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H-1053 Budapest, Reáltanoda u. 13–15, Hungary

tuza@dcs.vein.hu

Anders Yeo
Engineering Systems and Design

Singapore University of Technology and Design
20 Dover Drive Singapore, 138682, Singapore

and
Department of Mathematics
University of Johannesburg

Auckland Park, 2006 South Africa

andersyeo@gmail.com

Submitted: November 6, 2013; Accepted: March 20, 2014; Published: XX

Mathematics Subject Classifications: 05C65

Abstract

the electronic journal of combinatorics 16 (2009), #R00 1



The first three authors [European J. Combin. 33 (2012), 62–71] established a
relationship between the transversal number and the domination number of uniform
hypergraphs. In this paper, we establish a relationship between the total transversal
number and the total domination number of uniform hypergraphs. We prove tight
asymptotic upper bounds on the total transversal number in terms of the number
of vertices, the number of edges, and the edge size.
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1 Introduction

In this paper, we explore the study of total domination in hypergraphs. We establish
a relationship between the transversal number and the total domination number of of
uniform hypergraphs. We introduce the concept of a total transversal in a hypergraph
and prove a general upper bound on the total domination number of a uniform hypergraph
in terms of its total transversal number.

Hypergraphs are systems of sets which are conceived as natural extensions of graphs.
A hypergraph H = (V (H), E(H)) is a finite set V (H) of elements, called vertices, together
with a finite multiset E(H) of subsets of V (H), called hyperedges or simply edges. If the
hypergraph H is clear from the context, we simply write V = V (H) and E = E(H).
We shall use the notation n

H
= |V | (or n(H)) and m

H
= |E| (or m(H)), and sometimes

simply n and m without subscript if the actual H need not be emphasized, to denote the
order and size of H, respectively. The edge set E is often allowed to be a multiset in the
literature, but in the present context we exclude multiple edges. Also, in the problems
studied here, one may assume that |V (e)| > 2 holds for all e ∈ E. An isolated edge in
H is an edge in H that does not intersect any other edge in H. A linear hypergraph is a
hypergraph in which every two edges intersect in at most one vertex.

A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform if every
edge of H is a k-edge. The degree of a vertex v in H, denoted by dH(v) or d(v) if H is
clear from the context, is the number of edges of H which contain v. A vertex of degree
k is called a degree- k vertex. The number of degree-1 vertices in H is denoted by n1(H).
The minimum degree among the vertices of H is denoted by δ(H) and the maximum
degree by ∆(H).

Two vertices x and y in H are adjacent if there is an edge e of H such that {x, y} ⊆
V (e). The open neighborhood of a vertex v in H, denoted NH(v) or simply N(v) if H is
clear from the context, is the set of all vertices different from v that are adjacent to v. We
call a vertex in N(v) a neighbor of v. Two vertices x and y in H are connected if there
is a sequence x = v0, v1, v2 . . . , vk = y of vertices of H in which vi−1 is adjacent to vi for
i = 1, 2, . . . , k. A connected hypergraph is a hypergraph in which every pair of vertices
are connected. A maximal connected subhypergraph of H is a component of H. Thus,
no edge in H contains vertices from different components.

For a hypergraph H, the open neighborhood hypergraph of H, denoted by ONH(H), is
the hypergraph with vertex set V (H) and edge set {NH(v) | v ∈ V (H)} consisting of the

the electronic journal of combinatorics 16 (2009), #R00 2



open neighborhoods of vertices of V (H) in H.
A subset T of vertices in a hypergraph H is a transversal (also called vertex cover

or hitting set in many papers) if T has a nonempty intersection with every edge of H.
The transversal number τ(H) of H is the minimum size of a transversal in H. A strong
transversal, often called a 2-transversal, in H is a transversal that contains at least two
vertices from every edge in H. The strong transversal number τs(H) of H is the minimum
size of a strong transversal in H. Transversals in hypergraphs are well studied in the
literature (see, for example, [3, 5, 7, 12, 13, 14, 15, 16, 21, 22, 23]).

We define a total transversal inH to be transversal T inH with the additional property
that every vertex in T has at least one neighbor in T , and we define the total transversal
number τt(H) of H to be the minimum size of a total transversal in H.

For a subset X ⊂ V (H) of vertices in H, we define H − X to be the hypergraph
obtained from H by deleting the vertices in X and all edges incident with X, and deleting
resulting isolated vertices, if any. We note that if T ′ is a transversal in H−X, then T ′∪X
is a transversal in H. If X = {x}, then we write H −X simply as H − x.

A dominating set in a hypergraph H = (V,E) is a subset of vertices D ⊆ V such that
for every vertex v ∈ V \ D there exists an edge e ∈ E for which v ∈ e and e ∩ D 6= ∅.
Equivalently, every vertex v ∈ V \ D is adjacent with a vertex in D. The domination
number γ(H) is the minimum cardinality of a dominating set in H. A vertex v in H
is said to be a dominating vertex if it is adjacent to every other vertex in H. A total
dominating set, abbreviated TD-set, in a hypergraph H = (V,E) is a subset of vertices
D ⊆ V such that for every vertex v ∈ V there exists an edge e ∈ E for which v ∈ e and
e∩ (D \{v}) 6= ∅. Equivalently, D is a TD-set in H if every vertex in H is adjacent with a
vertex in D. The total domination number γt(H) is the minimum cardinality of a TD-set
in H. A TD-set in H of cardinality γt(H) is called a γt(H)-set.

While domination and total domination in graphs is very well studied in the literature
(see, for example, [8, 9, 10, 17]), domination in hypergraphs was introduced relatively
recently by Acharya [1] and studied further in [2, 4, 11, 18, 19] and elsewhere.

An edge-cover in a graph G is a set of edges such that every vertex in G is incident
with at least one edge in the edge-cover. We define a total edge-cover in G to be an edge-
cover that induces a subgraph with no isolated edge. We let ect(G) denote the minimum
cardinality of a total edge-cover in G. A 2-section graph, (H)2, of a hypergraph H is
defined as the graph with the same vertex set as H and in which two edges are adjacent
in (H)2 if and only if they belong to a common edge in H.

The interplay between total domination in graphs and transversals in hypergraphs has
been studied in several papers (see, for example, [13, 14, 22]). The first three authors [4]
establish a relationship between the transversal number and the domination number of
uniform hypergraphs. In the present work, we establish a relationship between the total
transversal number and the total domination number of uniform hypergraphs.

1.1 Key Definitions

We shall need the following definitions.
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Definition 1. For an integer k > 2, let Hk be the class of all k-uniform hypergraphs
containing no isolated vertices or isolated edges or multiple edges. Further, for k > 3 let
H∗k consist of all hypergraphs in Hk that have no two edges intersecting in k− 1 vertices.
We note that H∗k is a proper subclass of Hk.

