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Abstract

In this paper, by means of the q-Rice formula we obtain a general q-identity
which is a unified generalization of three kinds of identities. Some known results
are special cases of ours. Meanwhile, some identities on q-generalized harmonic
numbers are also derived.
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1 Introduction

Three kinds of identities will be introduced in this paper.
In the paper [21], Van Hamme gave the following identity

n∑
k=1

(−1)k−1
[
n

k

]
q

q(
k+1
2 )

1− qk
=

n∑
k=1

qk

1− qk
. (1.1)

One of the generalizations of (1.1) was given by Dilcher [6]:

n∑
k=1

(−1)k−1
[
n

k

]
q

q(
k
2)+kλ

(1− qk)λ
=

∑
16α16···6αλ6n

λ∏
j=1

qαj

1− qαj
. (1.2)
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Prodinger [16] gave another generalization of (1.1):

n∑
k=0, 6=m

(−1)k−1
[
n

k

]
q

q(
k+1
2 )

1− qk−m
= (−1)mq(

m+1
2 )

n∑
k=0,6=m

qk

1− qk−m
, (1.3)

where 0 6 m 6 n. Many works have been devoted to the study of the generalizations of
these identities. See for example [8, 9, 17, 23]. Recently, Guo and Zhang [12] made use of
the Lagrange interpolation formula to give a generalization of Prodinger’s identity (1.3).
They also gave a generalization of Dilcher’s identity (1.2). See Theorems 1.1 and 1.2 in
[12], respectively. Ismail and Stanton used the theory of basic hypergeometric functions
to generalize Dilcher’s identity. See Theorem 2.2 in [13].

In the paper[5], Dı́az-Barrero et al. obtained two identities involving rational sums:

n∑
k=1

(−1)k−1
(
n

k

)(
x+ k

k

)−1 ∑
16α6β6k

1

x2 + (α + β)x+ αβ
=

n

(x+ n)3
,

n∑
k=1

(−1)k−1
(
n

k

)(
x+ k

k

)−1{ k∑
α=1

1

(x+ α)3
+

∑
16α6β6k

1

(x+ α)(x+ β)(2x+ α + β)

+
∑

16α<β<γ6k

1

(x+ α)(x+ β)(x+ γ)

}
=

n

(x+ n)4
.

Recently, Prodinger [18] made use of partial fraction decomposition and inverse pairs to
present a more general formula:

n∑
k=1

(−1)k−1
(
n

k

)(
x+ k

k

)−1 ∑
c1+2c2+···=λ

∏
j>1

s
cj
k,j

cj!jcj
=

n

(x+ n)λ+1
, (1.4)

where sk,j =
∑k

α=1(x + α)−j. Almost at the same time, Chu and Yan [2] presented a
generalization with multiple λ-fold sum:

n∑
k=0

(−1)k
(
n

k

)(
x+ k

k

)−1 ∑
06α16···6αλ6k

λ∏
j=1

1

x+ αj
=

x

(x+ n)λ+1
. (1.5)

A direct proof of (1.5) can be found in Chu [1]. More recently, Mansour et al. [15]
established a q-analog for the rational sum identity (1.4):

n∑
k=1

(−1)k−1q(
k
2)−k(n−1)

[
n

k

]
q

[
x+ k

k

]
q

−1 ∑
c1+2c2+···=λ

∏
j>1

sk,j(q)
cj

cj!jcj
=

qnλ[n]q
[x+ n]λ+1

q

, (1.6)

where sk,j(q) =
∑k

α=1 q
jα[x+α]−jq . In particular, they gave a very nice bijective proof for

the case λ = 1.
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In the recent paper [19], Prodinger established an interesting identity involving har-
monic numbers:

n∑
k=0, 6=m

(−1)k−1
(
n

k

)(
n+ k

k

)
1

(k −m)λ

= (−1)m
(
n

m

)(
n+m

n

) ∑
c1+2c2+···=λ

1

c1!c2! · · ·

λ∏
j=1

(
Hj

j

)cj
, (1.7)

where

Hj = (−1)j−1
(
H

(j)
m+n − 2H(j)

m

)
+H

(j)
n−m,

and H
(r)
n are the generalized harmonic numbers defined by

H
(r)
0 = 0, H(r)

n =
n∑
k=1

1

kr
for n, r = 1, 2, . . . .

Mansour [14] obtained a general rational sum to generalize this identity. He also obtained
a q-analog of this result involving q-harmonic numbers.

