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Abstract

In two recent papers, Feigin proved that the Poincaré polynomials of the degener-
ate flag varieties have a combinatorial interpretation through Dellac configurations,
and related them to the q-extended normalized median Genocchi numbers c̄n(q)
introduced by Han and Zeng, mainly by geometric considerations. In this paper, we
give combinatorial proofs of these results by constructing statistic-preserving bijec-
tions between Dellac configurations and two other combinatorial models of c̄n(q).

Keywords: Genocchi numbers; Dumont permutations; Dellac configurations; Del-
lac histories

1 Introduction

The Genocchi numbers (G2n)n>1 = (1, 1, 3, 17, . . .) [13] and the median Genocchi numbers
(H2n+1)n>0 = (1, 2, 8, 56, . . .) [14] can be defined (see [5]) as the positive integers G2n =
g2n−1,n and H2n+1 = g2n+2,1 in the Seidel triangle (gi,j)16j6i (see Figure 1) defined by

g2p−1,j = g2p−1,j−1 + g2p,j,

g2p,j = g2p−1,j + g2p,j+1,

with g1,1 = 1 and gi,j = 0 whenever i < j.
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i\j 1 2 3 4 . . .
1 1

↓
2 1

↓
3 1 → 1

↓ ↓
4 2 ← 1

↓ ↓
5 2 → 3 → 3

↓ ↓ ↓
6 8 ← 6 ← 3

↓ ↓ ↓
7 8 → 14 → 17 → 17

↓ ↓ ↓ ↓
8 56 ← 48 ← 34 ← 17

↓ ↓ ↓ ↓
...

...
...

...
...

. . .

Figure 1: Seidel generation of the Genocchi numbers.

It is well known that H2n+1 is divisible by 2n (see [1]) for all n > 0. The normalized
median Genocchi numbers (hn)n>0 = (1, 1, 2, 7, . . .) [15] are the positive integers defined
by

hn = H2n+1/2
n.

Dumont [4] gave several combinatorial models of the Genocchi numbers and the median
Genocchi numbers, among which are the Dumont permutations. We denote by Sn the set
of permutations of the set [n] := {1, 2, . . . , n}, and by inv(σ) the number of inversions of
a permutation σ ∈ Sn, i.e., the number of pairs (i, j) ∈ [n]2 with i < j and σ(i) > σ(j).
Broadly speaking, the number of inversions inv(w) of a word w = l1l2 . . . ln with n letters
in the alphabet N is the number of pairs (i, j) ∈ [n]2 such that i < j and li > lj.
In particular, the number inv(σ) associated with a permutation σ ∈ Sn is the number
inv(w) associated with the word w = σ(1)σ(2) . . . σ(n).

Definition 1.1. A Dumont permutation of order 2n is a permutation σ ∈ S2n such that
σ(2i) < 2i and σ(2i−1) > 2i−1 for all i. We denote by Dn the set of these permutations.

It is well-known (see [4]) that H2n+1 = |Dn+1| for all n > 0. In [9], Han and Zeng in-
troduced the set G ′′n of normalized Genocchi permutations, which consists of permutations
σ ∈ Dn such that for all j ∈ [n − 1], the two integers σ−1(2j) and σ−1(2j + 1) have the
same parity if and only if σ−1(2j) < σ−1(2j+ 1), and they proved that hn = |G ′′n+1| for all
n > 0. The number hn also counts the Dellac configurations of size n (see [6]).
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Definition 1.2. A Dellac configuration of size n is a tableau of width n and height 2n
which contains 2n dots between the lines y = x and y = n + x, such that each row
contains exactly one dot and each column contains exactly two dots. Let DC(n) be the
set of Dellac configurations of size n. An inversion of C ∈ DC(n) is a pair (d1, d2) of dots
whose Cartesian coordinates in C are respectively (j1, i1) and (j2, i2) such that j1 < j2 and
i1 > i2. We denote by inv(C) the number of inversions of C. For example, the tableau
depicted in Figure 2 is a Dellac configuration C ∈ DC(3) with inv(C) = 2 inversions
(represented by two segments).

Figure 2: Dellac configuration C ∈ DC(3) with inv(C) = 2 inversions.

In [9, 10], Han and Zeng defined the q-Gandhi polynomials of the second kind, denoted
(Cn(x, q))n>1, by C1(x, q) = 1 and Cn+1(x, q) = (1 + qx)∆q(xCn(x, q)), where

∆qP (x) = (P (1 + qx)− P (x))/(1 + qx− x)

for all polynomial P (x). They proved that the polynomials Cn(1, q) are q-analogs of the
median Genocchi numbers (Cn(1, 1) = H2n−1). Furthermore, they gave a combinatorial
interpretation of Cn(1, q) through Dn.

Theorem 1.1 (Han and Zeng, 1997). Let n > 1. For all σ ∈ Dn, we define st(σ) as the
number

st(σ) = n2 −
n∑
i=1

σ(2i)− inv(σo)− inv(σe) (1)

where σo and σe are the two words σ(1)σ(3) . . . σ(2n− 1) and σ(2)σ(4) . . . σ(2n) respec-
tively. Then, the polynomial Cn(1, q) has the following combinatorial interpretation:

Cn(1, q) =
∑
σ∈Dn

qst(σ). (2)

By introducing the subset G ′′n ⊂ Dn of normalized Genocchi permutations and using
the combinatorial interpretation provided by Theorem 1.1, Han and Zeng proved combi-
natorially that the polynomial (1+q)n−1 divides Cn(1, q), which gives birth to polynomials
(c̄n(q))n>1 defined by

c̄n(q) = Cn(1, q)/(1 + q)n−1. (3)

This divisibility had previously been proved in the same paper with a continued fraction
approach, as a corollary of the following theorem and a well-known result on continued
fractions (see [8]).
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Theorem 1.2 (Han and Zeng, 1997). The generating function of the sequence (c̄n+1(q))n>0

is ∑
n>0

c̄n+1(q)tn =
1

1− λ1t

1− λ2t

1− λ3t
. . .

(4)

where λ2p−1 is the q-binomial coefficient
{
p+1

2

}
q

:= (1− qp+1)(1− qp)/(1− q2)(1− q) and

λ2p = qλ2p−1 for all p > 1.

The polynomials (c̄n(q))n>1 are q-refinements of normalized median Genocchi numbers:
c̄n(1) = hn−1 for all n > 1. They are named q-extended normalized median Genocchi
numbers. In §2.1, we give a combinatorial interpretation of c̄n(q) by slightly adjusting the
definition of normalized Genocchi permutations. In [6, 7], Feigin introduced a q-analog
of the normalized median Genocchi number hn with the Poincaré polynomial PFa

n
(q) of

the degenate flag variety Fan (whose Euler characteristic is PFa
n
(1) = hn), and gave a

combinatorial interpretation of PFa
n
(q) through Dellac configurations.

Theorem 1.3 (Feigin, 2012). For all n > 0, the polynomial PFa
n
(q) is generated by DC(n):

PFa
n
(q) =

∑
C∈DC(n)

q2inv(C).

The degree of the polynomial PFa
n
(q) being n(n + 1) (for algebraic considerations, or

because every Dellac configuration C ∈ DC(n) has at most
(
n
2

)
inversions, see §2.1),

Feigin introduced the following q-analog of hn:

h̃n(q) = q(
n
2)PFa

n
(q−1/2) =

∑
C∈DC(n)

q(
n
2)−inv(C), (5)

and proved the following theorem by using the geometry of quiver Grassmannians (see
[11]) and Flajolet’s theory of continued fractions [8].

Theorem 1.4 (Feigin, 2012). The generating function
∑

n>0 h̃n(q)tn has the continued
fraction expansion of Formula (4).

Corollary 1.5 (Feigin, 2012). For all n > 0, we have h̃n(q) = c̄n+1(q).

This raises two questions.

1. Prove combinatorially Corollary 1.5 by constructing a bijection between Dellac con-
figurations and some appropriate model of c̄n(q) which preserves the statistics.

2. Prove combinatorially Theorem 1.4 within the framework of Flajolet’s theory of con-
tinued fractions by defining a combinatorial model of h̃n(q) related to Dyck paths
(see [8]), and constructing a statistic-preserving bijection between Dellac configura-
tions and that new model.
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The aim of this paper is to answer above two questions. We answer the first one in
§2. In §2.1, we define a combinatorial model of c̄n(q) through normalized Dumont permu-
tations, and we provide general results about Dellac configurations. In §2.2, we enounce
and prove Theorem 2.2, which connects Dellac configurations to normalized Dumont per-
mutations through a stastistic-preserving bijection, and implies immediatly Corollary 1.5.
We answer the second question in §3. In §3.1, we recall the definition of a Dyck path
and some results of Flajolet’s theory of continued fractions. In §3.2, we define Dellac
histories, which consist of Dyck paths weighted with pairs of integers, and we show that
their generating function has the continued fraction expansion of Formula (4). In §3.3, we
enounce and prove Theorem 3.3, which connects Dellac configurations to Dellac histories
through a statistic-preserving bijection, thence proving Theorem 1.4 combinatorially.

