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Abstract

Let ζ(s1, s2, · · · , sk;α) be the multiple Hurwitz zeta function. Given two positive
integers k and n with k 6 n, let E(2n, k;α) be the sum of all multiple zeta values
with even arguments whose weight is 2n and whose depth is k. In this note we
present some generating series for the numbers E(2n, k;α).
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1 Introduction

The multiple zeta values

ζ(s1, s2, · · · , sm) =
∑

n1>n2>···>nk>0

1

ns11 n
s2
2 · · ·nsmm

,

are also called Euler-Zagier sums, where s1, s2, · · · , sm are positive integers with s1 > 2.
The multiple Hurwitz zeta function ζ(s1, s2, · · · , sk;α) is defined by the multiple series

ζ(s1, s2, · · · , sk;α) =
∑

n1>n2>···>nk>0

1

(n1 + α)s1(n2 + α)s2 · · · (nk + α)sk
,

where α ∈ C \ {0,−1,−2, · · · } and s1, s2, · · · , sk are positive integers with s1 > 1. The
multiple zeta functions have attracted considerable interest in recent years.
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11271208, 61202362, 11301302), China Postdoctoral Science Foundation (No.2013M530869), Natural Sci-
ence Foundation of Shandong (No. BS2013SF009).
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There are various relations among multiple zeta values. One of the well-known Q-linear
relations among multiple zeta values is the sum formula ( see [2, 3, 4, 7, 9]), which states
that ∑

j1+···+jk=n

Eachji>1,j1>1

ζ(j1, j2, · · · , jk) = ζ(n).

In [6], M. Igarashi proved a generalization of the sum formula. Here we quote Igarashi’s
result in a slightly different form.

Theorem 1. ([6]) Let α be a complex number with Re α > 0 and let n, k be positive
integers such that n > k + 1. Then the following identity holds.∑

j1+j2+···+jk=n

Eachji>1,j1>2

ζ(j1, j2, · · · , jk;α)

=
1

(n− k − 1)!

∞∑
N=0

1

(N + α)k

[
(1− x)N

(α− x)N+1

](n−k−1)∣∣∣∣∣
x=0

,

where [ · ](n−k−1) denotes the (n − k − 1)th derivative of a function with respect to its
variable x, and (a)N denotes the Pochhammer symbol.

Given two positive integers n and k with n > k, let E(2n, k;α) be the sum of all the
multiple zeta values of even-integer arguments having weight 2n and depth k, i.e.,

E(2n, k;α) =
∑

j1+···+jk=n

j1,j2,··· ,jk>1

ζ(2j1, 2j2, · · · , 2jk;α).

(The notation E(2n, k;α) is similar to that in [5, 12]. In [5], Hoffman defined a number
E(2n, k) which is equivalent to the number E(2n, k; 1) in our notation, and in [12], the
number E(2n, k; 1/2)/22n in our notation is denoted by T (2n, k).)

The result of Gangl, Kaneko and Zagier [1] that

E(2n, 2; 1) =
3

4
ζ(2n), for n > 2.

was extended by Shen and Cai [11] to

E(2n, 3; 1) =
5

8
ζ(2n)− 1

4
ζ(2)ζ(2n− 2), for n > 3,

E(2n, 4; 1) =
35

64
ζ(2n)− 5

16
ζ(2)ζ(2n− 2), for n > 4.

Applying the theory of symmetric functions, Hoffman [5] and Zhao [12], respectively,
established the generating functions for the numbers E(2n, k; 1) and T (2n, k), respectively.
Hoffman [5] proved that

1 +
∑
n>k>1

E(2n, k; 1)tnsk =
sin(π

√
1− s

√
t)√

1− s sin(π
√
t)
.
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And Zhao [12] proved that

1 +
∑
n>k>1

T (2n, k)tnsk =
cos(π

√
(1− s)t/2)

cos(π
√
t/2)

.

