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and Alfréd Rényi Institute, Budapest, Hungary

pach@cims.nyu.edu

Rom Pinchasi†

Mathematics Department
Technion—Israel Institute of Technology

Haifa 32000, Israel

room@math.technion.ac.il
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Abstract

We show that the lines of every arrangement of n lines in the plane can be col-
ored with O(

√
n/ log n) colors such that no face of the arrangement is monochro-

matic. This improves a bound of Bose et al. by a Θ(
√

log n) factor. Any further
improvement on this bound would also improve the best known lower bound on the
following problem of Erdős: estimate the maximum number of points in general
position within a set of n points containing no four collinear points.
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1 Introduction

Given a simple arrangement A of a set L of lines in R2 (no parallel lines and no three lines
going through the same point), decomposing the plane into the set C of cells (i.e. maximal
connected components of R2 \ L), Bose et al. [1] defined a hypergraph Hline-cell = (L,C)
with the vertex set L (the set of lines of A), and each hyperedge c ∈ C being defined
by the set of lines forming the boundary of a cell of A. They initiated the study of
the chromatic number of Hline-cell, and proved that for |L| = n, χ(Hline-cell) = O(

√
n)

and χ(Hline-cell) = Ω
(

logn
log logn

)
. In other words, they proved that the lines of every simple

arrangement of n lines can be colored withO(
√
n) colors so that there is no monochromatic

face; furthermore, they provided an intricate construction of a simple arrangement of n

lines that requires Ω
(

logn
log logn

)
colors.

In this short note, we improve their upper bound by a Θ(
√

log n) factor, and extend
it to not necessarily simple arrangements.

Theorem 1. The lines of every arrangement of n lines in the plane can be colored with
O(
√
n/ log n) colors so that no face of the arrangement is monochromatic.

A set of points in the plane is in general position if it does not contain three collinear
points. Let α(S) denote the maximum number of points in general position in a set S
of points in the plane, and let α4(n) be the minimum of α(S) taken over all sets S of n
points in the plane with no four point on a line. Erdős pointed out that α4(n) 6 n/3
and suggested the problem of determining or estimating α4(n). Füredi [3] proved that
Ω(
√
n log n) 6 α4(n) 6 o(n).

We observe that any improvement of the bound in Theorem 1 would immediately imply
a better lower bound for α4(n). Indeed, suppose that χ(A) 6 k(n) for any arrangement of
n lines, and let P be a set of n points, no four on a line. Let P ∗ be the dual arrangement
of a slightly perturbed P (according to the usual point-line duality, see, e.g., [2, § 8.2]).
Color P ∗ with k(n) colors such that no face is monochromatic, let S∗ ⊆ P ∗ be the largest
color class, and let S be its dual point set. Observe that the size of S is at least n/k(n)
and it does not contain three collinear points, since the three lines that correspond to any
three collinear points in P bound a face of size three in P ∗.

2 Proof of Theorem 1

Let A be an arrangement of a set L of n lines, decomposing the plane into the set C of
cells, and let Hline-cell be the corresponding hypergraph (defined as in the previous section).

We show that χ(Hline-cell) = O

(√
n

logn

)
.

An independent set in Hline-cell is a set S ⊂ L such that for every c ∈ C, c is not a
subset of S (in other words, no cell of A has its boundary formed only by lines in S). The
proof is based on the following fact.
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Theorem 2. There is an absolute constant c > 0 such that the size α(Hline-cell) of the
maximum independent set is at least c

√
n log n.

We color the lines in A so that no face is monochromatic by following the same method
as in [1] (where they used the weaker version of Theorem 2 stating α(Hline-cell) = Ω(

√
n)).

That is, we iteratively find a large independent set of lines (whose existence is guaranteed
by Theorem 2), color them with the same (new) color, and remove them from A.

Clearly, this algorithm produces a valid coloring. We verify, by induction on n, that
at most 2

c

√
n/ log n colors are used in this coloring. We assume the bound is valid for all

n 6 256 (by taking sufficiently small c > 0). For n > 256, we have log 4 < 1
4

log n. Let
i be the smallest integer such that after i iterations the number of remaining lines is at
most n/4. Since in each of these iterations at least c

√
n
4

log n
4
> c
√

n
8

log n vertices (lines)

are removed, i 6 n/4

c
√

n
8
logn

6 1√
2c

√
n/ log n. Therefore, by the induction hypothesis the

number of colors that the algorithm uses is at most

i+
2

c

√
n
4

log n
4

6
1√
2c

√
n

log n
+

1

c

√
n

log n− 1
4

log n

<
1√
2c

√
n

log n
+

√
4/3

c

√
n

log n
<

2

c

√
n

log n
. 2

The proof of Theorem 2 is based on a result on independent sets in sparse hypergraphs.
Given a hypergraph H on a vertex set V , the sub-hypergraph H[X] induced by X ⊂ V
consists of all edges of H that are contained in X. A hypergraph H = (V,E) is k-uniform
if every edge e ∈ E has size k. Given a k-uniform hypergraph H and a set S ⊂ V with
|S| = k− 1, the co-degree of S is the number of all vertices v ∈ V such that S ∪{v} ∈ E.
Kostochka et al. [4] proved that if H is a k-uniform hypergraph, k > 3, with all co-degrees

at most d, then α(H) > ck
(
n
d

log n
d

) 1
k−1 , where ck > 0.

In fact, a careful look at their proof reveals the following result, that we state for
3-uniform hypergraphs, since this is the case that we need.

Lemma 2.1 ([4]). Let H = (V,E) be a 3-uniform hypergraph on |V | = n vertices with
all co-degrees at most d, d < n/(log n)12. Let X be a random subset of V , obtained by

choosing each vertex of V independently with probability p = n−2/5

(d log log logn)3/5
. Let Z be a

set chosen uniformly at random among all the independent sets of H[X]. Then, with high
probability |Z| = Ω(

√
n log n).

With Lemma 2.1 in hand we can now prove Theorem 2.

Proof of Theorem 2: A cell of an arrangement A is called an r-cell, if r lines of L are
forming its boundary. Let H4 ⊂ Hline-cell be the 3-uniform hypergraph with the vertex
set L being the set of lines, and each hyperedge defined by the triple of lines forming the
boundary of a 3-cell of A. Since any two lines can participate in the boundaries of at most
four 3-cells of A, all co-degrees of H are at most d = 4. Now, as in Lemma 2.1, let X be a
random subset of L, obtained by choosing each line in L independently with probability
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p = n−2/5

(4 log log logn)3/5
. Since there are O(n2) faces in A and O(n) of them are 2-cells (since

every line can bound at most four such faces), the expected number of 2-cells of A in
Hline-cell[X] is O(p2n) = o(

√
n log n), and the expected number of r-cells, r > 4, of A in

Hline-cell[X] is O(p4n2) = o(
√
n log n). From Lemma 2.1 it follows that there exists a set

Z ⊂ X ⊂ L of size Ω(
√
n log n), that is an independent set of H4[X], and such that the

number of r-cells, r 6= 3, of A in Hline-cell[Z] is o(
√
n log n). Removing from Z one vertex

(line) for each such r-cell, we obtain an independent set of Hline-cell of size Ω(
√
n log n). 2
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