2 Connection between Dellac configurations and Du-

mont permutations

In §2.1, we define normalized Dumont permutations of order 2n, whose set is denoted
by D′n, and we prove that they generate c̄n(q) with respect to the statistic st defined in
Formula (1), then we define the label of a Dellac configuration and a switching transfor-
mation on the set DC(n). In §2.2, we enounce Theorem 2.2 and we prove it. To do so,
we first give two maps φ : DC(n)→ Dn+1 and ϕ : Dn+1 → DC(n), and we prove that φ
and ϕ|D′n+1

are inverse maps. Then, we show that Equation (6) is true for all C ∈ DC(n),

by showing that it is true for some particular C0 ∈ DC(n), then by connecting C0 to ev-
ery other C ∈ DC(n) thanks to the switching transformation, which happens to preserve
Equation (6).

2.1 Preliminaries

2.1.1 Combinatorial interpretation of c̄n(q).

Definition 2.1. A normalized Dumont permutation of order 2n is a permutation σ ∈ Dn
such that, for all j ∈ [n − 1], the two integers σ−1(2j) and σ−1(2j + 1) have the same
parity if and only if σ−1(2j) > σ−1(2j+1). Let D′n ⊂ Dn be the set of these permutations.

Proposition 2.1. For all n > 1, we have c̄n(q) =
∑

σ∈D′n
qst(σ).

Proof. Let j ∈ [n−1] and σ ∈ Dn. Recall that st(σ) = n2−
∑n

i=1 σ(2i)−inv(σo)−inv(σe).
It is easy to see that the composition σ′ = (2j, 2j + 1) ◦ σ of σ with the transposition
(2j, 2j+ 1) is still a Dumont permutation, and that if σ fits the condition C(j) defined as

σ−1(2j) > σ−1(2j + 1)⇔ σ−1(2j) and σ−1(2j + 1) have the same parity,

then st(σ′) = st(σ) + 1. Now, if we denote by Djn ⊂ Dn the subset of permutations
that fit the condition C(j), then Dn is the disjoint union Djn t ((2j, 2j + 1) ◦ Djn), where
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(2j, 2j + 1) ◦Djn is the set {(2j, 2j + 1) ◦ σ, σ ∈ Djn}. Since st((2j, 2j + 1) ◦ σ) = st(σ) + 1
for all σ ∈ Djn, Formula (2) of Theorem 1.1 becomes

Cn(1, q) = (1 + q)
∑
σ∈Dj

n

qst(σ).

This yields immediatly:

Cn(1, q) = (1 + q)n−1
∑

σ∈
⋂n−1

j=1 D
j
n

qst(σ) = (1 + q)n−1
∑
σ∈D′n

qst(σ).

The proposition then follows from Formula (3).

2.1.2 Label of a Dellac configuration

Definition 2.2. Let C ∈ DC(n). For all i ∈ [n], the dot of the i-th line of C (from
bottom to top) is labeled by the integer ei = 2i + 2, and the dot of the (n + i)-th line is
labeled by the integer en+i = 2i− 1 (see Figure 3 for an example).

From now on, we will assimilate each dot of a Dellac configuration into its label.

Figure 3: Label of a Dellac configuration C ∈ DC(3).

Definition 2.3 (Particular dots). Let C ∈ DC(n). For all j ∈ [n], we define iC1 (j) < iC2 (j)
such that the two dots of the j-th column of C (from left to right) are eiC1 (j) and eiC2 (j).
When there is no ambiguity, we write ei1(j) and ei2(j) instead of eiC1 (j) and eiC2 (j).
Finally, for all i ∈ [n], we define the integers pC(i) and qC(i) such that epC(i) and en+qC(i)

are respectively the i-th even dot and i-th odd dot of the sequence(
ei1(1), ei2(1), ei1(2), ei2(2), . . . , ei1(n), ei2(n)

)
.

For example, in Figure 3, we have (ei1(2), ei2(2)) = (6, 3) = (e2, e5) = (epC(3), e3+qC(1)).

Remark 2.1. For all i ∈ [2n], if the dot ei appears in the ji-th column of C, then, by
Definition 1.2, we have ji 6 i 6 ji + n. As a result, the first j columns of C always
contain the j even dots

e1, e2, . . . , ej,
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and the only odd dots they may contain are

en+1, en+2, . . . , en+j.

Likewise, the last n− j + 1 columns of C always contain the n− j + 1 odd dots

en+j, en+j+1, . . . , e2n,

and the only even dots they may contain are

ej, ej+1, ej+2, . . . , en.

Remark 2.2. Let C ∈ DC(n) and j ∈ [n]. If the j-th column of C contains the even dot
ei6n = 2i + 2, then, since j 6 i, we have ei ∈ {2j + 2, 2j + 4, . . . , 2n + 2}. Similarly, if
the j-th column of C contains the odd dot ei>n = 2(i− n)− 1, since i 6 j + n, we have
ei ∈ {1, 3, . . . , 2j − 1}. As a result, we obtain the following equivalences:

eiC1 (j) > eiC2 (j) ⇔ iC1 (j) 6 n < iC2 (j)⇔ eiC1 (j) and eiC2 (j) have different parities.

Definition 2.4 (Particular configurations). For all n > 1, we denote by C0(n) (respec-
tively C1(n)) the Dellac configuration of size n such that (ei1(j), ei2(j)) = (e2j−1, e2j) (resp.
(ei1(j), ei2(j)) = (ej, en+j)) for all j ∈ [n]. For example C0(3) (on the left) and C1(3) (on
the right) are the two configurations depicted in Figure 4.

It is obvious that C0(n) is the unique Dellac configuration of size n with 0 inversion,
and that inv(C1(n)) =

(
n
2

)
. We can also prove by induction on n > 1 that every Dellac

configuration C ∈ DC(n) has at most
(
n
2

)
inversions with equality if and only if C = C1(n).

Figure 4: C0(3) and C1(3). Figure 5: C ∈ DC(3) 7→ Sw2(C) ∈ DC(3).

2.1.3 Refinements of the inv statistic on DC(n)

Definition 2.5. Let C ∈ DC(n) and i ∈ [2n]. We define the number lC(ei) (resp.
rC(ei)) as the number of inversions of C between the dot ei and any dot ei′ with i′ > i
(resp. i′ < i). For example, if C = C1(3) (see Figure 4), then lC(6) = rC(3) = 1 and
rC(1) = lC(8) = 2.
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2.1.4 Switching of a Dellac configuration

In the following definition, we provide a tool which transforms a Dellac configuration of
DC(n) into a slightly modified tableau, which is not necessarily a Dellac configuration
and consequently brings the notion of switchability.

Definition 2.6. Let C ∈ DC(n) and i ∈ [2n − 1]. We denote by Swi(C) the tableau
obtained by switching the two consecutive dots ei and ei+1 (i.e., inserting ei in ei+1’s
column and ei+1 in ei’s column). If the tableau Swi(C) is still a Dellac configuration, we
say that C is switchable at i. In Figure 5, we give an example C ∈ DC(3) switchable at
2.

It is easy to verify the following assertions.

Fact 2.1. If C ∈ DC(n) is switchable at i, then |inv((Swi(C)))− inv(C)| 6 1.

Fact 2.2. A Dellac configuration C ∈ DC(n) is switchable at i ∈ [2n − 1] if and only if
C and i satisfy one of the two following conditions:

(1) i 6 n and if ei+1 is in the ji+1-th column of C, then ji+1 < i+ 1.
(2) i > n and if ei is in the ji-th column of C, then ji > i− n.

In particular :

Fact 2.3. If C is switchable at i, then Swi(C) is still switchable at i and Swi(Swi(C)) =
C.

Fact 2.4. If ei and ei+1 are in the same column of C, then C is switchable at i and
C = Swi(C).

Fact 2.5. If (ei, ei+1) is an inversion of C, then C is switchable at i and inv(Swi(C)) =
inv(C)− 1 (like in Figure 5).

Fact 2.6. A Dellac configuration C ∈ DC(n) is always switchable at n.

