as desired. ✷
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Now, we are in a position to prove our main theorem for regular graphs.

Theorem 13. Let G be an r-regular graph (r > 3, r 6= 5). If r is even, then N(G) = N,
otherwise N \ {2, 4} ⊆ N(G).

Proof. First, assume that r is even. Clearly, by assigning 1 to all edges of G, it is seen
that 2 ∈ N(G). Moreover, Theorem 3 immediately follows, k ∈ N(G) for k > 5 and
k = 1. By Theorem 12 and Remark 9, N(G) contains 3 and 4 as well, giving the result.
Next, assume that r is an odd integer. Then by Theorems 3 and 12 we are done. ✷

Lemma 14. If r (r 6= 5) is odd and G is a 2-edge connected r-regular graph, then
N(G) = N \ {2}.

Proof. Since the degree of each vertex is odd, 2 6∈ N(G). Now, the result follows from
Theorems 3, 8 and 12. ✷

We close this section with the following conjecture.

Conjecture 15. Every 5-regular graph admits a zero-sum 3-magic labeling.

It is easily seen that a 5-regular graph G admitting a zero-sum 3-magic labeling is
equivalent to G having a factor with the degree sequence 1 or 4.

3 Bipartite Graphs

In this section we show that N \ {2, 3, 4, 5} ⊆ N(G) if G is a 2-edge connected bipartite
graph. Before establishing this result we need some definitions and theorems.

Let G be a directed graph. A k-flow on G is an assignment of integers with maximum
absolute value at most k−1 to each edge of G such that for each vertex of G, the sum of the
labels on incoming edges is equal to that of the labels on outgoing edges. A nowhere-zero
k-flow is a k-flow with no zeros.

A Zk-flow on G is an assignment of element of Zk to each edge of G such that for
any vertex of G, the sum of the labels on incoming edges is equal to that of the labels
on outgoing edges (mod k). A nowhere-zero Zk-flow is a Zk-flow with no zero, for every
k ∈ N.

The following theorem was proved in [15].

Theorem 16. Every 2-edge connected directed graph admits a nowhere-zero 6-flow.

The following well-known theorem is due to Tutte.

Theorem 17.[8, p.294] If G is a directed graph and k > 1 is an integer, then G admits
a nowhere-zero k-flow if and only if G admits a nowhere-zero Zk-flow.

In [11], the null set of a complete bipartite graph was determined.
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Theorem 18. If m,n > 2, then N(Km,n) =

{

N, if m+n is even;
N \ {2}, if m+n is odd.

In the following theorem we determine a necessary condition for the existence of a
zero-sum h-magic labeling in bipartite graphs.

Theorem 19. Let G be bipartite in which G admits a zero-sum h-magic labeling, for
some h ∈ N. Then G is 2-edge connected.

Proof. Assume that G admits a zero-sum h-magic labeling, say l. To the contrary, let
e = uv be a cut-edge of G. Note that G \ {e} is bipartite graph. Let H be one of the
connected components of G \ {e} with two parts X and Y such that Y ∩ {u, v} 6= ∅. It
is not hard to see that in G,

∑

x∈X s(x) =
∑

y∈Y s(y) − l(uv). On the other hand, by
assumption

∑

x∈X

s(x) =
∑

y∈Y

s(y) ≡ 0 (mod h).

This implies that l(uv) ≡ 0 (mod h), which is a contradiction. ✷

Next, we determine the null set of a 2-edge connected bipartite graph.

Theorem 20. Let G be a 2-edge connected bipartite graph. Then G admits a zero-sum
k-magic labeling, for k ∈ N \ {2, 3, 4, 5}.

Proof. First, orient all edges from one part of G to the other part and call the resultant
directed graph by G′. By Theorem 16, G′ admits a nowhere-zero 6-flow. Thus G′ admits
a nowhere-zero k-flow, for every k ∈ N \ {2, 3, 4, 5} and so by Theorem 17, G′ admits a
nowhere-zero Zk-flow, for k ∈ N \ {2, 3, 4, 5}. Now, by removing the direction of all edges
we conclude that G admits a zero-sum k-magic labeling, for every k ∈ N \ {2, 3, 4, 5} and
the proof is complete. ✷

In the following remark, we show that there are some 2-edge connected bipartite graphs
with no zero-sum k-magic labeling, for k = 2, 3, 4.

Remark 21. In a bipartite graph the existence of a zero-sum k-flow is equivalent to the
existence of a zero-sum k-magic labeling. To see this first orient all edges from one part
to the other part and call the directed graph by G′. Therefore, G′ admits a nowhere-zero
k-flow. Now, by removing the direction of all edges we conclude that G admits a zero-sum
k-flow. So, G admits a zero-sum k-flow if and only if G′ admits a nowhere-zero k-flow.
Thus by Theorem 17, G′ admits a nowhere-zero Zk-flow. But the later condition implies
that G admits a zero-sum k-magic labeling.
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Let G be the following graph. By a computer search one can see that G does not
admit a zero-sum 4-flow, see [1]. So G does not admit a zero-sum 4-magic labeling.

Since G does not admit a zero-sum 4-flow, G does not admit a zero-sum k-flow, for k 6 4.
Hence G does not admit a zero-sum k-magic labeling, for k = 2, 3, 4.

Acknowledgements. The first and the third authors are indebted to the School of
Mathematics, Institute for Research in Fundamental Sciences (IPM) for the support.
The research of the first author and the third author were in part supported by a grant
from IPM (No.92050212) and (No.92050015), respectively. Also, the authors would like
to express their deep gratitude to Somayeh Moazzeni and Fatemeh Khaghanpour for very
careful reading of the paper and their valuable comments. Finally, the authors are very
grateful to the referees for their appropriate and constructive suggestions for improving
the paper.

References

[1] S. Akbari, A. Daemi, O.Hatami, A. Javanmard, A. Mehrabian, Zero-sum flows in
regular graphs, Graphs Combin. 26 (2010), 603–615.

[2] S. Akbari, N. Ghareghani, G.B. Khosrovshahi, S. Zare, A note on zero-sum 5-flow in
regular graphs, Electron. J. Combin. 19(2), 2012, #P7.

[3] S. Akbari, M. Kano, S. Zare, 0-Sum and 1-sum flows in regular graphs, submitted.

[4] J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Springer, 2007.
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