Based on these generating functions, some formulas for the numbers E(2n, k; 1) and
T (2n, k) for arbitrary n > k have been obtained. For example,

E(2n, k; 1) =
ζ(2n)

22(k−1)

(
2k − 1

k

)
−

[ k−1
2

]∑
j=1

ζ(2j)ζ(2n− 2j)

22k−3(2j + 1)B2j

(
2k − 2j − 1

k

)
,

T (2n, k) =
t(2n)

22(k−1)k

(
2k − 2

k − 1

)
−
b k−1

2
c∑

j=1

t(2j)t(2n− 2j)

22k−3(22j − 1)kB2j

(
2k − 2j − 2

k − 1

)
,

where B2j is the 2jth Bernoulli number.
In this note we use a method introduced by Granville [2] to establish an algorithm

similar to that in Theorem 1 for the calculation of the numbers E(2n, k;α). We prove
that the calculation of E(2n, k;α) involves the Euler Γ-function and the direct formulas
for E(2n, k; 1) and E(2n, k; 1/2) can be deduced from the Bessel functions of the first
kind. The main results of this paper are the following theorems.

Theorem 2. Let α be a complex number with α ∈ C\{0,−1,−2, · · · }. Let N > 0 denote

an integer and let (a
(N)
0 , a

(N)
1 , a

(N)
2 , · · · ) be an infinite series defined by the expansion

∞∏
r=0
r 6=N

(
1 +

x

(r + α)2 − (N + α)2

)
= a

(N)
0 + a

(N)
1 x+ · · ·+ a

(N)
k−1x

k−1 + · · · . (1)

Then for positive integers n and k (suppose n > k), we have

E(2n, k;α) =
∞∑
N=0

a
(N)
k−1

(N + α)2n−2k+2
. (2)

Theorem 3. Given an integer N > 0 and a complex number α ∈ C \ {0,−1,−2, · · · },
for any x ∈ C we have

∞∏
r=0
r 6=N

(
1 +

x

(r + α)2 − (N + α)2

)

=
2(−1)N(N + α)Γ(2α +N)

N !

1

xΓ(α +
√

(N + α)2 − x)Γ(α−
√

(N + α)2 − x)
,

where Γ denotes Euler’s Gamma function.
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Corollary 4. Theorem 2 and Theorem 3 yield that:

E(2n, k;α)

=
2

k!

∞∑
N=0

(−1)NΓ(N + 2α)

N !(N + α)2n−2k+1

[
1

Γ(α +
√

(N + α)2 − x)Γ(α−
√

(N + α)2 − x)

](k)∣∣∣∣∣∣
x=0

,

where [ · ](k) denotes the kth derivative of a function with respect to its variable x and Γ
denotes the Gamma function.

Corollary 5. For positive integers n and k (suppose n > k ), we have

E(2n, k; 1) =
4(−1)k+1π2k

k!

∞∑
N=0

(−1)N

(N + 1)2n−2k
(
cos
√
x
)(k+1) |x=(Nπ+π)2 , (3)

E(2n, k;
1

2
) =

2(−1)kπ2k−1

k!

∞∑
N=0

(−1)N

(N + 1
2
)2n−2k+1

(
cos
√
x
)(k) |x=(Nπ+π/2)2 . (4)

Corollary 6. The direct formulas for E(2n, k; 1) and E(2n, k; 1
2
) are that:

E(2n, k; 1) =
1

22k−2k!

b k−1
2
c∑

j=0

(−1)j(2k − 1− 2j)!(2π)2j

(2j + 1)!(k − 1− 2j)!
· ζ(2n− 2j), (5)

E(2n, k;
1

2
) =

1

22k−2k!

b k−1
2
c∑

j=0

(−1)j(2k − 2− 2j)!(2π)2j

(2j)!(k − 1− 2j)!
ζ(2n− 2j;

1

2
). (6)

2 Some Lemmas

This paper uses some properties of Euler’s Gamma function Γ(s) and the Bessel function
Jp(x) of the first kind. Here we list some needed Lemmas.

There are several equivalent forms of the Gamma function Γ(s) developed by Euler,
one by Weierstrass:

1

Γ(s)
= seγs

∞∏
m=1

(
1 +

s

m

)
e−

s
m , ∀s ∈ C,

where γ denotes the Euler-Mascheroni constant defined by

γ = lim
m→∞

(1 +
1

2
+ · · ·+ 1

m
− logm) = 0.577215 · · · .