Motivated by these interesting work, by means of the q-Rice formula used in [16, 17],
we will establish a general q-identity which is a common generalization of those three
kinds of identities introduced before.

Theorem 1.1. Let λ be any positive integer. For 0 6 m 6 n and 0 6 l 6 n + λ − 1,
there holds

n∑
k=0, 6=m

[
n

k

]
q

q(λ−1)k+m(1− qk−m)(q/z; q)k(zq
−l; q)n−k+λ−1

(1− xqk−m)λ+1
zk

= −(q; q)n(zq−l; q)l(zxq
−m; q)n−l+λ−1

(xq−m; q)m(xq; q)n−m

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
uj
j

)cj
, (1.8)

where ~c! = c1!c2! · · · cλ!, ‖~c‖ = c1 + 2c2 + · · ·+ λcλ and

uj = −
n−l+λ−2∑
k=0

(
zqk

1− zxqk−m

)j
+

n∑
k=0,6=m

(
qk

1− xqk−m

)j
.

This is a very general q-series sum identity involving five parameters λ, l, m, x and
z. It contains several known identities by choosing different parameters, which will be
shown in the third section. By means of our identity, we will also obtain some identities
on q-generalized harmonic numbers.

Throughout this paper, we will use the standard notation. For any real number x and
any integer m, define

[x]q =
1− qx

1− q
, (x; q)∞ =

∞∏
k=0

(1− xqk), (x; q)m =
(x; q)∞

(xqm; q)∞
.
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For any nonnegative integer n, define

[n]q! = [1]q[2]q · · · [n]q,

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

2 Proof of Theorem 1.1

In the very interesting paper [16], Prodinger introduced the following formula

n∑
k=1

(−1)k−1q(
k
2)
[
n

k

]
q

f(q−k) =
1

2πi

∫
C

(q; q)n
(t; q)n+1

f(t)dt,

where C encircles the poles q−1, q−2,. . . , q−n and no other. It is a q-analog of Rice’s
formula [7, 20]:

n∑
k=1

(
n

k

)
(−1)kf(k) =

(−1)n

2πi

∫
C

n!

t(t− 1) · · · (t− n)
f(t)dt,

where C encircles the poles 1, 2,. . . , n and no other. Indeed, by Cauchy’s integral formula
one is not hard to find that for any integer m ∈ {0, 1, . . . , n} there holds

n∑
k=0, 6=m

(−1)k−1q(
k
2)
[
n

k

]
q

f(q−k) = (−1)n−1
(q; q)n

q(
n+1
2 )

1

2πi

∫
C

f(t)dt∏n
j=0(t− q−j)

, (2.1)

where C encircles the poles q−j, j ∈ {0, 1, . . . , n} − {m} and no other. Prodinger first
applied the q-analog of Rice’s formula to prove many identities such as the identities of
Van Hamme, Uchimura, Dilcher, Andrews-Crippa-Simon, and Fu-Lascoux, see [16, 17]
and references therein. It was shown that this formula is a very powerful and useful tool.
Now, in this section we will use this important formula and present a proof of Theorem
1.1.

Proof of Theorem 1.1. By simple calculations we have

n∑
k=0, 6=m

[
n

k

]
q

q(λ−1)k(1− qk−m)(q/z; q)k(zq
−l; q)n−k+λ−1

(1− xqk−m)λ+1
zk

=
n∑

k=0, 6=m

(−1)kq(
k
2)+kλ

[
n

k

]
q

1− qk−m

(1− xqk−m)λ+1
(zq−k; q)k(zq

−l; q)n−k+λ−1

=
n∑

k=0, 6=m

(−1)kq(
k
2)+kλ

[
n

k

]
q

1− qk−m

(1− xqk−m)λ+1

(zq−k; q)∞
(z; q)∞

(zq−l; q)∞
(zqn+λ−1−l−k; q)∞

=(zq−l; q)l

n∑
k=0, 6=m

(−1)kq(
k
2)+kλ

[
n

k

]
q

1− qk−m

(1− xqk−m)λ+1
(zq−k; q)n−l+λ−1.

the electronic journal of combinatorics 21(2) (2014), #P2.28 4



Thus, by the q-Rice formula (2.1) there holds

n∑
k=0, 6=m

[
n

k

]
q

q(λ−1)k(1− qk−m)(q/z; q)k(zq
−l; q)n−k+λ−1

(1− xqk−m)λ+1
zk

=(−1)n(zq−l; q)l
(q; q)n

q(
n+1
2 )

