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Abstract

A thicket in a graph G is defined as a set of even circuits such that every edge

lies in an even number of them. If G is directed, then each circuit in the thicket

has a well defined directed parity. The parity of the thicket is the sum of the

parities of its members, and is independent of the orientation of G. We study the

problem of determining the parity of a thicket T in terms of structural properties

of T . Specifically, we reduce the problem to studying the case where the underlying

graph G is cubic. In this case we solve the problem if |T | = 3 or G is bipartite. Some

applications to the problem of characterising Pfaffian graphs are also considered.

1 Introduction

In [2] necessary and sufficient conditions are found for the possibility of orienting a graph
so that each even circuit has a specified directed parity. (The directed parity of a circuit
of even length is that of the number of edges directed in agreement with a specified sense.
This parity is clearly well defined.) The motivation was to shed light on the problem
of characterising Pfaffian graphs. A graph is said to be Pfaffian if it can be oriented so
that every alternating circuit (circuit which is the symmetric difference of two 1-factors)
is of odd directed parity. Pfaffian graphs are of interest because their 1-factors (perfect
matchings) can be easily enumerated. (See [3].) However the result in [2] cannot be
applied directly to the Pfaffian problem because it requires that a directed parity be
specified for every even circuit, not just for alternating circuits. In this paper we consider
near bricks and study the problem of specifying a directed parity for an even circuit that is
not alternating. (A matching covered non-bipartite graph is a near brick if its alternating
space is equal to its even space. The vector spaces here are over Z2, the vectors are circuits
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considered as sets of edges and the operation of addition is symmetric difference. The
alternating space is that spanned by the alternating circuits. Similarly the even space is
spanned by the even circuits.)

Our study leads to the concept of a thicket. A thicket in a graph G is a collection T
of even circuits with empty sum. Each circuit in the thicket is therefore the sum of all
the others. If G is a directed graph, then each circuit in T , being of even length, has
a well defined directed parity. Indeed, any circuit C of T may be assigned a sense and
the directed parity of C is then measured as the parity of the number of edges in C that
are oriented in agreement with the specified sense. As |C| is even, this parity does not
change if the sense assigned to C is reversed. The parity of T is the sum (modulo 2) of the
parities of its members. A change in the orientation of an edge e of G induces a change in
the directed parity of any member of T that contains e. As there are an even number of
such members of T , the parity of T itself remains unchanged. It is therefore independent
of the orientation of G. It is an inherent property of T . We study the problem of relating
the parity of a given thicket to other aspects of its structure.

For each edge e of G we denote by C(e) the set of circuits of T that contain e. We
say that e carries each circuit in C(e). Clearly we may assume that G is induced by ∪T ,
as any edge e for which C(e) = ∅ is irrelevant. We say that G is induced by T . For each
v ∈ V G, let C(v) be the set of circuits in T that pass through v. Each contains just two
edges incident on v.

We begin by investigating the contribution of each edge of G to the parity of T . Give
G an arbitrary orientation and assign to each circuit of T an arbitrary sense. The parity

of an edge e is defined to be that of the number of circuits in C(e) whose sense agrees
with the orientation of e. As |C(e)| is even, this parity is independent of the orientation
of e. The sum of the parities of the edges of G is therefore independent of the orientation
of G. As each circuit in T is of even length, it is also independent of the senses assigned
to the members of T . In fact it is equal to the parity of T . Thus the parity of T is that
of the number of odd edges of G. Accordingly in what follows we study the parity of the
number of odd edges of G.

For each edge e ∈ EG let |C(e)| = 2ne. Let G∗ be the graph obtained from G by
replacing each edge e with ne parallel edges having the same pair of ends as e. Then G∗ is
induced by a thicket T ∗ for which each edge of G∗ carries just two members. This thicket
is not necessarily well defined, but each possible choice of T ∗ has the same parity as T .
We may therefore assume that each edge of G carries just two members of T . In this case
we refer to T as a basic thicket. It is in fact simply a circuit double cover in which the
length of every circuit is even.