It is easy to deduce from Weierstrass’ definition of Γ(s) the following lemma.
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Lemma 7. Let α1, α2, · · · , αk and β1, β2, · · · , βk be two groups of complex numbers (k >
1). Suppose they satisfy the following conditions : (i) α1 +α2 + · · ·+αk = β1 +β2 + · · ·+βk
and (ii) none of the βjs is a negative integer. Then we have

∞∏
m=1

(m+ α1)(m+ α2) · · · (m+ αk)

(m+ β1)(m+ β2) · · · (m+ βk)
=

Γ(1 + β1)Γ(1 + β2) · · ·Γ(1 + βk)

Γ(1 + α1)Γ(1 + α2) · · ·Γ(1 + αk)
.

It is well known that Γ(s) satisfies the functional relation Γ(s + 1) = sΓ(s), ∀s ∈
C \ {0,−1,−2, · · · }, and if N > 0 is an integer then Γ(s) has residue (−1)N

N !
at s = −N .

Lemma 8. [10] The following identities hold for s ∈ C:

1

Γ(1 + s)Γ(1− s)
=

sin πs

πs
,

1

Γ(1
2

+ s)Γ(1
2
− s)

=
cosπs

π
.

We turn to introduce some properties of the Bessel function of the first kind with
a half-integer index. The Bessel function Jp(x) is said to be of a half integer index if
p = k ± 1

2
with k being an integer. It is well known that the Bessel function of the first

kind with a half integer index can be represented by elementary functions.

Lemma 9. dk

dxk
cos (
√
x) =

√
π
2
(−1)k2−kx

1−2k
4 Jk− 1

2
(
√
x), for x > 0 and k = 0, 1, 2, · · · .

Proof. The Bessel function Jp(x) is defined by the series

Jp(x) =
(x

2

)p ∞∑
m=0

(−1)m

m!Γ(p+m+ 1)

(x
2

)2m
, (7)

where the radius of convergence of the series is +∞. It follows from (7) that (using the
well-known identity Γ(n+ 1/2) =

√
π(2n)!/(n!22n), ∀n > 0)

Jk− 1
2
(
√
x) =

√
2

π
2kx

2k−1
4

∞∑
m=0

(−1)m(m+ k)!

m!(2m+ 2k)!
xm. (8)

On the other hand, by Taylor’s expansion of cos
√
x, we have

dk

dxk
cos
(√

x
)

=
∞∑
m=k

(−1)mm(m− 1) · · · (m− k + 1)

(2m)!
xm−k

=
∞∑
m=0

(−1)m+k(m+ k)!

(2m+ 2k)!m!
xm. (9)

Observing the right-hand sides of (8) and (9), the result follows immediately.

Lemma 10. Let k > 0 be an integer and let x > 0. Then the Bessel function Jk+1/2(x)
is represented by
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Jk+ 1
2
(x) =

√
2

π

1√
x

sinx

b k
2
c∑

j=0

(−1)j(2k − 2j)!

(2j)!(k − 2j)!
· 1

(2x)k−2j

− cosx

b k−1
2
c∑

j=0

(−1)j(2k − 1− 2j)!

(2j + 1)!(k − 1− 2j)!
· 1

(2x)k−1−2j

 . (10)

Proof. We omit the detailed steps. It is shown that ([8]) the Bessel function Jk+1/2(x)
satisfies the relation

Jk+1/2(x) = (−1)k
√

2

πx
xk+1 dk

(xdx)k

(
sinx

x

)
, for k = 0, 1, 2, · · · . (11)

It follows from (11) that

J1/2 =

√
2

π

sinx√
x
, J3/2(x) =

√
2

π

1√
x

(
sinx

x
− cosx

)
, · · · ,

and so on. Then using induction on k we can prove that (10) is equivalent to (11).