1

2πi

∫
C

(zt; q)n−l+λ−1dt

(t− xq−m)λ+1
∏n

k=0, 6=m(t− q−k)
, (2.2)

where C (positively oriented) encloses the poles q−j, j ∈ {0, 1, . . . , n}−{m} and no other.
It is obvious that

1

2πi

∫
C

(zt; q)n−l+λ−1dt

(t− xq−m)λ+1
∏n

k=0, 6=m(t− q−k)
= − 1

2πi

∫
C′

(zt; q)n−l+λ−1dt

(t− xq−m)λ+1
∏n

k=0,6=m(t− q−k)
,

(2.3)

where C ′ (positively oriented) encloses the pole xq−m. By Cauchy’s integral formula, there
holds

1

2πi

∫
C′

(zt; q)n−l+λ−1
(t− xq−m)λ+1

∏n
k=0, 6=m(t− q−k)

=
1

λ!

dλ

dtλ
(zt; q)n−l+λ−1∏n
k=0,6=m(t− q−k)

∣∣∣∣
t=xq−m

. (2.4)

Applying Faà di Bruno’s formula [4] yields

dλ

dtλ
(zt; q)n−l+λ−1∏n
k=0, 6=m(t− q−k)

∣∣∣∣
t=xq−m

=
dλ

dtλ
e
∑n−l+λ−2
k=0 log(1−ztqk)−

∑n
k=0,6=m log(t−q−k)

∣∣∣∣
t=xq−m

=
(zxq−m; q)n−l+λ−1∏n
k=0, 6=m(xq−m − q−k)

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
uj
j

)cj
. (2.5)

From (2.2), (2.3),(2.4) and (2.5), the desired result is obtained.

Remark 2.1. Actually, careful checking the proof of Theorem 1.1, one can find that
Theorem 1.1 still holds for λ = 0 if in this case we assume the sum of the right hand side
of (1.8) is equal to 1. This implies that for 0 6 l 6 n− 1 there holds

n∑
k=0, 6=m

[
n

k

]
q

(1− qm−k)(q/z; q)k(zq
−l; q)n−k−1

1− xqk−m
zk =

(q; q)n(zq−l; q)l(zxq
−m; q)n−l−1

(xq−m; q)m(xq; q)n−m
.

3 Consequences of Theorem 1.1

Theorem 1.1 can help us to find some new identities or retrieve some well known identities.
Let λ = 1 and x = 1. (1.8) reduces to the following identity.
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Corollary 3.1. For 0 6 m 6 n and 0 6 l 6 n, there holds

n∑
k=0, 6=m

[
n

k

]
q

(q/z; q)k(zq
−l; q)n−k

1− qk−m
zk

= (−1)m−1q(
m
2 )
[
n

m

]
q

(zq−l; q)l(zq
−m; q)n−l

{
−

n−l−1∑
k=0

zqk

1− zqk−m
+

n∑
k=0, 6=m

qk

1− qk−m

}
.

(3.1)

Guo and Zhang [12] made use of Lagrange interpolation formula to obtain this identity
which generalizes the identity (1.3) due to Prodinger. It is obvious that (3.1) reduces to
(1.3) when l = 0 and z → 0.

Let x = 1, l = λ− 1 and z = q−n in (1.8). We have

Corollary 3.2. Let λ be any nonnegative integer. For 0 6 m 6 n, there holds

n∑
k=0, 6=m

(−1)k−1
[
n

k

]
q

[
n+ k

k

]
q

q(
k
2)+(λ−n)k

(1− qk−m)λ

= (−1)mq(
m
2 )−nm

[
n

m

]
q

[
n+m

n

]
q

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
Hj(q)

j

)cj
,

where

Hj(q) = −
n−1∑
k=0

(
qk−n

1− qk−m−n

)j
+

n∑
k=0,6=m

(
qk

1− qk−m

)j
.

This identity is a q-analog of Prodinger’s identity (1.7). An alternative form of this
q-identity was presented in [14].

For m = 0, l = 0 and z → 0 in (1.8), the following identity is true.