Definition 2. For an integer k > 2, let

bk = sup
H∈Hk

τt(H)

n
H

+m
H

.

2 Main Results

We shall prove the following upper bounds on the total domination number of a uniform
hypergraph in terms of its total transversal number, order and size. A proof of Theorem 3
is presented in Section 5.1.

Theorem 3. For k > 3, if H ∈ Hk, then γt(H) 6

(
max

{
2

k + 1
, bk−1

})
n

H
.

In view of Theorem 3, it is of interest to determine the value of bk for k > 2. A proof
of Theorem 4 is presented in Section 5.2.

Theorem 4. b2 = 2
5
, b3 = 1

3
, and b4 6 1

3
. Further for k > 5, we have bk 6 2

7
.

By Theorem 4, we observe that

bk−1 6
2

k + 1
for k ∈ {3, 4, 5, 6}.

Hence as a consequence of Theorem 3 and Theorem 4, and the well-known fact (see, [6])
that if H ∈ H2, then γt(H) 6 2n

H
/3, we have the following result. The sharpness of the

bound in Theorem 5 is shown in Observation 17 in Section 3.

Theorem 5. For k ∈ {2, 3, 4, 5, 6}, if H ∈ Hk, then γt(H) 6 2n
H
/(k+1), and this bound

is sharp.

The following result is a strengthening of the upper bound of Theorem 3 if we restrict
the edges to intersect in at most k − 2 vertices. A proof of Theorem 6 is presented in
Section 5.3

Theorem 6. For k > 4, if H ∈ H∗k, then γt(H) 6

(
max

{
2

k + 2
, bk−1

})
n

H
.

Corollary 7. For k > 4, if H ∈ H∗k, then γt(H) 6 n
H
/3.

The following result establishes a tight asymptotic bound on bk for k sufficiently large.
A proof of Theorem 8 is presented in Section 6.
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Theorem 8. For all k > 2, bk = (1 + o(1))
ln(k)

k
.

Theorem 8 implies that the inequality bk−1 6 2/(k + 1) is not valid when k is large
enough. Using a result due to Alon [3], the first three authors proved the following result.

Theorem 9. ([4]) For all k > 3,

sup
H∈Hk

γ(H)

n
H

= (1 + o(1))
ln (k − 1)

k − 1
.

By definition, γt(H) > γ(H) for every hypergraph H with no isolated vertex. Hence
as a consequence of Theorem 3, Theorem 8 and Theorem 9, we have the following result.

Theorem 10. For all k > 3,

sup
H∈Hk

γt(H)

n
H

= (1 + o(1))
ln (k − 1)

k − 1
= (1 + o(1))

ln(k)

k
.

We remark that Theorem 10 implies that Theorem 5 is not true for large k.

3 Known Results and Observations

Cockayne et al. [6] established the following bound on the total domination number of a
connected graph in terms of its order.

Theorem 11. ([6]) If G is a connected graph of order n > 3, then γt(G) 6 2n/3.

We shall need the following result due to Kelmans and Mubayi [20].

Theorem 12. ([20]) A cubic graph G contains at least d|V (G)|/4e vertex disjoint P3’s.

The following result shows that the total domination number of a hypergraph H is
precisely the total domination of its 2-section graph and the transversal number of its
open neighborhood hypergraph.

Observation 13. Let H be a hypergraph with no isolated vertex. Then the following
holds.

(a) γt(H) = γt((H)2).
(b) γt(H) = τ(ONH(H)).

Proof. (a) Part (a) follows readily from the fact that two vertices in H are adjacent in H
if and only if they are adjacent in the 2-section graph (H)2 of H.

(b) On the one hand, every TD-set in H contains a vertex from the open neighborhood
of each vertex in H, and is therefore a transversal in ONH, implying that τ(ONH(H)) 6
γt(H). On the other hand, every transversal in ONH contains a vertex from the open
neighborhood of each vertex of H, and is therefore a TD-set in G, implying that γt(H) 6
τ(ONH(H)). Consequently, γt(H) = τ(ONH(H)).
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We shall need the following properties of hypergraphs in the family Hk.

Observation 14. For k > 2, if H ∈ Hk, then the following hold.
(a) n

H
> k + 1, m

H
> 2 and ∆(H) > 2.

(b) 2n
H
− n1(H) > 2k.

Proof. Part (a) is immediate from the definition of the family Hk. To prove Part (b), let
n>2(H) denote the number of vertices in H of degree at least 2. Let e and f be any two
intersecting edges in H and suppose they intersect in ` vertices, and so |e ∪ f | = 2k − `.
Then, n

H
> 2k−` > 2k−n>2(H), or, equivalently, 2n

H
−n1(H) = n

H
+n>2(H) > 2k.

In order to state our next result, we first define two families of hypergraphs.

Definition 15. For k > 2, let H be obtained from a hypergraph F ∈ Hk as follows. For
each vertex v in F , add k new vertices v1, v2, . . . , vk and two new k-edges {v, v1, . . . , vk−1}
and {v1, v2, . . . , vk}. Let Fk denote the family of all such hypergraphs H.

Definition 16. For k > 3, let H be obtained from a hypergraph F ∈ H∗k as follows.
For each vertex v in F , add k + 1 new vertices v1, v2, . . . , vk+1 and two new k-edges
{v, v1, v2, . . . , vk−1} and {v2, v3, . . . , vk+1}. Let F∗k denote the family of all such hyper-
graphs H.

Observation 17. The following holds.
(a) For k > 2, if H ∈ Fk, then γt(H) = 2n

H
/(k + 1).

(b) For k > 3, if H ∈ F∗k , then γt(H) = 2n
H
/(k + 2).

Proof. For k > 2, let H ∈ Fk be constructed as in Definition 15. Then, H ∈ Hk and n
H

=
(k+1)n

F
. Every TD-set in H contains at least two vertices in {v, v1, v2, . . . , vk}, implying

that γt(H) > 2n
F

. However, the set V (F ) ∪ T , where |T | = n
F

and T ⊆ V (H) \ V (F )
consists of one added neighbor of each vertex in V (F ), is a TD-set in H, implying that
γt(H) 6 2n

F
. Consequently, γt(H) = 2n

F
= 2n

H
/(k + 1). For k > 3, let H ∈ F∗k be

constructed as in Definition 16. Then, H ∈ H∗k and γt(H) = 2n
F

= 2n
H
/(k + 2).

4 Preliminary Result

We show that total transversals of a 2-regular hypergraph H correspond to total edge-
covers in the dual multigraph, GH , of H, where the vertices of GH are the edges of H
and the edges of GH correspond to the vertices of H: if a vertex of H is contained in the
edges e and f of H, then the corresponding edge of the multigraph GH joins vertices e
and f of GH .