2.2 Construction of a statistic-preserving bijection

In this part, we intend to prove the following result.

Theorem 2.2. There exists a bijection φ : DC(n)→ D′n+1 such that the equality

st(φ(C)) =

(
n

2

)
− inv(C) (6)

is true for all C ∈ DC(n).

In the following, we define φ : DC(n)→ D′n+1 and in order to prove that it is bijective,
we construct ϕ : Dn+1 → DC(n) such that φ and ϕ|D′n+1

are inverse maps.
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2.2.1 Bijections

Definition of φ. We define φ : DC(n) → S2n+2 by mapping C ∈ DC(n) to the
permutation φ(C) ∈ S2n+2 defined by

φ(C)−1 = 2ei2(1)ei1(1)ei2(2)ei1(2) . . . ei2(n)ei1(n)(2n+ 1),

where we recall that ei1(j) and ei2(j) are respectively the lower and upper dots of the
j-th column of C for all j ∈ [n]. In other words, the permutation φ(C) is defined by
(φ(C)(2), φ(C)(2n + 1)) = (1, 2n + 2) and

(
φ(C)

(
ei1(j)

)
, φ(C)

(
ei2(j)

))
= (2j + 1, 2j) for

all j ∈ [n].

Example 2.1. If C ∈ DC(3) is the Dellac configuration depicted in Figure 6, we obtain
φ(C)−1 = 28416537.

Figure 6: C ∈ DC(3).

Proposition 2.3. For all C ∈ DC(n), the permutation φ(C) is a normalized Dumont
permutation.

Proof. Let σ be φ(C). It is a Dumont permutation : (σ(2), σ(2n + 1)) = (1, 2n + 2) and
for all i ∈ {2, 3, . . . , n− 1}, if the dot 2i = ei−1 is in the j-th column of C (resp. if the dot
2i + 1 = en+1+i is in the j′-th column of C), then σ(2i) = σ(ei−1) 6 2j + 1 < 2i because
j 6 i − 1 (resp. σ(2i + 1) = σ(en+1+i) > 2j′ > 2i + 1 because n + 1 + i 6 j′ + n). It is
also normalized according to Remark 2.2.

Definition of ϕ. Let Tn be the set of tableaux of size n×2n whose each row contains one
dot and each column contains two dots. We define ϕ : Dn+1 → Tn by mapping σ ∈ Dn+1

to the tableau ϕ(σ) ∈ Tn whose j-th column contains the two dots labelled by σ−1(2j)
and σ−1(2j + 1) for all j ∈ [n].

Proposition 2.4. For all σ ∈ Dn+1, the tableau ϕ(σ) is a Dellac configuration.

Proof. Let j ∈ [n] and i ∈ [2n] such that ϕ(σ) contains a dot in the box (j, i) (i.e., the
j-th column of ϕ(σ) contains the dot ei). By definition 2j 6 σ(ei) 6 2j + 1. If i 6 n,
then ei = 2i+ 2 and 2j 6 σ(2i+ 2) < 2i+ 2 thence j 6 i < j + n. Else ei = 2(i− n)− 1
and 2j + 1 > σ(2(i− n)− 1) > 2(i− n)− 1 thence j > i− n > 0 > j − n. In either case
we obtain j 6 i 6 j + n so ϕ(σ) ∈ DC(n).
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Example 2.2. Consider the permutation σ = 41726583 ∈ D4. From σ−1 = 24816537, we
obtain the Dellac configuration ϕ(σ) illustrated in Figure 6.

It is easy to verify that φ ◦ ϕ|D′n+1
= IdD′n+1

and ϕ ◦ φ = IdDC(n).

Remark 2.3. There is a natural interpretation in terms of group action : in the proof of
Proposition 2.1, we show that the subgroup of S2n+2 generated by the n permutations
(2, 3), (4, 5), . . . , (2n, 2n + 1), freely operates by left multiplication on Dn+1, and that
each orbit of that action contains exactly one normalized Dumont permutation. Also, the
orbits are indexed by elements of DC(n) : two permutations σ1 and σ2 ∈ Dn+1 are in the
same orbit if and only if ϕ(σ1) = ϕ(σ2), and for all σ ∈ Dn+1, the permutation φ(ϕ(σ)) is
the unique normalized Dumont permutation in the orbit of σ.

Example 2.3. In Examples 2.1 and 2.2, we have ϕ(φ(C)) = C and φ(ϕ(σ)) = (2, 3) ◦ σ.

2.2.2 Alternative algorithm

Definition 2.7. Let (y1, y2, . . . , y2n) be the sequence (3, 2, 5, 4, . . . , 2n + 1, 2n). For all
C ∈ DC(n), we define the permutation τC ∈ S2n by φ(C)(ei) = yτC(i) for all i ∈ [2n].

Lemma 2.5. Let C ∈ DC(n) and (p, q) ∈ [2n]2 such that p < q. Then (ep, eq) is an
inversion of C if and only if (p, q) is an inversion of τC, i.e., if τC(p) > τC(q).

Proof. Recall that if the dot ei is located in the j-th column of C, then φ(C)(ei) = 2j or
2j + 1. Consequently, since yi = i if i is even, and yi = i + 2 if i is odd, then τC(i) = 2j
or 2j − 1. Now let 1 6 p < q 6 2n, and let (jp, jq) such that the dot ep (resp. eq)
is located in the jp-th column (resp. jq-th column) of C. If (ep, eq) is an inversion of
C, i.e., if jp > jq, then τC(p) > 2jp − 1 > 2jq > τC(q) and (p, q) is an inversion of τC .
Reciprocally, if τC(p) > τC(q), then 2jp > τC(p) > τC(q) > 2jq − 1, hence jp > jq. Now
suppose that jp = jq =: j. It means that ep and eq are the lower dot and the upper dot
of the j-th column respectively, which translates into yτC(p) = φ(C)(ep) = 2j + 1 and
yτC(q) = φ(C)(eq) = 2j. Consequently, we obtain τC(p) = 2j − 1 and τC(q) = 2j, which is
in contradiction with τC(p) > τC(q). So jp > jq and (ep, eq) is an inversion of C.

Proposition 2.6 (Alternative algorithm for the map φ : DC(n) → D′
n+1). Let C ∈

DC(n). For all i ∈ [2n], we have τC(i) = i+ lC(ei)− rC(ei).

Example 2.4. Consider the following Dellac configuration C ∈ DC(3).

By Proposition 2.6, we obtain φ(C) = 21736584. This is coherent with the algorithm
given in Definition 3.5, which says that φ(C)−1 = 21486537.
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Proof of Lemma 2.6. From Lemma 2.5, we know that{
lC(ei) = |{k > i | τC(k) < τC(i)}|,
rC(ei) = |{k < i | τC(k) > τC(i)}|.

So, the lemma follows from the well-known equality

π(i) = i+ |{k > i | π(k) < π(i)}| − |{k < i | π(k) > π(i)}|

for all permutation π ∈ Sm and for all integer m > 1.

2.2.3 Switchability and Dumont permutations

We have built a bijection φ : DC(n) → D′n+1. To demonstrate Formula (6), we will
use the notion of switchability defined in §2.1, by showing that if Formula (6) is true
for some particular configuration C0, and if C1 is a configuration connected to C0 by a
switching transformation, then Formula (6) is also true for C1. We will also need Lemma
2.7 and Proposition 2.8 to prove (in Proposition 2.9) that any two Dellac configurations
are connected by a sequence of switching transformations.

Lemma 2.7. Let σ ∈ Dn+1 and i ∈ [2n−1]. We denote by σ′ the composition σ◦(ei, ei+1)
of the transposition (ei, ei+1) with the permutation σ. The Dellac configuration ϕ(σ) is
switchable at i if and only if σ′ is still a Dumont permutation, and in that case ϕ(σ′) =
Swi(ϕ(σ)).

Proof. Let T be the tableau Swi(ϕ(σ)). If T is a Dellac configuration, one can check
that σ′ ∈ Dn+1 thanks to Fact 2.2. Reciprocally, if σ′ is a Dumont permutation, we may
consider the Dellac configuration ϕ(σ′). For all j ∈ [n], let

(
ei1(j), ei2(j)

)
(with i1(j) <

i2(j)) be the two dots of the j-th column of ϕ(σ), and
(
ei′1(j), ei′2(j)

)
(with i′1(j) < i′2(j)) the

two dots of the j-th column of ϕ(σ′). Then ei′1(j) = σ′−1(2j+1) = (ei, ei+1)◦σ−1(2j+1) =

(ei, ei+1)
(
ei1(j)

)
and ei′2(j) = σ′−1(2j) = (ei, ei+1) ◦ σ−1(2j) = (ei, ei+1)

(
ei2(j)

)
for all j,

which exactly translates into ϕ(σ′) = Swi(ϕ(σ)) = T .