In Section 2 we show how to reduce the problem to the case of basic thickets in cubic
graphs. We also solve the problem for basic thickets of cardinality 3 and for basic thickets
in bicubic graphs. We conclude in Section 3 by indicating the potential application to the
study of the Pfaffian property of near bricks.
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2 Basic thickets

We begin our study of basic thickets by showing how to reduce the problem to the case
of a cubic graph.

2.1 Reduction to the cubic case

First we show that the circuits of a basic thicket T may be assumed to be the boundaries
of the faces of an embedding of G. Let V G = {v1, v2, . . . , vm}. For each i let H(vi) be a
graph whose vertices are the edges of G incident on vi, and let two vertices of H(vi) be
joined by as many edges as the number of circuits of T that contain them both. (This
number, of course, must be 0, 1 or 2.) Since each edge of G carries just two circuits
of T , the degree of every vertex of H(vi) is 2. Therefore H(vi) is induced by a set of
vertex-disjoint circuits. Let H be the graph such that V H = EG and any two vertices of
H that are adjacent edges of G are joined by as many edges as the number of circuits of
T that contain them both. This graph is also induced by a unique set of circuits, namely
∪m

i=1Ci where Ci, for each i, is the set of circuits in H(vi).
Now let G′ be a graph whose edges are the vertices of H (in other words, the edges of

G) and whose vertices are the circuits of H. Since the circuits of each H(vi) are vertex-
disjoint, it follows that each vertex e of H lies on only two circuits; let these be the vertices
joined by e in G′. Thus EG′ = EG and T is also a thicket in G′. Each edge of G′ therefore
has the same parity as in G. Consequently the parity of T in G′ is the same as its parity
in G. Moreover, since each edge of G′ carries just two circuits of T and the vertices of
G′ are circuits of H, we find that T is the set of face boundaries of an embedding of G′.
Therefore we may assume that T is the set of face boundaries of an embedding of G, as
claimed.

If G is a graph, then we denote by N(G) the number of vertices whose degree is 2 or
a multiple of 4. If T is a thicket, then we define P (T ) = 0 if T is even and P (T ) = 1
otherwise.

Theorem 2.1. Let G be a graph induced by a basic thicket T . Then T may be reduced

to a thicket T ′ in a cubic graph such that

P (T ′) ≡ P (T ) +N(G) (mod2).

Proof. As EG is a union of circuits, the degree of each vertex is at least 2. Let v be a
vertex of degree 2 adjacent to distinct vertices u and w. Then the two edges a and b

incident on v are of equal parity since they belong to the same two circuits A and B of
the thicket T . Without loss of generality we may assume that a joins v to u, so that b

joins v to w. We may also assume that A and B have been assigned senses so that the
sense of A on a is directed from u and the sense of B on a is directed from v; then a and
b are both odd edges. Let Gv be the graph obtained from G− {v} by replacing v and its
incident edges with vertices x, y, z and edges a′, b′, c, d, e, f , where a′ joins x to u, b′ joins
z to w, c and d both join x to y and e and f both join y to z. (See Figure 1.) Note that

the electronic journal of combinatorics 21(2) (2014), #P2.21 3



x and z are of degree 3 but the degree of y is 4. Define

A′ = (A− {a, b}) ∪ {a′, c, e, b′} = A+ {a, b, a′, c, e, b′},

B′ = B + {a, b, a′, d, f, b′},

C = {c, d},

D = {e, f}.

These circuits are of even length. Let

Tv = T + {A,B,A′, B′, C,D}.

Then Tv is a thicket in Gv in which every edge carries just two circuits. Assign senses to
A′ and B′ so that the sense of A′ on a′ is directed from u and the sense of B′ on a′ is
directed from x. Assign senses to C and D arbitrarily. Then the number of odd edges in
the set {a′, b′, c, d, e, f} is even. Hence Tv is of the same parity as T . We may therefore
assume that the degree of every vertex is at least 3.

u

u

v

w

w

x

y

z

a

b

a′

b′

c d

e f

Figure 1:

Now let v be a vertex of even degree greater than 3, and let e1, e2, . . . , e2m be the
edges incident on v; let them join v to vertices v1, v2, . . . , v2m respectively. We may
assume that senses have been assigned to the circuits of T so that these edges are all odd.
Let C(v) = {C1, C2, . . . , C2m}. As T is the set of face boundaries of an embedding of G,
we may also assume that {ei, ei+1} ⊂ Ci for all i, where e2m+1 = e1. Let Gv be the graph
obtained from G− {v} by replacing the vertex v with vertices

u1, u2, . . . , u2m, w1, w2, . . . , w2m

and the edges incident on v with edges

e′1, e
′

2, . . . , e
′

2m, x1, x2, . . . , x2m, y1, y2, . . . , y2m, z1, z2, . . . , zm
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where, for all i 6 2m, e′i joins vi to ui, xi joins ui to wi, yi joins wi to ui+1 (where
u2m+1 = u1) and, for all i 6 m, zi joins wi to wm+i. Note that the vertices of V Gv − V G

are all of degree 3. (An example where the degree of v is 4 is given in Figure 2.) For each
i 6 2m let

C ′

i = Ci + {ei, ei+1, e
′

i, xi, yi, e
′

i+1},

where e′2m+1 = e′1, and for each i 6 m define

Di = {yi−1, xi, zi, xm+i, ym+i−1, zi−1},

where y0 = y2m and z0 = zm. Note that these circuits are all even. Let

Tv = T + C(v) + {C ′

1, C
′

2, . . . , C
′

2m, D1, D2, . . . , Dm}.

Then Tv is a thicket in Gv in which every edge carries just two circuits. For each i 6 2m

v

v1

v1

v2 v2

v3

v3

v4v4

e1

e2
e3

e4

e′1

e′2

e′3

e′4

u1

u2

u3

u4

w1

w2
w3

w4

x1

x2

x3

x4y1

y2

y3

y4

z1

z2

Figure 2:

orient xi from ui and assign to C ′

i the sense that agrees with this orientation. Similarly
for each i 6 m assign to Di the sense that agrees with the orientation of xi. Then edges

e′1, e
′

2, . . . , e
′

2m, xm+1, xm+2, . . . , x2m, ym, ym+1, . . . , y2m−1, z1, z2, . . . , zm−1

are odd but
x1, x2, . . . , xm, y1, y2, . . . , ym−1, y2m, zm

are even. Thus the odd edges e1, e2, . . . , e2m in G are replaced in Gv by 5m−1 odd edges.
This number is even if and only if m is odd. Hence the parity of Tv is different from that
of T if and only if the degree of v is divisible by 4.

Suppose on the other hand that v is of odd degree greater than 3. Let e0, e1, . . . , e2m
be the edges incident on v, and let them join v to vertices v0, v1, . . . , v2m respectively. We
assume as before that these edges are odd. Let C(v) = {C0, C1, . . . , C2m}. We may also
assume that {ei, ei+1} ⊂ Ci for all i, where this time subscripts are to be read modulo
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2m+1. Let Gv be the graph obtained from G−{v} by replacing the vertex v with vertices
u0, u1, . . . , u2m and the edges incident on v with edges

e′0, e
′

1, . . . , e
′

2m, x0, x1, . . . , x2m

where, for all i, e′i joins vi to u2i and xi joins ui to ui+1. Again the subscripts are to be
read modulo 2m+1. As this number is odd but 2i is even for every i, each ui is adjacent
to a unique vj as well as to ui−1 and ui+1. Hence each vertex of V Gv − V G is of degree
3, as before. (An example where the degree of v is 5 is given in Figure 3.) For each i let

C ′

i = Ci + {ei, ei+1, e
′

i, x2i, x2i+1, e
′

i+1}.

Again these circuits are even. Let

Tv = T + C(v) + {C ′

0, C
′

1, . . . , C
′

2m}.

Then Tv once again is a thicket in Gv in which every edge carries just two circuits. Orient

v

v0

v0 v1

v1

v2

v2

v3

v3

v4

v4

e0e1

e2 e3

e4

e′0

e′1

e′2 e′3

e′4

u0

u1

u2 u3

u4x0

x1

x2

x3

x4

Figure 3:

each xi so that the circuit X = {x0, x1, . . . , x2m} is directed, and assign to each C ′

i the
sense that agrees with the orientations of its edges in X. Then edges e′0, e

′

1, . . . , e
′

2m are
odd but the edges of X are even. We conclude that the parity of Tv is equal to that of T
in this case.