Lemma 18. If H is a linear 2-regular hypergraph and GH is the dual of H, then τt(H) =
ect(GH).
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Proof. By the linearity of H, the multigraph GH is in fact a graph. Let T be a total
transversal in H. Then the edges of GH corresponding to vertices in T form an edge-
cover in GH . Further if u and v are neighbors in H that belong to T , then the edges in GH

corresponding to the vertices u and v in H have a vertex in common, namely the edge in
H that contains both u and v. This implies that the edge-cover in GH corresponding to
the total transversal T in H is a total edge-cover in GH . Similarly, every total edge-cover
in GH corresponds to a total transversal in H. Therefore, τt(H) = ect(GH).

5 Proofs of Main Results

5.1 Proof of Theorem 3

In this section, we present a proof of Theorem 3. Recall its statement.

Theorem 3. For k > 3, if H ∈ Hk, then γt(H) 6

(
max

{
2

k + 1
, bk−1

})
n

H
.

Proof of Theorem 3. Suppose to the contrary that the theorem is not true. Let H ∈ Hk

be a counterexample with n
H

+ m
H

a minimum. In what follows we present a series of
claims describing some structural properties of H which culminate in the implication of
its non-existence.

Claim 19. The following properties hold in the hypergraph H.
(a) H is connected.
(b) The deletion of any edge in H creates an isolated vertex or an isolated edge.
(c) There is no dominating vertex in H.

Proof of Claim 19. Part (a) is immediate from the minimality of H. Part (b) is also
immediate since the deletion of an edge cannot decrease the total domination number.
To prove Part (c), suppose that H contains a dominating vertex v. The vertex v and
any one of its neighbors forms a TD-set in H, implying that γt(H) = 2. As H ∈ Hk,
there is no isolated vertex or isolated edge in H, implying that n

H
> k + 1. Hence,

γt(H) 6 2n
H
/(k + 1), contradicting the fact that H is a counterexample to the theorem.

This proves Part (c). (�)

Claim 20. Every edge in H contains at least one degree-1 vertex.

Proof of Claim 20. Suppose to the contrary that there is an edge e that does not
contain any degree-1 vertices. Thus every vertex contained in e has degree at least 2 in
H. By Claim 19(b), there is therefore an edge, e1, which would become isolated after the
deletion of the edge e from H. Thus, every vertex in e∩ e1 has degree 2 in H, while every
vertex in e1 \ e has degree 1 in H. Let v ∈ e ∩ e1. Then, dH(v) = 2. By Claim 19(a), H
is connected and by Claim 19(c), the vertex v is not a dominating vertex of H, implying
that there exists an edge, e2, such that v /∈ e2 but e2 intersects e. Since e 6= e2 and v /∈ e2,
we note that e1 ∩ e2 = ∅. Let u ∈ e ∩ e2 and note that u /∈ e1.

Initially we set T = ∅ and we now construct a hypergraph H ′ from H as follows. We
delete all edges incident with u or v or with both u and v and we delete any resulting
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isolated vertices. Further we add both vertices u and v to the set T . We note that the
edges e and e1 are both deleted, implying that every vertex in e1 becomes an isolated
vertex. Further since we remove all edges incident with u, the vertex u becomes an
isolated vertex. We therefore delete at least k + 1 vertices and we add two vertices to T .
If this process creates an isolated edge, then such an isolated edge necessarily contains a
vertex that is adjacent to at least one of u and v (for otherwise it would be an isolated
edge in H, a contradiction). From each such isolated edge f , if any, we choose one vertex
that is a neighbor of u or v and add it into T , and delete the k vertices in f . Hence,
|T | = 2 + `, where ` > 0 denotes the number of isolated edges created when removing u
and v.

Let n′ denote the number of vertices in H that are not deleted in the process (possibly,
n′ = 0). At least k + 1 + k` vertices were deleted from H. Thus, n′ 6 n

H
− k − 1 − k`,

implying that (
2

k + 1

)
(n

H
− n′) >

(
2

k + 1

)
(k + 1 + k`)

= 2 +

(
2k

k + 1

)
`

> 2 + `

= |T |.

If n′ = 0, then the set T is a TD-set in H, implying that γt(H) 6 |T | 6 2n
H
/(k + 1),

a contradiction. Hence, n′ > 0. Let H ′ denote the resulting hypergraph on these n′

vertices. Let H ′ have size m′. By construction, the hypergraph H ′ is in the family Hk.
In particular, we note that n′ > k + 1. By the minimality of H, we have that

γt(H
′) 6

(
max

{
2

k + 1
, bk−1

})
n′.

Let T ′ be a γt(H
′)-set and note that the set T ∪ T ′ is a TD-set of H. Suppose that

2/(k + 1) > bk−1. Then, |T ′| 6 2n′/(k + 1), and so

γt(H) 6 |T ∪ T ′| 6
(

2

k + 1

)
(n

H
− n′) +

(
2

k + 1

)
n′ =

(
2

k + 1

)
n

H
,

a contradiction. Hence, 2/(k + 1) < bk−1. Thus, |T ′| 6 bk−1n
′, and so

γt(H) 6 |T ∪ T ′| 6
(

2

k + 1

)
(n

H
− n′) + bk−1n

′ < bk−1(nH
− n′) + bk−1n

′ = bk−1nH
,

a contradiction. This completes the proof of Claim 20. (�)

We now return to the proof of Theorem 3. By Claim 20, every edge in H contains at
least one degree-1 vertex. If there are two edges, f1 and f2, in H that intersect in k − 1
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vertices, then for j ∈ {1, 2}, the edge fj contains exactly one vertex, vj say, not in f3−j
and this vertex has degree 1 in H. Thus if we delete the vertices v1 and v2 from H, then
we would create a multiple edge, namely f ′1 = f1 \ {v1} and f ′2 = f2 \ {v2}. Let H ′ be the
hypergraph obtained from H by deleting exactly one degree-1 vertex from each edge and
by replacing resulting multiple edges, if any, by single edges. Let H ′ have order n′ and
size m′. Then, n′ = n

H
−m

H
and m′ 6 m

H
. Thus, n′ +m′ 6 n

H
.

Claim 21. H ′ ∈ Hk−1 and τt(H
′) 6 bk−1nH

.

Proof of Claim 21. If H ′ contains an isolated edge, then every vertex in such an
isolated edge would be a dominating vertex in H, contradicting Claim 19(c). Hence, H ′

contains no isolated edge. By construction, H ′ has no multiple edges and no isolated
vertices. Therefore, H ′ ∈ Hk−1. We note that k − 1 > 2. By Definition 2 we have that
τt(H

′) 6 (n′ +m′)bk−1 6 bk−1nH
. (�)

Claim 22. τt(H
′) = γt(H).