The following result is easy.

Proposition 2.8. In the setting of Lemma 2.7, if ϕ(σ) is switchable at i, then the fol-
lowing conditions are equivalent.

1. ϕ(σ′) 6= ϕ(σ);

2. the two dots ei and ei+1 are not in the same column of ϕ(σ);

3. inv(ϕ(σ′))− inv(ϕ(σ)) = ±1;

4. φ(ϕ(σ)) ◦ (ei, ei+1) ∈ D′n+1;

5. φ(ϕ(σ′)) = φ(ϕ(σ)) ◦ (ei, ei+1).
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Proposition 2.9. Let (C1, C2) ∈ DC(n)2. There exists a finite sequence of switching
transformations from C1 to C2, i.e., a sequence (C0, C1, . . . , Cm) in DC(n) for some
m > 0 such that (C0, Cm) = (C1, C2) and such that Ck = Swik−1(Ck−1) for some index
ik−1 ∈ [2n], for all k ∈ [m].

Proof. From Fact 2.3, it is sufficient to prove that for all C ∈ DC(n), there exists a finite
sequence of switching transformations from C to C0(n), the unique Dellac configuration
of size n with 0 inversion (see Definition 2.4). If C = C0(n), the statement is obvious.
Else, let C0 = C. From Lemma 2.5, for all i ∈ [2n], the pair (ei, ei+1) is an inversion of
C0 if and only if the integer i is a descent of τC0 , i.e., if τC0(i) > τC0(i + 1). Now, from
Proposition 2.6, the permutation τC0(n) is the identity map Id of S2n+2. Consequently,
since C0 6= C0(n), we have τC0 6= IdS2n , so τC0 has at least one descent. Let i0 be one
of those descents, and let C1 = Swi0(C0) ∈ DC(n). Since (ei0 , ei0+1) is an inversion of
C0, in particular ei0 and ei0+1 are not in the same column, so, from Proposition 2.8, we
have φ(C1) = φ(C0) ◦ (ei0 , ei0+1), hence τC1 = τC0 ◦ (i0, i0 + 1). Consequently, since i0 is a
descent of τC0 , it is not a descent of τC1 . Iterating the process with C1, and by induction,
we build a finite sequence of switching transformations (C0, C1, . . . , Cm) such that τCm

has no descent, i.e., such that τCm = Id = τC0(n), which implies Cm = C0(n).

Example 2.5. In Figure 7, we give a graph whose vertices are the h3 = 7 elements
of DC(3), and in which two Dellac configurations are connected by an edge if they are
connected by a switching transformation.

Figure 7: The switching transformations of DC(3).
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2.2.4 Proof of the statistic preservation formula (6)

We are going to prove that Formula (6) is true for all C ∈ DC(n), which will derive
the proof of Theorem 2.2. First notice that it is true for C = C1(n), the unique Dellac
configuration with

(
n
2

)
inversions (see Definition 2.4): indeed φ(C1(n)) is the involution

214365 . . . (2n+2)(2n+1), consequently the two permutations φ(C1(n))e = 135 . . . (2n+1)
and φ(C1(n))o = 246 . . . (2n+ 2) have no inversion, hence

st(φ(C1(n))) = (n+ 1)2 − (1 + 3 + 5 + . . .+ (2n+ 1)) = 0.

Let C ∈ DC(n). From Lemma 2.9, there exists a finite sequence of switching transfor-
mations (C0, C1, . . . , Cm) from C0 = C1(n) to Cm = C. For all k ∈ {0, 1, . . . ,m − 1},
let ik ∈ [2n] such that Ck+1 = Swik(Ck). We can suppose that Ck+1 6= Ck, i.e., that
inv(Ck+1) = inv(Ck) ± 1. Since Formula (6) is true for C1(n), it will be true for C by
induction if we show that

st(φ(Ck+1))− st(φ(Ck)) = inv(Ck)− inv(Ck+1)

for all k. We know that the number inv(Ck) − inv(Ck+1) equals ±1. From Fact 2.3, we
have Swik(Ck+1) = Ck. Then, provided that Ck is replaced by Swik(Ck) = Ck+1, we can
assume that the number inv(Ck) − inv(Ck+1) equals 1, which means the pair (eik , eik+1

)
is an inversion of Ck. Consequently, to achieve the proof of Theorem 2.2, it suffices to
prove the equality

st(φ(Ck+1))− st(φ(Ck)) = 1 (7)

under the hypothesis inv(Ck) − inv(Ck+1) = 1. Let σk = φ(Ck) and σk+1 = φ(Ck+1).
Since eik and eik+1 are not in the same column of Ck, we have σk+1 = σk ◦ (eik , eik+1) in
view of Proposition 2.8.

(a) If eik and eik+1 have the same parity (which is always true except for ik = n), then the
two integers eik and eik+1 appear in the same subset {1, 3, . . . , 2n+1} or {2, 4, . . . , 2n+ 2}.
Consequently, we obtain the two equalities

n+1∑
i=1

σk+1(2i) =
n+1∑
i=1

σk(2i),

(inv(σek+1)− inv(σek), inv(σok+1)− inv(σok)) = (−1, 0) or (0,−1),

thence st(σk+1) = st(σk) + 1, which brings Equality (7).

(b) Else ik = n and (eik , eik+1) = (2n+ 2, 1). From σk+1 = σk ◦ (eik , eik+1), we obtain

σek+1 = σk(2)σk(4) . . . σk(2n)σk(1),

σok+1 = σk(2n+ 2)σk(3)σk(5) . . . σk(2n+ 1).

This provides the three following equations.

n+1∑
i=1

σk+1(2i) =

(
n+1∑
i=1

σk(2i)

)
− σk(2n+ 2) + σk(1), (8)
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inv(σek+1) = inv(σek)− |{2i < 2n+ 2 | σk(2i) > σk(2n+ 2)}|
+ |{2i < 2n+ 2 | σk(2i) > σk(1)}|, (9)

inv(σok+1) = inv(σok)− |{1 < 2i+ 1 |σk(2i+ 1) < σk(1)}|
+ |{1 < 2i+ 1 | σk(2i+ 1) < σk(2n+ 2)}|. (10)

We need the following lemma to make explicit Equalities (9) and (10).

Lemma 2.10. We have the equalities

|{2i < 2n+ 2 | σk(2i) > σk(2n+ 2)}| = rCk(2n+ 2) +
(
1 + (−1)σk(2n+2)

)
/2, (11)

|{2i < 2n+ 2 | σk(2i) > σk(1)}| = rCk(1)−
(
1− (−1)σk(1)

)
/2, (12)

|{1 < 2i+ 1 |σk(2i+ 1) < σk(1)}| = lCk(1) +
(
1− (−1)σk(1)

)
/2, (13)

|{1 < 2i+ 1 | σk(2i+ 1) < σk(2n+ 2)}| = lCk(2n+ 2)−
(
1 + (−1)σk(2n+2)

)
/2. (14)

Proof. We only demonstrate Equalities (11) and (12), because the proof of (13) is analo-
gous to that of (11) and the proof of (14) is analogous to that of (12).

• Proof of (11): if the dot eik = 2n+ 2 appears in the jk-th column of Ck, and if the
dot ei−1 = 2i (with 1 6 i − 1 6 n = ik) appears in the ji−1-th column of Ck, then
σk(2n + 2) ∈ {2jk, 2jk + 1} and σk(2i) ∈ {2ji−1, 2ji−1 + 1}. Consequently, the two
following assertions are equivalent:

– σk(2i) > σk(2n+ 2);

– either ji−1 > jk, or ji−1 = jk and σk(2n+ 2) = 2ji−1 (which forces σk(2i) to be
2ji−1 + 1).

As a result,

|{2i < 2n+ 2 | σk(2i) > σk(2n+ 2)}| = rCk(2n+ 2) + δσk(2n+2)

where δσk(2n+2) = 1 if σk(2n+ 2) is even, and δσk(2n+2) = 0 if σk(2n+ 2) is odd, i.e.,
where δσk(2n+2) =

(
1 + (−1)σk(2n+2)

)
/2.