Corollary 3.3. Let λ be any nonnegative integer. There holds

n∑
k=1

[
n

k

]
q

(−1)k−1q(
k
2)+λk 1− qk

(1− xqk)λ+1
=

(q; q)n
(xq; q)n

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
1

j

n∑
k=1

qjk

(1− xqk)j

)cj

. (3.2)

It is clear that

n∏
j=1

1

1− xjt
=

n∏
j=1

∑
k>0

(xjt)
k =

∑
λ>0

tλ
∑

16α16···6αλ6n

λ∏
j=1

xαj . (3.3)

Since

dλ

dtλ

n∏
j=1

1

1− xjt

∣∣∣∣
t=0

=
dλ

dtλ
e−

∑n
j=1 log(1−xjt)

∣∣∣∣
t=0

,
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we apply Faà di Bruno’s formula [4] to obtain

dλ

dtλ

n∏
j=1

1

1− xjt

∣∣∣∣
t=0

=
∑
‖~c‖=λ

λ!

~c!

λ∏
j=1

(∑n
k=1 x

j
k

j

)cj

. (3.4)

Comparing (3.3) with (3.4), there holds

∑
16α16···6αλ6n

λ∏
j=1

xαj =
∑
‖~c‖=λ

1

~c!

λ∏
j=1

(∑n
k=1 x

j
k

j

)cj

.

Therefore, (3.2) can be rewritten as

n∑
k=1

[
n

k

]
q

(−1)k−1q(
k
2)+λk 1− qk

(1− xqk)λ+1
=

(q; q)n
(xq; q)n

∑
16α16···6αλ6n

λ∏
j=1

qαj

1− xqαj
,

or

n∑
k=1

[
n

k

]
q

(−1)k−1q(
k
2)+λk 1− qk

(1− xqk)λ+1
=

(q; q)n
(xq; q)n

∑
|~b|=λ

n∏
j=1

(
qj

1− xqj

)bj
, (3.5)

where |~b| = b1 + b2 + · · ·+ bn. By the theory of basic hypergeometric functions Ismail and
Stanton [13] found Eq. (3.5) which reduces to the Dilcher identity [6] when x = 1.

In fact, it has been recently pointed out in [11] that the Ismail-Stanton result (3.5) is
the i = 1 (with m = λ+ 1) case of following formula due to Zeng [23]:

n∑
k=i

(−1)k−i
[
n

k

]
q

[
k

i

]
q

q(
k−i
2 )+km

(1− zqk)m
=
qi(q; q)i−1(q; q)n

(q; q)i(zq; q)n
hm−1

(
qi

1− zqi
, . . . ,

qn

1− zqn

)
,

where 1 6 i 6 n and hk(x1, . . . , xn) is the kth homogeneous symmetric polynomial in
x1, x2, . . . , xn defined by

hk(x1, . . . , xn) =
∑

16i16···6ik6n

xi1 · · ·xik =
∑
|~b|=k

xb11 · · ·xbnn .

This more general formula can not follow from Theorem 1.1 and it can be viewed as a
different generalization of the Ismail-Stanton result (3.5).

Since [
n

k

]
q

=

[
n− 1

k − 1

]
q

1− qn

1− qk
,

Eq. (3.2) can be rewritten as

n∑
k=1

(−1)k−1
[
n− 1

k − 1

]
q

q(
k
2)+λk 1

(1− xqk)λ+1
=

(q; q)n−1
(xq; q)n

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
1

j

n∑
α=1

qjα

(1− xqα)j

)cj

.

the electronic journal of combinatorics 21(2) (2014), #P2.28 7



Using the q-inverse pair formula [10]

fn =
n∑
k=1

(−1)kq(
k
2)
[
n− 1

k − 1

]
q

gk ⇔ gn =
n∑
k=1

(−1)kq(
k
2)−k(n−1)

[
n− 1

k − 1

]
q

fk,

we obtain the inverse of (3.2)

n∑
k=1

(−1)k−1q(
k
2)−k(n−1)

[
n− 1

k − 1

]
q

(q; q)k−1
(xq; q)k

×
∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
1

j

k∑
α=1

qjα

(1− xqα)j

)cj

=
qnλ

(1− xqn)λ+1
.