Proof of Claim 22. Among all γt(H)-sets, let S be chosen to contain as few vertices
of degree 1 in H as possible. Suppose that S contains a degree-1 vertex, x, in H. Let ex be
the edge containing x. By the minimality of the set S, the set Sx = S\{x} is not a TD-set
in H. Let y be a vertex in S that is adjacent to x in H. Then, y ∈ ex. If y is adjacent
to a vertex of Sx, then the set Sx would be a TD-set in H, a contradiction. Hence, y
is adjacent to no vertex of S except for the vertex x. Since H contains no dominating
vertex and since H has no isolated edge, there exists a neighbor, w say, of y that has
degree at least 2 in H. But then Sx ∪ {w} is a TD-set of H of cardinality |S| = γt(H)
that contains fewer degree-1 vertices than does S, contradicting our choice of the set S.
Therefore, S contains no vertices of degree 1, implying that S ⊆ V (H ′). Further if S
is not a transversal in H, then let e′ be an edge in H not intersected by S. But since
e′ contains a degree-1 vertex, such a vertex would not be (totally) dominated by S in
H, a contradiction. Hence, S is a transversal in H. Further since every vertex in the
TD-set S has a neighbor in H that belongs to S, the set S is in fact a total transversal of
H. Since S ⊆ V (H ′), the set S is therefore also a total transversal of H ′, implying that
τt(H

′) 6 γt(H). Conversely, every total transversal in H ′ is a TD-set in H ′ and therefore
also in H, implying that γt(H) 6 τt(H

′). Consequently, τt(H
′) = γt(H). (�)

By Claim 21 and Claim 22, we have that γt(H) 6 bk−1nH
, a contradiction. This

completes the proof of Theorem 3.

5.2 Proof of Theorem 4

In this section, we present a proof of Theorem 4. We first consider the family H2.

Theorem 23. If H ∈ H2, then τt(H) 6 2(n
H

+m
H

)/5.

Proof of Theorem 23. Suppose to the contrary that the theorem is not true. Let
H ∈ H2 be a counterexample with n

H
+ m

H
a minimum. Clearly, H is connected. By
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Observation 14, we have that n
H
> 3, m

H
> 2 and ∆(H) > 2. If τt(H) = 2, then the

result is immediate. Hence we may assume that τt(H) > 3. Let x be a vertex of maximum
degree in H. Since τt(H) > 3, there is a neighbor y of x that is not isolated in H−x. We
delete the vertices x and y and all edges incident with x or y, together with any resulting
isolated vertices, if any, and let T = {x, y}. Further if this process creates an isolated
edge, e, then such an isolated edge necessarily contains a vertex that is adjacent to x or y,
for otherwise the edge e would be an isolated edge in H, a contradiction. From each such
isolated edge e, if any, we choose one vertex that is a neighbor of x or y and add it to the
set T , and delete the two vertices in e. Suppose that ` > 0 isolated edges were created
when x and y are deleted. Then, |T | = 2 + ` and at least 2 + 2` vertices and at least 3 + `
edges were deleted. Let H ′ denote the resulting graph. Thus, if H ′ has n′ vertices and m′

edges, then n′ + m′ 6 n
H

+ m
H
− (5 + 3`). Since H is a minimum counterexample, we

have that τt(H
′) 6 2(n′ +m′)/5, implying that

τt(H) 6 τt(H
′) + |T |

6 2
5
(n

H
+m

H
− 5− 3`) + 2 + `

6 2
5
(n

H
+m

H
)− `

5

6 2
5
(n

H
+m

H
),

contradicting the fact that H is a counterexample.

As an immediate consequence of Theorem 23, we have that b2 6 2/5. Taking H to
be a path P3 on three vertices, we note that H ∈ H2 and τt(H) = 2 = 2(n

H
+ m

H
)/5,

implying that b2 > 2/5. Consequently, b2 = 2/5. This can also be seen by considering
the cycle of order five, C5, instead of P3, as τt(C5) = 4. We state this formally as follows.

Corollary 24. b2 = 2/5.

We next consider the family Hk, where k > 3.

Theorem 25. For k > 3, if H ∈ Hk, then τt(H) 6 (n
H

+m
H

)/3.

Proof of Theorem 25. Suppose to the contrary that the theorem is not true.
Let H ∈ Hk be a counterexample with n

H
+ m

H
a minimum. Clearly, H is connected

since otherwise the theorem holds for each component of H and therefore also for H, a
contradiction. By Observation 14, we have that n

H
> k + 1, m

H
> 2 and ∆(H) > 2.

In what follows we present a series of claims describing some structural properties of H
which culminate in the implication of its non-existence.

Claim A. τt(H) > 3 and no vertex is incident with every edge in H.

Proof of Claim A. Suppose to the contrary that τt(H) < 3. Then, τt(H) = 2. Since
n

H
+ m

H
> k + 3 > 6, we therefore have that τt(H) = 2 6 (n

H
+ m

H
)/3, contradicting

the fact that H is a counterexample. Hence, τt(H) > 3.
If there is a vertex v incident with every edge in H, then the vertex v and one of its

neighbors form a total transversal in H, implying that τt(H) = 2, a contradiction. Hence,
no vertex is incident with every edge in H. (�)
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Claim B. If X is a set of vertices in H, such that every vertex in X is adjacent to some
other vertex of X, then n(H −X) +m(H −X) > n

H
+m

H
− 3|X|.

Proof of Claim B. Suppose to the contrary that there exists a subset X ⊂ V (H) such
that every vertex in X is adjacent to some other vertex of X but n(H−X)+m(H−X) 6
n

H
+m

H
− 3|X|. Let H ′ = H −X. By supposition, n(H ′) +m(H ′) 6 n

H
+m

H
− 3|X|.

Let e1, . . . , e`, where ` > 0, be the isolated edges in H ′. Since H contains no isolated
edge, each isolated edge in H ′ contains a vertex of degree at least 2 in H. For each
i = 1, . . . , `, let zi ∈ ei be chosen so that dH(zi) > 2, and let X∗ = X ∪ {z1, . . . , z`}. We
note that every vertex in X∗ is adjacent to a vertex in X ⊆ X∗.

Let H∗ = H − X∗. By construction, H∗ ∈ Hk. Moreover, n(H∗) = n(H ′) − k` and
m(H∗) = m(H ′)−`. By the minimality of H, we have that τt(H

∗) 6 (n(H∗)+m(H∗))/3.
Since every τt(H

∗)-set can be extended to a total transversal of H by adding to it the set
X∗, and since k > 3, we have that

τt(H) 6 τt(H
∗) + |X∗|

6
1

3
(n(H∗) +m(H∗)) + |X|+ `

=
1

3
(n(H ′)− k`+m(H ′)− `) + |X|+ `

6
1

3
(n

H
+m

H
− 3|X| − k`− `) + |X|+ `

6
1

3
(n

H
+m

H
),

contradicting the fact that H is a counterexample. (�)

Claim C. ∆(H) = 2.