• Proof of (12): with the same reasoning as for (11), we find the equality

|{2i < 2n+ 2 | σk(2i) > σk(1)}| = rCk(1)− 1 +
(
1 + (−1)σk(1)

)
/2

(with rCk(1) − 1 instead of rCk(1) because there is an inversion between 1 = eik+1

and 2n+ 2 = eik , whereas 2n+ 2 is not counted in |{2i < 2n+ 2 | σk(2i) > σk(1)}|).
Since −1 +

(
1 + (−1)σk(1)

)
/2 = −

(
1− (−1)σk(1)

)
/2, we obtain (12).
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In view of Lemma 2.10, Equalities (9) and (10) become

inv(σek+1) − inv(σek) = rCk(1) − rCk(2n + 2) − 1 +
(
(−1)σk(1) − (−1)σk(2n+2)

)
/2, (15)

inv(σok+1) − inv(σok) = lCk(2n + 2) − lCk(1) − 1 +
(
(−1)σk(1) − (−1)σk(2n+2)

)
/2. (16)

Now, from Lemma 2.6, we know that

σk(1) = yn+1+l
Ck (1)−r

Ck (1),

σk(2n+ 2) = yn+l
Ck (2n+2)−r

Ck (2n+2).

From yi = i+ 1− (−1)i for all i, we deduce the two following formulas.

σk(1) = n+ 2 + (−1)n + lCk(1)− rCk(1) + (−1)n+1
(
1− (−1)lCk (1)−r

Ck (1)
)
, (17)

σk(2n+ 2) = n+ 1− (−1)n + lCk(2n+ 2)− rCk(2n+ 2)

+ (−1)n
(
1− (−1)lCk (2n+2)−r

Ck (2n+2)
)
. (18)

By substituting Equalities (17) and (18) in Equalities (8), (15) and (16), we obtain
the three new equalities

n+1∑
i=1

σk+1(2i)−
n+1∑
i=1

σk(2i) = 1 + lCk(1)− lCk(2n+ 2) + rCk(2n+ 2)− rCk(1)

+ (−1)n+l
Ck (1)−r

Ck(1) + (−1)n+l
Ck (2n+2)−r

Ck (2n+2), (19)

inv(σek+1)− inv(σek) = rCk(1)− rCk(2n+ 2)− 1

−
(
(−1)n+l

Ck (1)−r
Ck (1) + (−1)n+l

Ck (2n+2)−r
Ck (2n+2

)
/2, (20)

inv(σok+1)− inv(σok) = lCk(2n+ 2)− lCk(1)− 1

−
(
(−1)n+l

Ck (1)−r
Ck (1) + (−1)n+l

Ck (2n+2)−r
Ck (2n+2

)
/2. (21)

Finally, we obtain Equality (7) by summing Equalities (19), (20) and (21). This proves
Theorem 2.2.

Remark 2.4. In [9], the authors proved that c̄n(q) is divisible by 1 + q if n is odd, but
requested a combinatorial proof of this statement. Now, if n is odd, one can prove that
every Dellac configuration C ∈ DC(n−1) is switchable at some even integer, which yields
a natural involution I on DC(n − 1) such that inv(I(C)) = inv(C) ± 1 for all C. This
proves combinatorially the divisibility of c̄n(q) by 1 + q in view of Theorem 2.2.
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3 Dellac histories

3.1 Weighted Dyck paths

Recall (see [8]) that a Dyck path γ of length 2n is a sequence of points (p0, p1, . . . , p2n) in
N2 such that (p0, p2n) = ((0, 0), (2n, 0)), and for all i ∈ [2n], the step (pi−1, pi) is either an
up step (1, 1) or a down step (1,−1). We denote by Γ(n) the set of Dyck paths of length
2n. Furthermore, let µ = (µn)n>1 be a sequence of elements of a ring. A weighted Dyck
path is a Dyck path γ = (pi)06i62n ∈ Γ(n) whose each up step has been weighted by 1,
and each down step (pi−1, pi) from height h (i.e., such that pi−1 = (i − 1, h)) has been
weighted by µh.
The weight

ωµ(γ) (22)

of the weighted Dyck path γ is the product of the weights of all steps.

Remark 3.1. If γ = (pi)06i62n ∈ Γ(n), then pi = (i, nu(i) − nd(i)) where nu(i) and nd(i)
are defined as the numbers of up steps and down steps on the left of pi respectively (in
particular nu(i) + nd(i) = i). Consequently, since the final point of γ is p2n = (2n, 0), the
path γ has exactly n up steps and n down steps, and for all j ∈ [n], the points p2j−1 and
p2j are at heights respectively odd and even.

Definition 3.1 (Labelled steps). Let γ = (pi)06i62n ∈ Γ(n). For all i ∈ [n], we denote by
sui (γ) (resp. sdi (γ)) the i-th up step (resp. down step) of γ. When there is no ambiguity,
we write sui and sdi instead of sui (γ) and sdi (γ).

Remark 3.2. If sui (γ) = (p2j−2, p2j−1) or (p2j−1, p2j) where p2j−2 = (2j − 2, 2k) for some
k > 0, then, following Remark 3.1, we know that 2k = nu(2j − 2) − nd(2j − 2) =
2nu(2j − 2)− (2j − 2), and by definition of sui (γ) it is necessary that nu(2j − 2) = i− 1,
and we obtain 2k = 2(i− j) hence i = j + k. In the same context, if sdi (γ) = (p2j−1, p2j)
or (p2j−2, p2j−1), then we obtain i = j − k by an analogous reasoning.

3.2 Dellac histories

Definition 3.2. A Dellac history of length 2n is a pair (γ, ξ) where γ = (pi)06i62n ∈ Γ(n)
and ξ = (ξ1, ξ2, . . . , ξn) where ξi is a pair of nonnegative integers (n1(i), n2(i)) with the
following conditions. Let j ∈ [n] be such that the i-th down step sdi of γ is one the two
steps (p2j−2, p2j−1) and (p2j−1, p2j), and let 2k be the height of p2j−2. There are three
cases.

1. If sdi = (p2j−2, p2j−1) such that (p2j−1, p2j) is an up step (see Figure 8,(1)), then

k > n1(i) > n2(i) > 0,

and we attach a weight ωi = q2k−n1(i)−n2(i) to sdi .
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2. If sdi = (p2j−1, p2j) such that (p2j−2, p2j−1) is an up step (see Figure 8,(2)), then

0 6 n1(i) 6 n2(i) 6 k,

and we attach a weight ωi = q2k−n1(i)−n2(i) to sdi .

3. If (p2j−2, p2j−1) and (p2j−1, p2j) are both down steps (see Figure 8,(3)), we can sup-
pose that sdi = (p2j−2, p2j−1) and sdi+1 = (p2j−1, p2j), then

k − 1 > n1(i) > n2(i) > 0,

and we attach a weight ωi = q2k−1−n1(i)−n2(i) to sdi , also

0 6 n1(i+ 1) 6 n2(i+ 1) 6 k − 1,

and we attach a weight ωi+1 = q2k−2−n1(i+1)−n2(i+1) to sdi+1.

Figure 8:

The weight ω(γ, ξ) of the history (γ, ξ) is the product of the weights of all down steps.
We denote by DH(n) the set of Dellac histories of length 2n.

Prior to connecting Dellac histories to weighted Dyck paths, one can easily verify the
two following results.

Lemma 3.1. For all p > 1, the polynomial∑
06n16n26p−1

q2p−2−n1−n2

is the q-binomial coefficient
{
p+1

2

}
q

= (1− qp+1)(1− qp)/((1− q2)(1− q)).

Proposition 3.2. For all γ0 ∈ Γ(n), we have the equality∑
(γ0,ξ)∈DH(n)

ω(γ0, ξ) = ωλ(γ0)

where ωλ has been defined in (22), and where λ = (λn)n>1 is the sequence defined in
Theorem 1.2.
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Proof. By Definition 3.2, the polynomial
∑

(γ0,ξ)∈DH(n) ω(γ0, ξ) is the product of the

weights of all down steps of γ0, where the weight of a down step sdi (γ0) is a sum of monomi-
als over pairs of nonnegative integers with conditions depending on the three cases 1.,2. or
3. in which sdi (γ0) may be found. If sdi (γ0) is a down step (p2j−1, p2j) from height 2k−1 in
the case 3., then it is weighted by the polynomial

∑
06n16n26k−1 q

2k−2−n1−n2 , which, in view

of Lemma 3.1, equals
{
k+1

2

}
q

= λ2k−1. If sdi (γ0) is a down step (p2j−2, p2j−1) from height

2k, still in the case 3., then it is weighted by the polynomial
∑

k−1>n1>n2>0 q
2k−1−n1−n2 =

q
{
k+1

2

}
q

= λ2k. If sdi (γ0) is a down step (p2j−1, p2j) from height 2k + 1 in the case 2.,

then it is weighted by the polynomial
∑

06n16n26k
q2k−n1−n2 =

{
k+2

2

}
q

= λ2k+1. Finally, if

sdi (γ0) is a down step (p2j−2, p2j−1) from height 2k in the case 1., then it is weighted by
the polynomial

∑
k>n1>n2>0 q

2k−n1−n2 , which, by setting m1 = n1− 1 and m2 = n2, equals∑
k−1>m1>m2>0 q

2k−1−m1−m2 = q
{
k+1

2

}
= λ2k in view of Lemma 3.1.

