A note on coloring line arrangements
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Abstract
We show that the lines of every arrangement of n lines in the plane can be col-
ored with O(y/n/logn) colors such that no face of the arrangement is monochro-
matic. This improves a bound of Bose et al. by a ©(y/logn) factor. Any further
improvement on this bound would also improve the best known lower bound on the
following problem of Erdés: estimate the maximum number of points in general
position within a set of n points containing no four collinear points.
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1 Introduction

Given a simple arrangement A of a set L of lines in R? (no parallel lines and no three lines
going through the same point), decomposing the plane into the set C' of cells (i.e. maximal
connected components of R?\ L), Bose et al. [1] defined a hypergraph Hecon = (L, C)
with the vertex set L (the set of lines of A), and each hyperedge ¢ € C being defined
by the set of lines forming the boundary of a cell of A. They initiated the study of
the chromatic number of Hy,.car, and proved that for |L| = n, X(Hineen) = O(V/1)

and X (Hinecen) = Q (log)ﬁ) gn> In other words, they proved that the lines of every simple

arrangement of n lines can be colored with O(/n) colors so that there is no monochromatic
face; furthermore, they provided an intricate construction of a simple arrangement of n

lines that requires (2 ( logn ) colors.

loglogn
In this short note, we improve their upper bound by a ©(y/logn) factor, and extend
it to not necessarily simple arrangements.

Theorem 1. The lines of every arrangement of n lines in the plane can be colored with
O(\/n/logn) colors so that no face of the arrangement is monochromatic.

A set of points in the plane is in general position if it does not contain three collinear
points. Let a(S) denote the maximum number of points in general position in a set S
of points in the plane, and let ay(n) be the minimum of a(S) taken over all sets S of n
points in the plane with no four point on a line. Erdds pointed out that ay(n) < n/3
and suggested the problem of determining or estimating ay(n). Firedi [3] proved that
Q(vTogn) < as(n) < o(n).

We observe that any improvement of the bound in Theorem 1 would immediately imply
a better lower bound for ay(n). Indeed, suppose that x(A) < k(n) for any arrangement of
n lines, and let P be a set of n points, no four on a line. Let P* be the dual arrangement
of a slightly perturbed P (according to the usual point-line duality, see, e.g., [2, § 8.2]).
Color P* with k(n) colors such that no face is monochromatic, let S* C P* be the largest
color class, and let S be its dual point set. Observe that the size of S is at least n/k(n)
and it does not contain three collinear points, since the three lines that correspond to any
three collinear points in P bound a face of size three in P*.

2 Proof of Theorem 1

Let A be an arrangement of a set L of n lines, decomposing the plane into the set C' of
cells, and let H,,....i be the corresponding hypergraph (defined as in the previous section).

We show that x(Hme.can) = O ( i )

logn |°

An independent set in H,ecn 18 @ set S C L such that for every ¢ € C, ¢ is not a
subset of S (in other words, no cell of A has its boundary formed only by lines in S). The
proof is based on the following fact.
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Theorem 2. There is an absolute constant ¢ > 0 such that the size &(Hpe-con) Of the
mazimum independent set is at least cy/nlogn.

We color the lines in A so that no face is monochromatic by following the same method
as in [1] (where they used the weaker version of Theorem 2 stating a(Hynecen) = Q2(y/1)).
That is, we iteratively find a large independent set of lines (whose existence is guaranteed
by Theorem 2), color them with the same (new) color, and remove them from .A.

Clearly, this algorithm produces a valid coloring. We verify, by induction on n, that
at most % n/logn colors are used in this coloring. We assume the bound is valid for all
n < 256 (by taking sufficiently small ¢ > 0). For n > 256, we have log4 < 1logn. Let
1 be the smallest integer such that after ¢ iterations the number of remaining lines is at
most n/4. Since in each of these iterations at least c\/% log 7 > ¢y/% log n vertices (lines)

are removed, i < n/4 \/n/logn. Therefore, by the 1nduct10n hypothesis the

g logn S \[
number of colors that the algorithm uses is at most

2+ 4
log2 \/_c logn logn— Tlogn
< n + n < - n . O
\/§c logn c logn ¢\ logn

The proof of Theorem 2 is based on a result on independent sets in sparse hypergraphs.
Given a hypergraph H on a vertex set V, the sub-hypergraph H[X] induced by X C V
consists of all edges of H that are contained in X. A hypergraph H = (V, F) is k-uniform
if every edge e € E has size k. Given a k-uniform hypergraph H and a set S C V with
|S| = k — 1, the co-degree of S is the number of all vertices v € V such that SU{v} € E.
Kostochka et al. [4] proved that if H is a k-uniform hypergraph, k& > 3, with all co-degrees

_1
at most d, then a(H) > ¢, (%log %) "', where ¢, > 0.
In fact, a careful look at their proof reveals the following result, that we state for
3-uniform hypergraphs, since this is the case that we need.

Lemma 2.1 ([4]). Let H = (V. E) be a 3-uniform hypergraph on |V| = n vertices with

all co-degrees at most d, d < n/(logn)'?. Let X be a random subset of V, obtained by
n-2/5

Tdioglogtog o5 - Let Z be a

set chosen uniformly at random among all the independent sets of H[X]. Then, with high

probability | Z| = Q(v/nlogn).

With Lemma 2.1 in hand we can now prove Theorem 2.

choosing each vertex of V' independently with probability p =

Proof of Theorem 2: A cell of an arrangement A is called an r-cell, if r lines of L are
forming its boundary. Let Ha C Hinecen be the 3-uniform hypergraph with the vertex
set L being the set of lines, and each hyperedge defined by the triple of lines forming the
boundary of a 3-cell of A. Since any two lines can participate in the boundaries of at most
four 3-cells of A, all co-degrees of ‘H are at most d = 4. Now, as in Lemma 2.1, let X be a
random subset of L, obtained by choosing each line in L independently with probability
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p= W. Since there are O(n?) faces in A and O(n) of them are 2-cells (since

every line can bound at most four such faces), the expected number of 2-cells of A in
Himeeen|X] is O(p*n) = o(y/nlogn), and the expected number of r-cells, r > 4, of A in
Himecen|X] is O(p*n?) = o(y/nlogn). From Lemma 2.1 it follows that there exists a set
Z C X C L of size Q(y/nlogn), that is an independent set of H[X], and such that the
number of r-cells, 7 # 3, of A in Hypecan[Z] is 0(v/nlogn). Removing from Z one vertex
(line) for each such r-cell, we obtain an independent set of Hy..con Of size Q(yv/nlogn). O
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