Proof of Claim C. Suppose to the contrary that ∆(H) > 3. Let x be a vertex of
maximum degree in H. By Claim A, the vertex x is not incident with every edge in
H. Hence since H is connected, there exists an edge, e, that contains a neighbor, y,
of x but does not contain x. Let X = {x, y} and note that n(H − X) 6 n

H
− 2 and

m(H − X) 6 m
H
− 4. As x and y are adjacent in H, we obtain a contradiction to

Claim B. (�)

Claim D. H is 2-regular.

Proof of Claim D. Suppose that there exists a vertex v1 of degree 1 in H. Let e1 be the
edge incident with v1. Since H has no isolated edge, let e2 be an edge intersecting e1, and
let v2 ∈ e1 ∩ e2. By Claim A, the vertex v2 is not incident with every edge in H. Hence
there exists an edge, e3, not containing v2 that intersects e1 or e2 in a vertex v3. Let
X = {v2, v3} and note that the vertices v1, v2, v3 and the edges e1, e2, e3 are removed from
H in order to create H −X. Therefore, n(H −X) 6 n

H
− 3 and m(H −X) 6 m

H
− 3,

which as v2 and v3 are adjacent in H, contradicts Claim B. (�)
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Claim E. H is a linear hypergraph.

Proof of Claim E. By Claim D, H is a 2-regular k-uniform hypergraph. Suppose that
there are two edges e and f having two or more vertices in common. Let v be a vertex in
e that does not belong to e ∩ f . Since H is 2-regular, there is an edge g which contains
v but is different from e or f . Let u be a vertex in e ∩ f . Since u and v belong to the
common edge e, they are neighbors in H. Let X = {u, v} and note that the vertices in
{v}∪(e∩f) and the edges e, f, g are removed from H in order to create H−X. Therefore,
n(H −X) 6 n

H
− 3 and m(H −X) 6 m

H
− 3, which contradicts Claim B. (�)

By Claim D and Claim E, H is a 2-regular k-uniform linear connected hypergraph.

Claim F. k = 3

Proof of Claim F. Suppose to the contrary that k > 4. Then, n
H

= km
H
/2 > 2m

H
. We

now consider the dual, GH , of the hypergraph H. By the 2-regularity and the linearity
of H, the dual GH is a graph. Since H is k-uniform, the graph GH is k-regular. Further
since H is connected, so too is GH . By construction, GH has order n(GH) = m

H
and

size m(GH) = n
H

. Let T be a spanning tree in GH . Since the set E(T ) of edges of
T forms a total edge-cover in GH and since n

H
> 2m

H
, we have by Lemma 18 that

τt(H) = ect(GH) 6 |E(T )| = n(GH)− 1 = m
H
− 1 < 1

3
(n

H
+m

H
), a contradiction. (�)

By Claim D, E and F, we have that H is a 2-regular 3-uniform linear connected
hypergraph. We now consider the dual, GH , of the hypergraph H. We note that the
dual, GH , is a connected, cubic graph. Applying Theorem 12 to the cubic graph GH ,
there exist at least dn(GH)/4e vertex disjoint P3’s in GH . Let G1, G2, . . . , G` denote vertex
disjoint subgraphs in GH each of which is isomorphic to P3, such that ` > dn(GH)/4e >
mH/4. If some vertex does not belong to one of these subgraphs G1, G2, . . . , G`, then the
connectivity of GH implies that there is an edge, e, joining a vertex in V (Gi) for some i,
1 6 i 6 `, and a vertex, x, not belonging to any subgraph G1, G2, . . . , G`. We now add
the vertex x and edge e to the subgraph Gi. We continue this process until all vertices
in GH belong to exactly one of the resulting subgraphs G1, G2, . . . , G`. The subgraph
of GH induced by the edges in these ` subgraphs is a spanning forest, F , of GH , that
contains ` > m

H
/4 components each of which contains at least three vertices.

Since every component of F has order at least 3, the set E(F ) of edges of F forms
a total edge-cover in GH . Since n(GH) = m

H
and ` > mH/4, we have that |E(F )| =

n(GH)− ` 6 3m
H
/4. Therefore, recalling that n

H
= 3m

H
/2, we have by Lemma 18 that

τt(H) = ect(GH) 6 |E(F )| 6 3

4
m

H
6

1

3
(n

H
+m

H
),

a contradiction. This completes the proof of Theorem 25.

As an immediate consequence of Theorem 25, we have that bk 6 1/3 for all k > 3.
Taking H to be the hypergraph of order n

H
= 4 and size m

H
= 2 where the two edges

of H intersect in two vertices, we note that H ∈ H3 and τt(H) = 2 = (n
H

+ m
H

)/3,
implying that b3 > 1/3. Consequently, b3 = 1/3. As observed earlier, b4 6 1/3. We state
this formally as follows.
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Corollary 26. b3 = 1
3

and b4 6 1
3
.

We remark that the result of Theorem 25 can be strengthened slightly when k > 4, as
the following result shows. We omit the proof (which is similar, but simpler, to the proof
of Theorem 28 presented below).

Theorem 27. For k > 4, if H ∈ Hk, then 6τt(H) 6 2n
H

+ 2m
H
− n1(H).

We next consider the family Hk, where k > 5.

Theorem 28. For k > 5, if H ∈ Hk, then 7τt(H) 6 2n
H

+ 2m
H
− n1(H).

Proof of Theorem 28. For k > 5 and all hypergraphs H ∈ Hk, let

Θ(H) = 2n
H

+ 2m
H
− n1(H).

We wish to show that 7τt(H) 6 Θ(H). Suppose to the contrary that the theorem is
not true. Let H ∈ Hk be a counterexample with minimum Θ(H). Clearly, H is connected
since otherwise the theorem holds for each component of H and therefore also for H, a
contradiction. By Observation 14(a), we have that n

H
> k + 1, m

H
> 2 and ∆(H) > 2.

By Observation 14(b), we have that 2n
H
−n1(H) > 2k. In what follows we present a series

of claims describing some structural properties of H which culminate in the implication
of its non-existence.

Claim I. τt(H) > 3.

Proof of Claim I. Suppose that τt(H) < 3. Then, τt(H) = 2. Since 2n
H
− n1(H) > 2k

and m
H
> 2, we therefore have that 7τt(H) = 14 6 2k + 4 6 Θ(H), contradicting the

fact that H is a counterexample. (�)

Claim II. If X is a set of vertices in H, such that every vertex in X is adjacent to some
other vertex of X, then Θ(H −X) > Θ(H)− 7|X|.