2.2 Basic thickets in cubic graphs

We begin our study of cubic graphs by introducing an operation—the cancellation of an
edge. Let G be a cubic graph induced by a basic thicket T . Then any pair of adjacent
edges of G belong to a unique common member of T . Let e be an edge of G joining
vertices u and v. Let a and b be the edges of EG− {e} incident on u and let c and d be
those incident on v. Let w, x, y, z be the ends of a, b, c, d, respectively, in V G − {u, v}.
(See Figure 4.)

There is a unique circuit C ∈ T containing a and b and a unique D ∈ T containing c

and d. We shall assume that C 6= D, in which case we describe e as a dipole. There is also
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u

v

w wx x

yy zz

a b

c d

eA B

C

D

a′ b′Ae BeCe

Figure 4:

a unique A ∈ T such that {a, e} ⊂ A and a unique B ∈ T for which {b, e} ⊂ B. Without
loss of generality we may assume that c ∈ A and d ∈ B. Note that A− {a, e, c} 6= ∅ and
B − {b, e, d} 6= ∅ since |A| and |B| are even. We may also assume that A,B,C,D have
been assigned senses so that edges a, b, c, d, e are all odd. Let Ge be the graph obtained
from G− {u, v} by replacing the edges a, b, c, d, e with edges a′ and b′ joining w to y and
x to z respectively. We say that Ge is obtained from G by cancelling e and that G is
obtained from Ge by creating e. Define

Ae = A+ {a, e, c, a′},

Be = B + {b, e, d, b′},

Ce = C +D + {a, b, c, d, a′, b′}

and
Te = T + {A,B,C,D,Ae, Be, Ce}.

Then Te is a thicket in Ge, and each edge of Ge carries just two circuits of Te.

Lemma 2.2. Let G be a cubic graph induced by a basic thicket T , and let e be a dipole

in G. Then the parity of Te is the opposite of that of T .

Proof. We use the notation developed in the preceding discussion. We may assign senses
to A,B,C,D so that edges a, b, c, d, e are all odd. Recalling that A−{a, e, c} is non-empty,
we may choose an edge f ∈ A ∩ Ae and assign to Ae the sense that agrees on f with the
sense of A on f . We assign a sense to Be in the same manner. Similarly there is a sense
of Ce that agrees with that of C on any edge of C − {a, b} and with that of D on any
edge of D−{c, d}; assign this sense to Ce. Then a′ and b′ are odd edges in Te. Hence the
number of odd edges in Te is 3 less than in T , and the result follows.
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Corollary 2.3. The numbers of even edges in Te and T are of equal parity.

We now use our results to determine the parity of thickets of cardinality 3 in cubic
graphs. The proof of the next theorem requires the concept of a 3-graph. Readers
unfamiliar with the use of 3-graphs to model embeddings of graphs in surfaces are referred
to [1].

Theorem 2.4. Let G be a cubic graph induced by a basic thicket T which can be partitioned

into three cells of disjoint circuits with the property that the union of the circuits in each

cell gives a spanning cycle of G. Then the parity of T is that of |T |.

Proof. Let {A,B,C} be a partition of T into cells of disjoint circuits with the hypothesised
property. Then A∩B, B ∩C, A∩C are disjoint 1-factors of G. We conclude that G has
a proper edge colouring in three colours, and therefore that it is a 3-graph. It may thus
be put into a canonical form by means of dipole cancellations and creations, moves which
preserve the parity of the number of even edges.

If the canonical form is bipartite, then either it is Θ (the unique cubic graph with
just two vertices) or it models an embedding of a graph in an orientable surface. In both
cases the circuits of T may be assigned senses so that every edge is odd. In other words,
the number of even edges is even, which is the parity of the Euler characteristic for an
orientable embedding.