Replacing x by qx, we rediscover an identity due to Mansour et al. [15]:

Corollary 3.4. Let λ be any nonnegative integer. There holds

n∑
k=1

(−1)k−1q(
k
2)−k(n−1)

[
n

k

]
q

[
x+ k

k

]−1
q

×
∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
1

j

k∑
α=1

qjα

[x+ α]jq

)cj

=
qnλ[n]q

[x+ n]λ+1
q

. (3.6)

This identity is a q-analog for the rational sum identity (1.4) due to Prodinger. If we
further replace n by n+ 1 and x by x− 1 in (3.6), then a q-analog of Chu-Yan’s identity
(1.5) is derived:

Corollary 3.5. Let λ be any nonnegative integer. There holds

n∑
k=0

(−1)kq(
k+1
2 )−kn

[
n

k

]
q

[
x+ k

k

]−1
q

∑
06α16···6αλ6k

λ∏
j=1

qαj

[x+ αj]q
=
qn(λ+1)[x]q
[x+ n]λ+1

q

.

Let the generalized q-harmonic numbers

H
(r)
0 (q) = 0, H(r)

n (q) =
n∑
k=1

qrk[k]−r, n > 1.

Recently, the q-generalized harmonic number sums have been useful in studying Feynman
diagram contributions an relations among special functions [3]. Taking x = 0 in (3.6), we
have the following identities on q-generalized harmonic numbers:

Corollary 3.6. For λ > 1, there holds

n∑
k=0

(−1)kq(
k+1
2 )−(k+λ)n

[
n

k

]
q

∑
‖~c‖=λ

1

~c!

λ∏
j=1

(
H

(j)
k (q)

j

)cj

= − 1

[n]λq
.
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The first few cases are listed as follows.

n∑
k=0

(−1)kq(
k+1
2 )−(k+1)n

[
n

k

]
q

Hk(q) = − 1

[n]q
,

n∑
k=0

(−1)kq(
k+1
2 )−(k+2)n

[
n

k

]
q

(
(Hk(q))

2 +H
(2)
k (q)

)
= − 2

[n]2q
,

n∑
k=0

(−1)kq(
k+1
2 )−(k+3)n

[
n

k

]
q

(
(Hk(q))

3 + 3Hk(q)H
(2)
k (q) + 2H

(3)
k (q)

)
= − 6

[n]3q
,

n∑
k=0

(−1)kq(
k+1
2 )−(k+4)n

[
n

k

]
q

(
(Hk(q))

4 + 6 (Hk(q))
2H

(2)
k (q) + 3

(
H

(2)
k (q)

)2
+ 8Hk(q)H

(3)
k (q) + 6H

(4)
k (q)

)
= − 24

[n]4q
,

n∑
k=0

(−1)kq(
k+1
2 )−(k+5)n

[
n

k

]
q

(
(Hk(q))

5 + 10 (Hk(q))
3H

(2)
k (q) + 15Hk(q)

(
H

(2)
k (q)

)2
+ 20 (Hk(q))

2H
(3)
k (q) + 20H

(2)
k (q)H

(3)
k (q) + 30Hk(q)H

(4)
k (q) + 24H

(5)
k (q)

)
= −120

[n]5q

These identities are q-analogs of generalized harmonic number identities which were pre-
sented in [22]:

n∑
k=0

(−1)k
(
n

k

)
Hk = − 1

n
, (3.7)

n∑
k=0

(−1)k
(
n

k

)(
H2
k +H

(2)
k

)
= − 2

n2
, (3.8)

n∑
k=0

(−1)k
(
n

k

)(
H3
k + 3HkH

(2)
k + 2H

(3)
k

)
= − 6

n3
, (3.9)

n∑
k=0

(−1)k
(
n

k

)(
H4
k + 6H2

kH
(2)
k + 3

(
H

(2)
k

)2
+ 8HkH

(3)
k + 6H

(4)
k

)
= −24

n4
, (3.10)

n∑
k=0

(−1)k
(
n

k

)(
H5
k + 10H3

kH
(2)
k + 15Hk

(
H

(2)
k

)2
+ 20H2

kH
(3)
k + 20H

(2)
k H

(3)
k + 30HkH

(4)
k + 24H

(5)
k

)
= −120

n5
(3.11)

It is worth noticing that starting from

n∑
k=0

(−1)kq(
k+1
2 )−kn

[
n

k

]
q

(q; q)k
(xq; q)k

=
qn(1− x)

1− xqn
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and taking the jth derivative of both sides at x = 1, we can also arrive at Corollary 3.6.
Wang and Jia [22] applied the Newton-Andrews method to some well known identities
and found many interesting identities on harmonic numbers which include the identities
from (3.7) to (3.11).
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