Following Proposition 3.2, we have∑
(γ,ξ)∈DH(n)

ω(γ, ξ) =
∑
γ∈Γ(n)

ωλ(γ)

for all n > 0. Therefore, from a well-known result due to Flajolet [8], the generat-

ing function
∑

n>0

(∑
(γ,ξ)∈DH(n) ω(γ, ξ)

)
tn is the continued fraction expansion of For-

mula (4). Consequently, to demonstrate Theorem 1.4, it suffices to prove that h̃n(q) =∑
(γ,ξ)∈DH(n) ω(γ, ξ), which is a straight corollary of the following theorem.

Theorem 3.3. There exists a bijective map Φ : DC(n)→ DH(n) such that

ω(Φ(C)) = q(
n
2)−inv(C) (23)

for all C ∈ DC(n).

3.3 Proof of Theorem 3.3

In this part, we give preliminaries and connections between Dellac configurations and
Dyck paths. Then, we define the map Φ : DC(n) → DH(n) and we demonstrate the
statistic preservation formula (23). Finally, we prove that Φ is bijective by giving a map
Ψ : DH(n)→ DC(n) which happens to be Φ−1.

3.3.1 Preliminaries on Dellac configurations

Definition 3.3. Let C ∈ DC(n). If i 6 n, we denote by leC(ei) the number of inversions
of C between ei and any even dot ei′6n with i′ > i. In the same way, if i > n, we denote
by roC(ei) the number of inversions of C between ei and any odd dot ei′>n with i′ < i.

Definition 3.4. Let C ∈ DC(n) and j ∈ [n]. We define the height h(j) of the integer j
as the number ne(j) − no(j) where ne(j) (resp. no(j)) is the number of even dots (resp.
odd dots) in the first j − 1 columns of C (with ne(1) = no(1) = 0).
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Remark 3.3. Since the first j−1 columns of C contain exactly 2j−2 dots and, from Remark
2.1, always contain the j − 1 even dots e1, e2, . . . , ej−1, there exists k ∈ {0, 1, . . . , j − 1}
such that ne(j) = j − 1 + k and no(j) = j − 1− k. In particular h(j) = 2k.

Lemma 3.4. Let C ∈ DC(n), let j ∈ [n] and k > 0 such that h(j) = 2k. If the j-th
column of C contains two odd dots, there exists j′ < j such h(j′ + 1) = 2k and such that
the j′-th column of C contains two even dots.

Proof. From Remark 3.3, we have ne(j) = j − 1 + k and no(j) = j − 1 − k. Since the
only j odd dots that the first j columns may contain are en+1, en+2, . . . , en+j−1, en+j, and
since the j-th column already contains two odd dots, the first j − 1 columns contain at
most j − 2 odd dots. In other words, since they contain no(j) = j − 1 − k odd dots, we
obtain k > 1. Thus h(j) = 2k > 0. Since h(1) = 0, there exists j′ ∈ [j − 1] such that
h(j′ + 1) = 2k and h(j′) < 2k. Obviously h(j′ + 1)− h(j′) ∈ {−2, 0, 2}, so h(j′) = 2k − 2
and the j′-th column of C contains two even dots.

3.3.2 Map Φ : DC(n) → DH(n)

Definition 3.5 (Φ). Let C ∈ DC(n), we define Φ(C) as (γ, ξ), where γ = (pi)06i62n

(which is a path in Z2 whose initial point p0 is defined as (0, 0)) and ξ = (ξ1, . . . , ξn) (which
is a sequence of pairs of nonnegative integers) are provided by the following algorithm.
For j = 1 to n, let ei1(j) and ei2(j) (with i1(j) < i2(j)) be the two dots of the j-th column
of C.

1. If i2(j) 6 n, then (p2j−2, p2j−1) and (p2j−1, p2j) are defined as up steps.

2. If i1(j) 6 n < i2(j), let i ∈ [n] such that i−1 down steps have already been defined.
We define ξi as (leC(ei1(j)), r

o
C(ei2(j)). Afterwards,

(a) if leC(ei1(j)) > roC(ei2(j)), we define (p2j−2, p2j−1) as a down step and (p2j−1, p2j)
as an up step (see Figure 8,(1));

(b) if leC(ei1(j)) 6 roC(ei2(j)), we define (p2j−2, p2j−1) as an up step and (p2j−1, p2j)
as a down step (see Figure 8,(2)).

3. If n < i1(j), let i ∈ [n] such that i − 1 down steps have already been defined. We
define (p2j−2, p2j−1) and (p2j−1, p2j) as down steps (see Figure 8,(3)). Afterwards, let
k > 0 such that p2j−2 = (2j−2, 2k). Obviously, the number nu(2j−2) = j−1+k of
up steps (resp. the number nd(2j− 2) = j− 1− k of down steps) that have already
been defined is the number ne(j) of even dots (resp. the number no(j) of odd dots)
in the first j − 1 columns of C, thence h(j) = 2k. From Lemma 3.4, there exists
j′ < j such that h(j′+1) = 2k (which means p2j′ = (2j′, 2k)) and such that the j′-th
column of C contains two even dots, which means (p2j′−2, p2j′−1) and (p2j′−1, p2j′)
are two consecutive up steps (see Figure 9). Now, we consider the maximum jm < j
of the integers j′ that verify this property, and we consider the two dots ei1(jm) and
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Figure 9: Two consecutive up steps and down steps at the same level.

ei2(jm) (with i1(jm) < i2(jm)) of the jm-th column of C. Finally, we define ξi and
ξi+1 as

ξi = (leC(ei1(jm)), l
e
C(ei2(jm))),

ξi+1 = (roC(ei1(j)), r
o
C(ei2(j))).

Example 3.1. The Dellac configuration C ∈ DC(6) of Figure 10 yields the data Φ(C) =
(γ, ξ), which is in fact a Dellac history, depicted in Figure 11 (since Φ(C) is a Dellac
history, we have indicated the weight ωi of the i-th down step sdi of γ for all i ∈ [6], see
Definition 3.2).

Figure 10: C ∈ DC(6). Figure 11: Ψ(C) ∈ DH(6).

Remark 3.4. If Φ(C) = (γ, ξ), let j ∈ [n], the number of up steps (resp. down steps)
among the first 2j steps of γ, is in fact the number of even dots (resp. odd dots) in the
first j columns of C. With precision, for all i ∈ [n], the even dot epC(i) and the odd dot
en+qC(i) (see Definition 2.3) give birth to the i-th up step and the i-th down step of γ
respectively. In particular, the path γ has n up steps and n down steps, so p2n = (2n, 0).
To prove that γ is a Dyck path, we still have to check that it never goes below the line
y = 0.

Remark 3.5. In the context (3) of Definition 3.5, if h(j) = 2k (i.e., if p2j−2 = (2j−2, 2k)),
then the maximum jm of the integers j′ < j such that h(j′ + 1) = 2k and such that the
j′-th column contains two even dots, is such that (p2jm−2, p2jm−1) and (p2jm−1,2jm) are the
last two consecutive up steps from level 2k − 2 towards level 2k in γ.

Proposition 3.5. Let C ∈ DC(n) and (γ, ξ) = Φ(C). The path γ is a Dyck path.
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Proof. From Remark 3.4, it suffices to prove that γ = (p0, p1, . . . , p2n) never goes be-
low the line y = 0. If we suppose the contrary, there exists i0 ∈ {0, 1, . . . , 2n − 1}
such that pi0 = (i0, 0) and (pi0 , pi0+1) is a down step. From Remark 3.1, we know
that pi0 = (i0, 0) = (i0, 2nu(i0) − i0), so i0 = 2nu(i0). Let j0 = nu(i0) + 1 ∈ [n].
In the first j0 − 1 columns of C, from Remark 3.4, there are nu(i0) = j0 − 1 even
dots and nd(i0) = j0 − 1 odd dots. Consequently, since those first j0 − 1 columns al-
ways contain the j0 − 1 even dots e1, e2, . . . , ej0−1 and cannot contain any other odd dot
than en+1, en+2, . . . , en+j0−1 (see Remark 2.1), the 2j0 − 2 dots they contain are precisely
e1, e2, . . . , ej0−1 and en+1, en+2, . . . , en+j0−1. Therefore, the only two dots that the j0-th
column may contain are ej0 and en+j0 . But then, it forces leC(ej0) and roC(en+j0) to equal
0. In particular leC(ej0) 6 roC(en+j0). Following the case 2(b) of Definition 3.5, it means
(pi0 , pi0+1) is defined as an up step, which is absurd by hypothesis.