Suppose on the other hand that the canonical form is not bipartite. Then it models
an embedding of a graph in a non-orientable surface. Let g be the genus of this surface.
The canonical form Gg has vertices v0, v1, . . . , v4g−1 and edges

e0, e1, . . . , e4g−1, a0, a1, . . . , ag−1, b0, b1, . . . , bg−1

where, for all i < 4g, ei joins vi to vi+1 and, for all i < g, ai joins v4i to v4i+2 and bi joins
v4i+1 to v4i+3. Here the subscripts are to be read modulo 4g. (Figure 5 gives an example
where g = 2.) The thicket which induces Gg is

Tg = {A,B,C0, C1, . . . , Cg−1}

where
A = {e0, e1, . . . , e4g−1},

B = {a0, e1, b0, e3, a1, e5, b1, e7, . . . , ag−1, e4g−3, bg−1, e4g−1}

and
Ci = {ai, e4i+2, bi, e4i}

for all i < g. Orient the edges of A so that A is a directed circuit and assign to the circuits
of Tg the senses that agree with the orientations of the edges

e0, e4, . . . , e4g−4, e4g−1.

Then edges
e1, e2, e5, e6, . . . , e4g−3, e4g−2, a0, a1, . . . , ag−1
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Figure 5:

are odd but the remaining 3g edges of Gg are even. Thus the number of even edges has
the same parity as g. But, for a non-orientable embedding, g is of the same parity as the
Euler characteristic.

In any case, therefore, the parity of the number of even edges is that of the Euler
characteristic, |V G| − |EG|+ |T |. Moreover |V G| is even since G is cubic. Let n0 and n1

be the numbers of even and odd edges, respectively, in G. Then

n0 ≡ |EG|+ |T | ≡ n0 + n1 + |T |.

(All congruences in this paper are to be taken modulo 2.) Hence n1 + |T | is even, and so
the parity of T is that of |T |.

Corollary 2.5. Let G be a cubic graph induced by a thicket T of cardinality 3. Then the

parity of T is odd.

Proof. If T = {X, Y, Z}, then X, Y, Z must be Hamilton circuits. Therefore we may take
{{X}, {Y }, {Z}} as the partition in the hypothesis of the theorem.

Corollary 2.6. Let G be a graph with N(G) vertices of degree 2 and the rest of degree 3.

Let G be induced by a thicket T which can be partitioned into three cells of circuits with

the property that the union of the circuits in each cell gives a spanning cycle of G. Then

the parity of T is that of |T |+N(G).

Proof. We use induction on the number of vertices of degree 2. The result follows from
the theorem if G is cubic. It is therefore enough to show that if the vertices of degree
2 are replaced by vertices of degree 3 as in the procedure described in Section 2.1, then
the hypotheses of the corollary are still satisfied by the resulting thicket. Consequently
it suffices to consider the case where there is a unique vertex of degree 2. Let v be this
vertex, and let it be joined to vertices u and w by edges c1 and c2 respectively. Let C1

and C2 be the circuits of T that contain c1 and c2. These circuits meet, and therefore
belong to distinct cells C1 and C2, respectively, of the given partition P of T of cardinality
3. Let D be the third cell of this partition. Thus P = {C1, C2,D}.
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The reduction to the case of cubic graphs requires that a graph Gv be obtained from
G− {v} by replacing v with vertices

v1, v2, u1, u2, u3, u4, w1, w2, w3, w4

and its incident edges with edges

c′1, c
′

2, a1, a2, b1, b2, x1, x2, x3, x4, y1, y2, y3, y4, z1, z2

where c′1 joins u to v1, c
′

2 joins v2 to w, a1 joins v1 to u1, a2 joins u2 to v2, b1 joins v1
to u4, b2 joins u3 to v2, xi joins ui to wi for each i, yi joins wi to ui+1 for each i (where
u5 = u1), z1 joins w1 to w3 and z2 joins w2 to w4. (See Figure 6.)

u

u

v

w

w

c1

c2

c′1

c′2

v1

v2

u1

u2 u3

u4

w1

w2

w3

w4

x1

x2

x3

x4

y1
y2

y3

y4

z1
z2

a1

a2

b1

b2

Figure 6:

Let
C ′

1 = C1 + {c1, c2, c
′

1, a1, x1, y1, x2, z2, x4, y3, x3, b2, c
′

2},

C ′

2 = C2 + {c1, c2, c
′

1, b1, x4, y4, x1, z1, x3, y2, x2, a2, c
′

2},

D = {b1, y3, z1, y1, a2, b2, y2, z2, y4, a1}

and
T ′ = T + {C1, C2, C

′

1, C
′

2, D};

T ′ is a thicket in Gv. Moreover

{C1 + {C1, C
′

1}, C2 + {C2, C
′

2},D ∪ {D}}

is a partition of T ′ into three cells with the required properties. The conclusion therefore
follows from Theorem 2.1.
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We can also determine the parity of a thicket that induces a bicubic graph. First we
need the following lemma.