Lemma 11. Let k > 1 be an integer. Then by Lemma 9 and Lemma 10, we have

(
cos
√
x
)(k)

=
(−1)k

22k−1
sin
√
x√

x

b k−1
2
c∑

j=0

(−1)j(2k − 2− 2j)!22j

(2j)!(k − 1− 2j)!
· 1

xk−1−j

−(−1)k

22k−2 cos
√
x

b k−2
2
c∑

j=0

(−1)j(2k − 3− 2j)!22j

(2j + 1)!(k − 2− 2j)!
· 1

xk−1−j
. (12)

3 Proofs

Proof of Theorem 2. The left side of (2) is

∑
j1+···+jk=n

j1,··· ,jk>1

∑
n1>n2>···>nk>0

1

(n1 + α)2j1(n2 + α)2j2 · · · (nk + α)2jk

=
∑

n1>n2>···>nk>0

∑
j1+···+jk=n

j1,··· ,jk>1

1

(n1 + α)2j1(n2 + α)2j2 · · · (nk + α)2jk
. (13)

The second sum in (13) is the coefficient of x2n in the formal power series

∞∑
j=1

(
x

n1 + α

)2j ∞∑
j=1

(
x

n2 + α

)2j

· · ·
∞∑
j=1

(
x

nk + α

)2j
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=
x2k

[(n1 + α)2 − x2][(n2 + α)2 − x2] · · · [(nk + α)2 − x2]

=
k∑
j=1

 x2k

(nj + α)2 − x2
∏

16m6k

m 6=j

1

(nm + α)2 − (nj + α)2

 . (14)

It follows that the coefficient of x2n above is

k∑
j=1

 1

(nj + α)2n−2k+2

∏
16m6k

m 6=j

1

(nm + α)2 − (nj + α)2

 .

Hence the sum (13) is

∑
n1>n2>···>nk>0

k∑
j=1

 1

(nj + α)2n−2k+2

∏
16m6k

m 6=j

1

(nm + α)2 − (nj + α)2

 . (15)

Now we take each nj = N in turn. Then the sum (15) becomes that

∑
N>0

1

(N + α)2n−2k+2

k∑
j=1

P (N, j − 1)Q(N, k − j), (16)

where the series {P (N, i)}∞i=0 and {Q(N, i)}∞i=0 are defined in the following manner. Define
P (N, 0) = Q(N, 0) , 1, and Q(N, j) = 0, ∀j > N ; If j > 1 then define P (N, j − 1) to be

P (N, j − 1) =
∑

n1>···>nj−1>N

j−1∏
i=1

1

[(ni + α)2 − (N + α)2]
;

While if 1 6 j < k and k − j 6 N , then define Q(N, k − j) to be

Q(N, k − j) =
∑

N>nj+1>···>nk>0

k∏
i=j+1

1

[(ni + α)2 − (N + α)2]
.

In other words, the series {P (N, i)}∞i=0 and {Q(N, i)}∞i=0 are defined by the following
generating functions:

1 + P (N, 1)x+ P (N, 2)x2 + · · · =
∏
r>N

(
1 +

x

(r + α)2 − (N + α)2

)
,

and

1 +Q(N, 1)x+Q(N, 2)x2 + · · · =
∏

06r<N

(
1 +

x

(r + α)2 − (N + α)2

)
.
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Now the second sum
∑k

j=1 P (N, j − 1)Q(N, k − j) in (16) is the coefficients of xk−1

in the power series

[1 + P (N, 1)x+ P (N, 2)x2 + · · · ] · [1 +Q(N, 1)x+Q(N, 2)x2 + · · · ],

i.e.,
k∑
j=1

P (N, j − 1)Q(N, k − j) = a
(N)
k−1,

where a
(N)
k−1 is given by (1).

Therefore, the sum (16) is ∑
N>0

a
(N)
k−1

(N + α)2n−2k+2
,

which gives the identity (2).

Proof of Theorem 3. Consider the infinite product

∞∏
r=0

(
1 +

x

(r + α)2 − y2

)
,

where y is a complex number with y 6∈ {α, 1 + α, 2 + α, · · · }.
By Lemma 7, we have

∞∏
r=0

(
1 +

x

(r + α)2 − y2

)
.

=
α2 − y2 + x

α2 − y2
∞∏
r=1

(r + α +
√
y2 − x)(r + α−

√
y2 − x)

(r + α + y)(r + α− y)

=
α2 − y2 + x

α2 − y2
Γ(1 + α + y)Γ(1 + α− y)

Γ(1 + α +
√
y2 − x)Γ(1 + α−

√
y2 − x)

=
Γ(α + y)Γ(α− y)

Γ(α +
√
y2 − x)Γ(α−

√
y2 − x)

. (17)

It follows that
∞∏
r=0
r 6=N

(
1 +

x

(r + α)2 − y2

)
=

Γ(α + y)Γ(α− y)

Γ(α +
√
y2 − x)Γ(α−

√
y2 − x)

× (N + α)2 − y2

(N + α)2 − y2 + x
. (18)

By the residue formula of the Gamma function, we have

lim
y→N+α

Γ(α− y)(N + α− y) = lim
s→−N

Γ(s)(s+N) =
(−1)N

N !
.