Proposition 3.6. For all C ∈ DC(n), the data Φ(C) is a Dellac history of length 2n.

Proof. Let Φ(C) = (γ, ξ) = ((p0, p1, . . . , p2n), (ξ1, ξ2, . . . , ξn)). We know that γ ∈ Γ(n). It
remains to prove that ξ fits the appropriate inequalities described in Definition 3.2. Let
j ∈ [n] and let ei1(j) and ei2(j) (with j 6 i1(j) < i2(j) 6 j +n) be the two dots of the j-th
column of C.

• If (p2j−1, p2j) is the down step sdi in the context 2(a) of Definition 3.5, then ξi =
(n1, n2) = (leC(ei1(j))), r

o
C(ei2(j))) with leC(ei1(j)) > roC(ei2(j)). Here, the appropriate

inequality to check is k > n1 > n2 (this is the context 1. of Definition 3.2). Since
the first j − 1 columns of C contain j − 1 + k even dots, including the j − 1 dots
e1, e2, . . . , ej−1 (with j − 1 < i1(j)), there is no inversion between any of these
dots and ei1(j). Consequently, in the first j − 1 columns of C, there are at most
(j − 1 + k)− (j − 1) = k even dots ei with n > i > i1(j), thence n1 = leC(ei1(j)) 6 k.

• Similarly, if (p2j−2, p2j−1) is the down step sdi set in the context 2(b) of Definition
3.5, then we have ξi = (n1, n2) = (leC(ei1(j))), r

o
C(ei2(j))), with leC(ei1(j)) 6 roC(ei2(j)).

Now, the appropriate equality to check is n1 6 n2 6 k (this is the context 2. of
Definition 3.2). The first j columns of C contain j − k odd dots and the i2(j) − n
lines from the (n + 1)-th line to the i2(j)-th line contain i2(j) − n odd dots, so, in
the n − j last columns, the number of odd dots ei with n < i < i2(j) is at most
(i2(j)− n)− (j − k) = k + (i2(j)− j − n) 6 k, thence n2 = roC(ei2(j)) 6 k.

• Finally, if (p2j−2, p2j−1) and (p2j−1, p2j) are two consecutive down steps sdi and sdi+1

in the context 3. of Definition 3.5, then

ξi = (leC(ei1(jm)), l
e
C(ei2(jm))),

ξi+1 = (roC(ei1(j)), r
o
C(ei2(j)))

and the two inequalities to check (this is the context 3. of Definition 3.2) are:

k − 1 > leC(ei1(jm)) > leC(ei2(jm)), (24)

roC(ei1(j)) 6 roC(ei2(j)) 6 k − 1. (25)
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– Proof of (24): since i1(jm) < i2(jm), obviously leC(ei1(jm)) > leC(ei2(jm)). After-
wards, since p2jm−2 is at the level h(jm) = 2k− 2, there are jm− 1 + (k− 1) =
jm+k−2 even dots in the first jm−1 columns of C. Since the first jm−1 rows
of C contain the jm−1 even dots e1, e2, . . . , ejm−1, the first jm−1 columns of C
contain at most (jm+k−2)−(jm−1) = k−1 even dots ei with n > i > i1(jm),
thence leC(ei1(jm)) 6 k − 1.

– Proof of (25): since i1(j) < i2(j), obviously roC(ei1(j)) 6 roC(ei2(j)). Afterwards,
since p2j is at the level h(j + 1) = 2k − 2, there are j − (k − 1) = j − k + 1
odd dots in the first j columns of C. Since the j rows, from the (n+ 1)-th row
to the (n + j)-th row of C, contain j odd dots, the n − j last columns of C
contain at most j− (j− k+ 1) = k− 1 odd dots ei with n < i < i2(jm), thence
roC(ei2(j)) 6 k − 1.

So Φ(C) is a Dellac history of length n.

3.3.3 Proof of the statistic preservation formula (23)

Let C ∈ DC(n) and Φ(C) = (γ, ξ) with γ = (p0, p1, . . . , p2n) and ξ = (ξ1, ξ2, . . . , ξ2n). By
definition, we have ω(Φ(C)) = Πn

i=1ωi where ωi is the weight of the i-th down step sdi of
γ. In the contexts 1. or 2. of Definition 3.2, we have

ωi = q2k−leC(ei1(j))−roC(ei2(j)). (26)

Since p2j−2 is at the level h(j) = 2k, the first j − 1 columns of C contain j − 1 − k odd
dots. Consequently, following Definition 3.5, the step sdi is the (j − k)-th down step of γ,
i.e., the integer i equals j − k. Also, since the first j columns of C contain j + k even
dots, the last n− j columns of C (from the (j+ 1)-th column to the n-th column) contain
n− (j + k) = n− j − k = i− k even dots. As a result, we obtain the equality

rC(ei2(j)) = roC(ei2(j)) + i− k. (27)

In view of (27), Equality (26) becomes ωi = qn−i−(leC(ei1(j))+rC(ei2(j))). With the same
reasoning, if sdi and sdi+1 are two consecutive down steps in the context 3. of Definition
3.2, then by commuting factors of ωi and ωi+1, we obtain the equality

ωiωi+1 =
(
qn−i−(leC(ei1(jm))+rC(ei2(jm)))

)(
qn−(i+1)−(leC(ei1(j))+rC(ei2(j)))

)
.

From ω(Φ(C) = Πn
i=1ωi, it follows that

ω(Φ(C)) = q(
∑n

i=1 n−i)−(
∑

i6n l
e
C(ei)+

∑
i>n rC(ei)). (28)

Now, it is easy to see that inv(C) =
∑

i6n l
e
C(ei) +

∑
i>n rC(ei). In view of the latter

remark, Formula (28) becomes Formula (23).
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3.3.4 Proof of the bijectivity of Φ : DC(n) → DH(n)

To end the proof of Theorem 3.3, it remains to show that Φ is bijective. To this end, we
construct (in Definition 3.6) a map Ψ : DH(n) → DC(n) and we prove in Lemma 3.8
that Φ and Ψ are inverse maps.

Definition 3.6. Let S = (γ, ξ) ∈ DH(n) with γ = (p0, p1, . . . , p2n) and ξ = (ξ1, . . . , ξn).
We define Ψ(S) as a tableau T of width n and height 2n, in which we insert the 2n dots
e1, e2, . . . , e2n according to the two following (analogous and independant) algorithms.

1. Insertion of the n odd dots en+1, en+2, . . . , e2n. Let Io0 = (1, 2, . . . , n). For
i = 1 to n, consider ji ∈ [n] such that the i-th down step sdi of γ is one of the two
steps (p2ji−2, p2ji−1) or (p2ji−1, p2ji). If the sequence Ioi−1 is defined, we denote by
H(i) the hypothesis ”Ioi−1 has length n+ 1− i such that for all j ∈ {i, i+ 1, . . . , n},
the (j − i+ 1)-th element of Ioi−1 is inferior to n+ j”. If the hypothesis H(i+ 1) is
true, then we iterate the algorithm to i + 1. At the beginning, the sequence Io0 is
defined and H(1) is obviously true so we can initiate the algorithm.

(a) If sdi is a down step in the context 1. or 2. of Definition 3.2, let (n1, n2) = ξi.
In particular, since n2 6 k = ji − i (see Remark 3.2) and ji 6 n, we have
1 + n2 6 n − i + 1 so, from Hypothesis H(i), we can consider the (1 + n2)-th
element of Ioi−1, say, the integer q. We insert the odd dot en+q in the ji-th
column of T . From Hypothesis H(i), the (ji − i + 1)-th element of Ioi−1 is
inferior to n + ji, and 1 + n2 6 1 + k = ji − i + 1. Consequently, the dot
en+q is between the lines y = x and y = x + n. Afterwards, we define Ioi as
the sequence Ioi−1 from which we have removed q (by abusing the notation, we
write Ioi := Ioi−1\{q}). Thus, the sequence Ioi has length n+1−(i+1). Also, if
j ∈ {i+ 1, i+ 2, . . . , n}, then following Hypothesis H(i), the (j− i)-th element
of Ioi−1 is inferior to n+ j−1, so the (j− (i+1)+1)-th element of Ioi is inferior
to n+ j− 1 < n+ j. Therefore, Hypothesis H(i+ 1) is true and we can iterate
the algorithm to i+ 1.