Proof of Claim II. Suppose to the contrary that exists a subset X ⊂ V (H) such that
every vertex in X is adjacent to some other vertex of X but Θ(H −X) 6 Θ(H)− 7|X|.
Let H ′ = H − X. Let e1, . . . , e`, where ` > 0, be the isolated edges in H ′. Since H
contains no isolated edge, every isolated edge in H ′ contains a vertex of degree at least 2
in H that is adjacent to a vertex of X in H. For each i = 1, . . . , `, let zi ∈ ei be chosen
so that dH(zi) > 2, and let X∗ = {z1, . . . , z`}. We note that every vertex in X ∪ X∗ is
adjacent to some other vertex of X. We now consider the hypergraph H∗ = H ′ −X∗.

We note that H∗ ∈ Hk. When constructing H∗ from H ′ we deleted all k` vertices from
the ` isolated edges in H ′ and we deleted all ` isolated edges. Since each such deleted
vertex has degree 1 in H ′, the contribution of the k` deleted vertices from H ′ to the sum
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2n(H ′)− n1(H
′) is k`. The contribution of the ` deleted edges to the sum 2m(H ′) is 2`.

By supposition, Θ(H ′) 6 Θ(H)− 7|X|. Since k > 5, we therefore have that

Θ(H∗) = Θ(H ′)− `(k + 2)

6 Θ(H ′)− 7`

6 (Θ(H)− 7|X|)− 7`

= Θ(H)− 7|X| − 7|X∗|.

By the minimality of Θ(H), we have that 7τt(H
∗) 6 Θ(H∗). Every (minimum) total

transversal in H∗ can be extended to a total transversal in H by adding to the set X∪X∗,
implying that τt(H) 6 τt(H

∗) + |X|+ |X∗|. Hence,

7τt(H) 6 7τt(H
∗) + 7|X|+ 7|X∗|

6 Θ(H∗) + 7|X|+ 7|X∗|
6 Θ(H),

a contradiction. (�)

Claim III. ∆(H) 6 3.

Proof of Claim III. Suppose to the contrary that ∆(H) > 4. Let x be a vertex of
maximum degree in H. Since τt(H) > 3 by Claim I, and since H is connected, there
exists an edge, e, that contains a neighbor, y, of x but does not contain x. Let X = {x, y}
and consider the hypergraph H −X. Since dH(x) > 4 and dH(y) > 2, the vertices x and
y both contribute 2 to the sum 2n(H)− n1(H). Further since at least five distinct edges
are deleted from H when constructing H−X, the contribution of the deleted edges to the
sum 2m(H) is at least 10. Hence, Θ(H −X) 6 Θ(H)− 14 = Θ(H)− 7|X|, contradicting
Claim II. (�)

Claim IV. ∆(H) = 2.

Proof of Claim IV. As observed earlier, ∆(H) > 2. By Claim III, ∆(H) 6 3. Suppose
to the contrary that ∆(H) = 3. Let x be a vertex with dH(x) = 3 and consider the
hypergraph H ′ = H − x. Suppose that dH′(y) > 2 for some y ∈ NH(x). Let X = {x, y}
and consider the hypergraph H − X. Since dH(x) = 3 and dH(y) = 3, the vertices x
and y both contribute 2 to the sum 2n(H)− n1(H). Further since five distinct edges are
deleted from H when constructing H − X, the contribution of the deleted edges to the
sum 2m(H) is 10. Hence, Θ(H−X) 6 Θ(H)−14 = Θ(H)−7|X|, contradicting Claim II.
Therefore, dH′(y) 6 1 for every vertex y ∈ NH(x).

Since τt(H) > 3 by Claim I, and since H is connected, there exists a neighbor, y∗,
of x that has degree at least 1 in H ′. Let X∗ = {x, y∗} and consider the hypergraph
H∗ = H −X∗. Since dH(x) = 3 and dH(y∗) > 2, the vertices x and y∗ both contribute 2
to the sum 2n(H) − n1(H). Further since four distinct edges are deleted from H when
constructing H∗, the contribution of these deleted edges to the sum 2m(H) is 8.
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Let z ∈ NH(x)\{y∗}. We note that if z ∈ V (H∗), then dH∗(z) 6 dH′(z) 6 1, implying
that dH∗(z) = 1 and that z contributes 2 to the sum 2n(H) − n1(H) and 1 to the sum
2n(H∗) − n1(H

∗). If z /∈ V (H∗), then z is isolated when the vertices in X∗ are deleted
from H together with all edges incident with X∗, implying that in this case, z contributes
at least 1 to the sum 2n(H) − n1(H) and 0 to the sum 2n(H∗) − n1(H

∗). In both cases
the contribution of z to Θ(H∗) is at least one less than its contribution to Θ(H). This is
true for every vertex in NH(x) \ {y∗}. Hence the total contribution of the neighbors of x
different from y∗ to Θ(H)−Θ(H∗) is at least |NH(x) \ {y∗}| = |NH(x)| − 1 > k − 1 > 4.
Together with our earlier observation that the vertices x and y∗, together with the four
edges incident with x or y∗ in H, contribute 12 to Θ(H), this implies that Θ(H∗) 6
Θ(H)− 12− 4 < Θ(H)− 14 = Θ(H)− 7|X∗|, contradicting Claim II. (�)

We now return to the proof of Theorem 28. By Claim IV, ∆(H) = 2. Let x be a
vertex in H with dH(x) = 2. Since τt(H) > 3 by Claim I, and since H is connected, there
exists an edge, e, that contains a neighbor, y, of x but does not contain x. Let X = {x, y}
and consider the hypergraph H −X. Since dH(x) = 2 and dH(y) = 2, the vertices x and
y both contribute 2 to the sum 2n(H) − n1(H). Further the three edges incident with
x or y contribute 6 to the sum 2m(H). Furthermore, each vertex in NH(x) \ {y} either
does not belong to H −X or has degree 1 in H −X and therefore contributes at least 1
to Θ(H) − Θ(H − X). This implies that Θ(H − X) 6 Θ(H) − 10 − (|NH(x)| − 1) 6
Θ(H)− 10− k + 1 6 Θ(H)− 14 = Θ(H)− 7|X|, contradicting Claim II. This completes
the proof of Theorem 28.

As an immediate consequence of Theorem 28, we have the following results.

Corollary 29. For k > 5, if H ∈ Hk, then 7τt(H) 6 2n
H

+ 2m
H

.

Corollary 30. For all k > 5, we have bk 6 2
7
.

Theorem 4 follows from Corollary 24, Corollary 26 and Corollary 29.

5.3 Proof of Theorem 6

In this section, we present a proof of Theorem 6. Recall its statement.

Theorem 6. For k > 4, if H ∈ H∗k, then γt(H) 6

(
max

{
2

k + 2
, bk−1

})
n

H
.

Proof of Theorem 6. Suppose to the contrary that the theorem is not true. Let H ∈ H∗k
be a counterexample with n

H
+ m

H
a minimum. We proceed in a similar manner as in

the proof of Theorem 3.