Now on both sides of (18) we put y → N + α. Then we get the required identity in
Theorem 3.
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Proof of Corollary 5 and Corollary 6. In Corollary 4, we take α = 1 and α = 1/2,
respectively. By Lemma 8, we have

1

Γ(1 +
√

(N + 1)2 − x)Γ(1−
√

(N + 1)2 − x)
=

sin(π
√

(N + 1)2 − x)

π
√

(N + 1)2 − x
,

1

Γ(1
2

+
√

(N + 1
2
)2 − x )Γ(1

2
−
√

(N + 1
2
)2 − x )

=
1

π
cos

(
π

√
(N +

1

2
)2 − x

)
.

It is easy to verify thatsin
(
π
√

(N + 1)2 − x
)

π
√

(N + 1)2 − x

(k)
∣∣∣∣∣∣∣
x=0

= (−1)kπ2k

(
sin
√
x√

x

)(k)
∣∣∣∣∣
x=(Nπ+π)2

= 2(−1)k+1π2k
(
cos
√
x
)(k+1)

∣∣∣
x=(Nπ+π)2

, (19)

(
cos(π

√
(N +

1

2
)2 − x )

)(k)
∣∣∣∣∣∣
x=0

= (−1)kπ2k (cos
√
x)(k)

∣∣
x=(Nπ+π/2)2

. (20)

Substitute the right-hand side of (19) into the right-hand side of the identity in Corol-
lary 4, then we get the identity (3). Similarly, we can prove (4).

To prove Corollary 6, we use Lemma 11. It is deduced from (12) that(
cos
√
x
)(k+1)

∣∣∣
x=(Nπ+π)2

=
(−1)(N+k+1)

(2π)2k

b k−1
2
c∑

j=0

(−1)j(2k − 1− 2j)!

(2j + 1)!(k − 2j − 1)!

(2π)2j

(N + 1)2k−2j
, (21)

(
cos
√
x
)(k)∣∣∣

x=(Nπ+π/2)2

=
(−1)(N+k)

(2π)2k−1

b k−1
2
c∑

j=0

(−1)j(2k − 2− 2j)!

(2j)!(k − 2j − 1)!

(2π)2j

(N + 1
2
)2k−1−2j

. (22)

Substitute (21) and (22) into (3) and (4) respectively, then we will get the desired identities
(5) and (6).
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4 Generalizations

Similar to the definition of E(2n, k;α), we can define a number E(mn, k;α) as follows.
Let m,n and k be positive integers with m > 2 and n > k. Then define the number
E(mn, k;α) to be

E(mn, k;α) =
∑

j1+···+jk=n

j1,j2,··· ,jk>1

ζ(mj1,mj2, · · · ,mjk;α).

If we check the proofs of Theorem 2 and Theorem 3 again, we may find that the
theorems can be generalized in the following way.

Theorem 12. Let α be a complex number with α 6∈ {0,−1,−2, · · · } and let N > 0 denote
an arbitrary integer. Define a function fN(x) by

fN(x) =
∞∏
r=0
r 6=N

(
1 +

x

(r + α)m − (N + α)m

)
.

Then for positive integers n and k (suppose n > k), we have

E(mn, k;α) =
1

(k − 1)!

∞∑
N=0

[fN(x)](k−1)|x=0

(N + α)mn−mk+m
.

Moreover, the function fN(x) can be represented by the Gamma function, i.e.,

fN(x) =
(−1)Nm(N + α)m−1

N !
· 1

x
·

∏m−1
i=1 Γ(α− θi(N + α))∏m

i=1 Γ(α− θi m
√

(N + α)m − x)
,

where θ1, θ2, · · · , θm(, 1) are all the pairwise different roots of Zm = 1 in C.
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