(b) If sdi and sdi+1 are two consecutive down steps in the context 3. of Definition
3.2, let (n1, n2) = ξi+1. In particular n1 6 n2 6 k−1 = ji− i−1 6 n− i−1, so
1 + n1 < 2 + n2 6 ji − i+ 1. Consequently, following Hypothesis H(i), we can
consider the (1 +n1)-th element of Ioi−1, say, the integer q1, and the (2 +n2)-th
element of Ioi−1, say, the integer q2 > q1. We insert the two odd dots en+q1

and en+q2 in the j-th column of T . With precision, by the same argument as
for (a), those two dots are located between the lines y = x and y = x + n.
Afterwards, we set Ioi+1 := Ioi−1\{q1, q2}. Thus, the sequence Ioi+1 has length
n − (i + 2) + 1, and if j ∈ {i + 2, i + 3, . . . , n} then, by Hypothesis H(i), the
(j − i− 1)-th element of Ioi−1 is inferior to n+ j − 2, so the (j − (i+ 2) + 1)-th
element of Ioi+1 is inferior to n+ j− 2 < n+ j. Therefore, Hypothesis H(i+ 2)
is true and we can iterate the algorithm to i+ 2.

2. Insertion of the n even dots e1, e2, . . . , en. Let Ie0 = (n, n−1, . . . , 1). For i = 1
to n, consider ji ∈ [n] such that the (n+ 1− i)-th up step sun+1−i of γ is one of the
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two steps (p2ji−2, p2ji−1) or (p2ji−1, p2ji). If the sequence Iei−1 is defined, we denote
by H ′(i) the hypothesis ”Iei−1 has length n+ 1− i such that for all j ∈ [n− i+ 1],
the (n− i+ 2− j)-th element of Ioi−1 is greater than j”. If Hypothesis H ′(i+ 1) is
true, we iterate the algorithm to i+ 1. In particular, the set Ie0 is defined and H ′(1)
is true so we can initiate the algorithm.

(a) If sun+1−i is an up step in the the context 1. or 2. of Definition 3.2, then let i0 ∈
[n] such that {(p2ji−2, p2ji−1), (p2ji−1, p2ji)} = {sun+1−i, s

d
i0
}. Let (n1, n2) = ξi0 .

From Remark 3.2, we have 1 + n1 6 1 + k = n − i + 2 − ji 6 n − i + 1 so,
following Hypothesis H ′(i), we can consider the (1 + n1)-th element of Iei−1,
say, the integer p. We insert the even dot ep in the ji-th column of T . By
Hypothesis H ′(i), the (n− i+ 2− ji)-th element of Iei−1 is greater than ji, and
1 + n1 6 1 + k = n − i − ji + 2 so the dot ep is located between the lines
y = x and y = x + n. Afterwards, we set Iei := Iei−1\{p}. The sequence Iei
has length n + 1 − (i + 1). Also, if j ∈ {1, 2, . . . , n + 1 − (i + 1)}, then, by
Hypothesis H ′(i), the (n − i − j)-th element of Iei−1 is greater than j + 1, so
the (n− (i+ 1) + 1− j)-th element of Iei is greater than j + 1 > j. Therefore,
Hypothesis H ′(i+ 1) is true and we can iterate the algorithm to i+ 1.

(b) If sun+1−(i+1) and sun+1−i are two consecutive up steps, say (p2ji−2, p2ji−1) and

(p2ji−1, p2ji), from level 2k − 2 towards level 2k in γ, let j0 > ji such that the
two steps (p2j0−2, p2j0−1) and (p2j0−1, p2j0) are the next two consecutive down
steps sdi0 and sdi0+1 from level 2k towards level 2k − 2 (see Figure 9). Let
(n1, n2) = ξi0 . Being in the context 3. of Definition 3.2, we have n2 6 n1 6
k− 1 = n− i− j0 6 n− i− 1, hence 1 +n2 < 2 +n1 6 n− i+ 1. Consequently,
by Hypothesis H ′(i), we can consider the (1 + n2)-th element of Iei−1, say, the
integer p1, and the (2 + n1)-th element of Iei−1, say, the integer p2 < p1. We
insert the two even dots ep2 and ep1 in the ji-th column of T . With precision,
for the same argument as for (a), those two dots are between the lines y = x
and y = x + n. Afterwards, we set Iei+1 := Iei−1\{p2, p1}. The sequence Iei+1

has length n − (i + 2) + 1. Also, if j ∈ {1, 2, . . . , n + 1 − (i + 2)}, then by
Hypothesis H ′(i), the (n − i − j)-th element of Iei−1 is greater than j + 2, so
the (n− (i+ 2) + 2− j)-th element of Iei+1 is greater than j+ 2 > j. Therefore,
Hypothesis H ′(i+ 2) is true and we can iterate the algorithm to i+ 2.

By construction, it is clear that Ψ(S) = T is a Dellac configuration.

Remark 3.6. Let S = (γ, ξ) ∈ DH(n) and C = Ψ(S) ∈ DC(n). For all i ∈ [n], the i-th
up step sui (resp. down step sdi ) of γ gives birth to the even dot epC(i) (resp. to the odd
dot en+qC(i)) (see Definition 2.3).

Example 3.2. If S ∈ DH(6) is the Dellac history Φ(C) of Example 3.1, we obtain
Ψ(S) = C.

Following Remark 3.6, it is easy to prove the following lemma by induction on i ∈ [n].
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Lemma 3.7. Let S ∈ DH(n). We consider the two sequences (Ioi )i and (Iei )i defined in
the computation of C = Ψ(S) (see Definition 3.6). Then for all i ∈ [n], the integer qC(i)
is the (1 + roC(en+qC(i)))-th element of the sequence Ioi−1, and the integer pC(n + 1− i) is
the (1 + leC(epC(n+1−i)))-th element of the sequence Iei−1.

Proposition 3.8. The maps Φ : DC(n)→ DH(n) and Ψ : DH(n)→ DC(n) are inverse
maps.

Proof. From Remarks 3.4 and 3.6, it is easy to see that Φ ◦ Ψ = IdDH(n). The equality
Ψ◦Φ = IdDC(n) is less straightforward. Let C ∈ DC(n) and S = (γ, ξ) = Φ(C) ∈ DH(n).
We are going to show, by induction on i ∈ [n], that qΨ(S)(i) = qC(i) and pΨ(S)(i) = pC(i)
for all i, hence Ψ(S) = C. The two proofs of qΨ(S)(i) = qC(i) and pΨ(S)(i) = pC(i)
respectively being independant and analogous, we only prove qΨ(S)(i) = qC(i) for all i.
Let i = 1. In the context 1(a) of Definition 3.6, from Remark 3.4, the first odd dot to
be inserted is en+qΨ(S)(1). Therefore, by definition, the integer qΨ(S)(1) is the (1 + n2)-th
element of Io0 (i.e., we obtain qΨ(S)(1) = 1 + n2 where (n1, n2) = ξ1). In this situation,
since S = Φ(C), we know that n2 = roC(en+qC(1)). Consequently, from Lemma 3.7, we
obtain qΨ(S)(1) = 1 + roC(en+qC(1)) = qC(1). The proof in the context 1(b) is analogous.
Now let i ∈ {2, 3, . . . , n}. Suppose that qΨ(S)(k) = qC(k) for all k < i. In the context 1(a)
of Definition 3.6, from Remark 3.4, the i-th odd dot to be inserted is en+qΨ(S)(i). Therefore,
by definition, if ξi = (n1, n2), then qΨ(S) is the (1 + n2)-th element of Iei−1 = J e

i−1. Since
S = Φ(C), we know that n2 = roC(en+qC(i)) so, from Lemma 3.7, we obtain qΨ(S)(i) = qC(i).
The proof in the context 1(b) is analogous.

This proves Theorem 3.3.

As an illustration of the whole paper, the table depicted in the next page makes ex-
plicit the statistic-preserving bijections between the h3 = 7 objects of DC(3), D′4 and
DH(3).
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C ∈ DC(3) φ(C) ∈ D′4 Φ(C) ∈ DH(3)

41736285

41736582

71436285

71436582

51436287

21736584

21436587
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