Claim I. The following properties hold in the hypergraph H.
(a) H is connected.
(b) The deletion of any edge in H creates an isolated vertex or an isolated edge.
(c) There is no dominating vertex in H.
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Proof of Claim I. Parts (a) and (b) follows from the minimality of H and the observation
that the deletion of an edge cannot decrease the total domination number. To prove
Part (c), suppose that H contains a dominating vertex v. The vertex v and any one of
its neighbors forms a TD-set in H, implying that γt(H) = 2. By the definition of H∗k,
the hypergraph H contains no isolated vertex or isolated edge. Since no two edges of H
intersect in k−1 vertices, we therefore have that n

H
> k+2. Hence, γt(H) 6 2n

H
/(k+2),

contradicting the definition of H. This proves Part (c). (�)

Claim II. Every edge in H contains at least one degree-1 vertex.

Proof of Claim II. We proceed as in the proof of Claim 20. Let u, v, e, e1 and e2 be
defined as in the proof of Claim 20. If the edge e2 contains a degree-1 vertex, then at
least one vertex in addition to the vertices in e1 ∪ {u} becomes an isolated vertex when
we delete all edges incident with u or v. Thus in this case we delete at least k+ 2 vertices
and we add two vertices to T , and we proceed as in the 2nd paragraph of the proof of
Claim 20. In this case, |T | = 2 + `, where ` > 0 denotes the number of isolated edges
created when removing u and v, and at least k + 2 + k` vertices are deleted from H.
Thus if n′ denotes the number of vertices in H that are not deleted in the process, then
n′ 6 n

H
− k − 2− k`, implying that(

2

k + 2

)
(n

H
− n′) >

(
2

k + 2

)
(k + 2 + k`)

= 2 +

(
2k

k + 2

)
`

> 2 + `

= |T |.

Suppose that the edge e2 does not contain any degree-1 vertices. Then there is an
edge, e3, which would become isolated after the deletion of the edge e2 from H2. We
note that neither u nor v belong to the edge e3 and therefore that e3 /∈ {e, e1, e2}. Let
w ∈ e2 ∩ e3. We now delete all edges incident with a vertex in the set {u, v, w} and we
delete any resulting isolated vertices. Further we add the three vertices u, v and w to the
set T . We note that every vertex in e1∪e3∪{u} becomes an isolated vertex. We therefore
delete at least 2k + 1 vertices and we add three vertices to T . If this process creates an
isolated edge, then from each such isolated edge f , if any, we choose one vertex that is a
neighbor of a vertex in T and add it into T , and delete the k vertices in f . Hence in this
case, |T | = 3+`, where ` > 0 denotes the number of isolated edges created when removing
u, v and w, and at least 2k + 1 + k` vertices are deleted from H. Thus if n′ denotes the
number of vertices in H that are not deleted in the process, then n′ 6 n

H
− 2k − 1− k`.

Since k > 4, we note that 2(2k + 1)/(k + 2) > 3 and 2k/(k + 2) > 1, implying that
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(
2

k + 2

)
(n

H
− n′) >

(
2

k + 2

)
(2k + 1 + k`)

=

(
2(2k + 1)

k + 2

)
+

(
2k

k + 2

)
`

> 3 + `

= |T |.

In both cases, we therefore have that |T | 6 2(n
H
− n′)/(k+ 2). If n′ = 0, then the set

T is a TD-set in H, implying that γt(H) 6 |T | 6 2n
H
/(k + 2), a contradiction. Hence,

n′ > 0. Let H ′ denote the resulting hypergraph on these n′ vertices. Let H ′ have size m′.
By construction, the hypergraph H ′ is in the family H∗k. In particular, we note that
n′ > k + 2. By the minimality of H, we have that

γt(H
′) 6

(
max

{
2

k + 2
, bk−1

})
n′.

Let T ′ be a γt(H
′)-set and note that the set T ∪ T ′ is a TD-set of H. Suppose that

2/(k + 2) > bk−1. Then, |T ′| 6 2n′/(k + 2), and so

γt(H) 6 |T ∪ T ′| 6
(

2

k + 2

)
(n

H
− n′) +

(
2

k + 2

)
n′ =

(
2

k + 2

)
n

H
,

a contradiction. Hence, 2/(k + 2) < bk−1. Thus, |T ′| 6 bk−1n
′, and so

γt(H) 6 |T ∪ T ′| 6
(

2

k + 2

)
(n

H
− n′) + bk−1n

′ < bk−1(nH
− n′) + bk−1n

′ = bk−1nH
,

a contradiction. This completes the proof of Claim II. (�)

We now return to the proof of Theorem 6. By Claim II, every edge in H contains
at least one degree-1 vertex. Let H ′ be the hypergraph obtained from H by deleting
exactly one degree-1 vertex from each edge. Since H ∈ H∗k, we note that no multiple
edges are created. Further, H ′ contains no isolated edge and no isolated vertices, and
so H ′ ∈ Hk−1. Let H ′ have order n′ and size m′. Then, n′ = n

H
− m

H
and m′ = m

H
.

Thus, n′ + m′ = n
H

. We note that k − 1 > 3. By Definition 2 we have that τt(H
′) 6

(n′+m′)bk−1 6 bk−1nH
. An identical proof as in the proof of Claim 22 of Theorem 3 shows

that γt(H) = τt(H
′), implying that γt(H) 6 bk−1nH

, a contradiction. This completes the
proof of Theorem 6.

6 Tight Asymptotic Bounds

In this section we prove Theorem 8 which establishes a tight asymptotic upper bound on
bk for k sufficiently large. Since every strong transversal in a hypergraph, H, is a total
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transversal in H, and since every total transversal in H is a transversal in H, we have the
following observation.

Observation 31. For every hypergraph H, we have τ(H) 6 τt(H) 6 τs(H).

Using probabilistic arguments, Alon [3] established the following result.

Theorem 32. ([3]) For every ε > 0 and sufficiently large k there exist k-uniform hyper-
graphs, H, satisfying

τ(H) >

(
(1− ε) ln(k)

k

)
(n

H
+m

H
)

The following result establishes a tight asymptotic upper bound on the strong transver-
sal number of a k-uniform hypergraph for k sufficiently large.

Theorem 33. For every constant c > 1 and every k-uniform hypergraph H, we have

τs(H) 6

(
ln(k) + ln(c)

k − 1

)
n

H
+

(
ln(k) + ln(c)

c(k − 1)

)
m

H
+

(
2

ck

)
m

H
.