Lemma 2.7. Let G be a cubic graph induced by a basic thicket T . Then the even edges

form a cycle of G.

Proof. Choose v ∈ V G. There are three edges, a, b, c, incident on v. There are circuits
A,B,C ∈ T such that {a, b} ⊂ A, {b, c} ⊂ B and {a, c} ⊂ C. These circuits may be
assigned senses so that edges a, b, c are all odd. Each of A,B,C contains exactly two of
a, b, c. Therefore an even number of a, b, c are even under any assignment of senses to
A,B,C. The result follows.

Theorem 2.8. Let G be a bipartite cubic graph, induced by a thicket T , with bipartition

{X, Y }. Then the parity of T is that of |X|.

Proof. Note first that, as G is cubic, |V G| is even; hence |X| ≡ |Y |.
Since the degree of every vertex is odd, we have |EG| ≡ |X|. As G is bipartite and

the set S of even edges is a cycle by the lemma, it follows that |S| ≡ 0. Hence

|T | = |EG ∩ T | ≡ |X|,

where T = EG− S. As T is the set of odd edges of G, the result follows.

3 Applications to the Pfaffian problem

Let C be an even circuit in a near brick G. As the even space of G is equal to the
alternating space, it has a basis B consisting of alternating circuits. If G is given a
Pfaffian orientation, then the basis circuits have odd directed parity. In any case C can
be expressed uniquely as a sum of circuits in B. Let S(C) be the set of alternating circuits
in B whose sum is C. Then S(C) ∪ {C} is a thicket T . If its parity is known and the
specified parities for the circuits in S(C) are all equal to their actual odd directed parity
under a given Pfaffian orientation of G, then the directed parity of C can be calculated.
We therefore specify the result of this calculation as the directed parity for C.

If G is Pfaffian, then it can be oriented so that every even circuit has its specified
directed parity. Suppose therefore that G is not Pfaffian. It is still possible to specify
parities so that the specified parity of every alternating circuit is odd and the specified
parity for any even circuit that is not alternating is calculated from the basis B as in the
previous paragraph, but this time G cannot be oriented so that every even circuit has its
specified directed parity. It follows from the main theorem in [2] that in this case there
is an obstruction set of three or four even circuits that cannot all be given their specified
directed parities under any orientation of G. Moreover, because of the way in which the
specified parities have been calculated for the even circuits that are not alternating, any
such obstruction set contains at least one alternating circuit not in B.

One further conclusion can be drawn from these considerations. Two of the obstruction
sets in [2] consist, respectively, of the three even circuits in an even subdivision of K2,3
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and the three even circuits in an even subdivision of the graph K∗

4 obtained from K4 by
subdividing once every edge incident on a given vertex. In these obstruction sets an even
number of the even circuits are specified to have even directed parity. In every other
obstruction set, an odd number of the even circuits are specified to have even directed
parity. In the latter obstruction sets, therefore, at least one of the even circuits is not
an alternating circuit, and we deduce that in this case such an even circuit must exist.
In any matching covered graph that is not a near brick, the existence of an even circuit
that is not alternating follows from the fact that the alternating space of such a graph is
a proper subspace of the even space. We therefore reach the following conclusion.

Theorem 3.1. Any non-Pfaffian graph contains an even subdivision of K2,3 or K∗

4 or an

even circuit that is not alternating.

It is known [4] that a non-Pfaffian graph must contain a subdivision of K3,3. Note that
if each edge of K3,3 not in a given 1-factor is subdivided once, then the resulting graph
contains no even subdivision of K2,3 or K∗

4 .
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