Proof. Let H = (V,E) and let p = ln(ck)/(k − 1). Let X1 be a random subset of V (H)
where a vertex x is chosen to be in X1 with probability Pr(x ∈ X1) = p, independently of
the choice for any other vertex. For every edge e ∈ E that does not intersect X1, select
two vertices from e and let X2 ⊆ V be the resulting set of all such selected vertices. For
every edge e ∈ E such that |e∩X1| = 1, select one vertex from e \X1 and let X3 ⊆ V be
the resulting set of all such selected vertices. The resulting set X1 ∪X2 ∪X3 is a strong
transversal in H. The expected value of the cardinality of the set X1 is

E(|X1|) = pn
H

=

(
ln(k) + ln(c)

k − 1

)
n

H
.

Using the inequality 1 − x 6 e−x for x ∈ R, the expected value of the cardinality of
the set X2 is given by

E(|X2|) 6 (1− p)k ·m
H
· 2

=

(
1− ln(ck)

k − 1

)k

· 2m
H

=

((
1− ln(ck)

k − 1

) k−1
ln(ck)

) k
k−1

ln(ck)

· 2m
H

< e−
k

k−1
ln(ck) · 2m

H

6
2

ck
·m

H
.
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The expected value of the set X3 is given by

E(|X3|) 6 m
H
· k · p · (1− p)k−1

= k

(
ln(ck)

k − 1

)(
1− ln(ck)

k − 1

)k−1

·m
H

= k

(
ln(ck)

k − 1

)((
1− ln(ck)

k − 1

) k−1
ln(ck)

)ln(ck)

·m
H

< k

(
ln(ck)

k − 1

)
e− ln(ck) ·m

H

=

(
ln(k) + ln(c)

c(k − 1)

)
m

H
.

By linearity of expectation, we have that E(|X1 ∪ X2 ∪ X3|) 6 E(|X1|) + E(|X2|) +
E(|X3|), yielding the desired upper bound.

As a consequence of Theorem 33, we have the following results.

Corollary 34. Given any ε > 0, if H is a k-uniform hypergraph with k sufficiently large,
then

τs(H) <

(
(1 + ε)

ln(k)

k

)
(n

H
+m

H
).

Proof. For a constant c > 1, we note that the functions,

ln(k) + ln(c)

k − 1
and

ln(k) + ln(c)

c(k − 1)
+

2

ck
,

tend to ln(k)/(k − 1) and ln(k)/(c(k − 1)) < ln(k)/(k − 1), respectively, when k tends to
infinity. Hence for k sufficiently large, we have that

max

{
ln(k) + ln(c)

k − 1
,
ln(k) + ln(c)

c(k − 1)
+

2

ck

}
< (1 + ε)

ln(k)

k
.

Therefore for k sufficiently large, we have that

(
ln(k) + ln(c)

k − 1

)
n

H
+

(
ln(k) + ln(c)

c(k − 1)

)
m

H
+

(
2

ck

)
m

H
<

(
(1 + ε)

ln(k)

k

)
(n

H
+m

H
).

The desired result now follows from Theorem 33.

We are now in a position to prove Theorem 8. Recall its statement.

Theorem 8. bk = (1 + o(1))
ln(k)

k
.
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Proof of Theorem 8. It suffices for us to prove that for ε > 0 and for k sufficiently
large, we have

(1− ε) ln(k)

k
6 bk 6 (1 + ε)

ln(k)

k
.

The upper bound on bk follows from Observation 31 and Corollary 34. For the lower
bound let ε > 0 and let k be sufficiently large, such that a k-uniform hypergraph, H,
exists with τ(H) > [(1 − ε) ln(k)/k](n

H
+ m

H
) (which exists by Theorem 32). Assume

that H contains n0 isolated vertices and e0 isolated edges. Let H ′ be obtained from H
by deleting all isolated vertices and isolated edges and the vertices belonging to isolated
edges. Then, H ′ ∈ Hk. Further, n(H ′) = n

H
−n0−ke0 and m(H ′) = m

H
− e0. As n0 > 0

and (1− ε) ln(k)(k + 1)/k > 1 when k is sufficiently large, we have that

τt(H
′) > τ(H ′)

= τ(H)− e0

>

(
(1− ε) ln(k)

k

)
(n

H
+m

H
)− e0

>

(
(1− ε) ln(k)

k

)
(n(H ′) +m(H ′) + n0 + ke0 + e0)− e0

=

(
(1− ε) ln(k)

k

)
(n(H ′) +m(H ′))

+

(
(1− ε) ln(k)

k

)
(n0 + (k + 1)e0)− e0.

>

(
(1− ε) ln(k)

k

)
(n(H ′) +m(H ′)).

This implies that

bk >

(
(1− ε) ln(k)

k

)
,

which establishes the desired lower bound on bk and completes the proof of Theorem 8.

7 Closing Remarks and Open Problem

In view of Theorem 3, it is of interest to determine the value of bk for k > 2. In Theorem 4
we show that b2 = 2

5
and b3 = 1

3
, and we show that bk−1 6 2/(k + 1) for k ∈ {3, 4, 5, 6}.

In Theorem 8, we establish a tight asymptotic bound on bk for k sufficiently large which
shows that is not true that bk−1 6 2/(k+1) when k is large enough. We pose the following
problems that still remain to be settled.

Problem 35. Determine the exact value of bk for k > 4.

Problem 36. Determine the smallest value of k for which bk−1 > 2/(k + 1).
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[12] M. A. Henning and C. Löwenstein. Hypergraphs with large transversal number and
with edge sizes at least four. Central European J. Math., 10:1133–1140, 2012.

[13] M. A. Henning and A. Yeo. Hypergraphs with large transversal number and with
edge sizes at least three. J. Graph Theory, 59:326–348, 2008.

[14] M. A. Henning and A. Yeo. Total domination in 2-connected graphs and in graphs
with no induced 6-cycles. J. Graph Theory, 60:55–79, 2009.

the electronic journal of combinatorics 16 (2009), #R00 21



[15] M. A. Henning and A. Yeo. Strong transversals in hypergraphs and double total
domination in graphs. SIAM J. Discrete Math., 24:1336–1355, 2010.

[16] M. A. Henning and A. Yeo. Transversals and matchings in 3-uniform hypergraphs.
European J. Combin., 34:217–228, 2013.

[17] M. A. Henning and A. Yeo. Total Domination in Graphs. Springer Monographs in
Mathematics, ISBN-13: 978-1461465249 (2013).

[18] B. K. Jose, K. A. Germina, and K. Abhishek. On some open problems of stable sets
and domination in hypergraphs. Submitted to AKCE J. Combin.

[19] B. K. Jose and Zs. Tuza. Hypergraph domination and strong independence. Appli-
cable Analysis and Discrete Math., 3:237–358, 2009.

[20] A. Kelmans and D. Mubayi. How many disjoint 2-edge paths must a cubic graph
have? J. Graph Theory, 45:57–79, 2004.

[21] F. C. Lai and G. J. Chang. An upper bound for the transversal numbers of 4-uniform
hypergraphs. J. Combin. Theory Ser. B, 50:129–133, 1990.
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