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Abstract

For r > 2, α > r − 1 and k > 1, let c(r, α, k) be the smallest integer c such
that the vertex set of any non-trivial r-uniform k-edge-colored hypergraph H with
α(H) = α can be covered by c monochromatic connected components. Here α(H)
is the maximum cardinality of a subset A of vertices in H such that A does not
contain any edges. An old conjecture of Ryser is equivalent to c(2, α, k) = α(r − 1)
and a recent result of Z. Király states that c(r, r − 1, k) = dkr e for any r > 3.

Here we make the first step to treat non-complete hypergraphs, showing that
c(r, r, r) = 2 for r > 2 and c(r, r, r + 1) = 3 for r > 3.
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1 Introduction and results

A conjecture generally attributed to Ryser (appeared in his student, Henderson’s thesis,
[5]) states that for k-uniform k-partite hypergraphs τ 6 (k − 1)ν. Here τ denotes the
minimum number of vertices which covers all the edges, and ν is the maximum number of
disjoint edges in the hypergraph. A k-uniform hypergraph is k-partite if the vertices can
be paritioned into k disjoint sets such that every edge meets all of them. The following
equivalent formulation is from [3, 4].

Conjecture 1. In every k-coloring of the edges of a graph G, the vertex set of G can be
covered by the vertices of at most α(G)(k − 1) monochromatic connected components.

For k = 2 Conjecture 1 is equivalent to König theorem [7] and the case k = 3 is solved
by a celebrated theorem of Aharoni using new and significant ideas [1]. In the special
case when α(G) = 1, i.e. for complete graphs, the cases k = 3, 4 are solved in [4] and [2],
and the case k = 5 in [2] and [8]. Thus we know the following results.

Theorem 2. Let k ∈ {2, 3}. Then the vertex set of any k-edge-colored graph G can be
covered by (k − 1)α(G) monochromatic connected components, and this bound is sharp.

Theorem 3. Let k ∈ {2, 3, 4, 5}. Then the vertex set of any k-edge-colored complete graph
can be covered by k − 1 monochromatic connected components, and this bound is sharp.

The third author initiated the study of the analogue of Ryser’s conjecture for r-uniform
hypergraphs and the following result of Z. Király [6] answered completely the case of
complete r-uniform hypergraphs. Connected components of hypergraphs are defined as
the connected components of the graph defined by the pairs of vertices that are covered
by some edge of the hypergraph. One-vertex components are called trivial components.

Theorem 4. Let r > 3. If the edges of a complete r-uniform hypergraph H are k-colored
then V (H) can be covered by dk/re monochromatic connected components, and this bound
is sharp.

The special case k = r of Theorem 4 was known before [4]. In this note we make
the first step to move from complete hypergraphs to general ones. A subset of vertices
in a hypergraph is independent if it does not contain any edge of the hypergraph. The
maximum number of independent vertices in a hypergraph H is denoted by α(H).

For an edge-colored hypergraph H, let c(H) be the minimal c such that V (H) can be
covered by the vertices of c monochromatic components. For r > 2, α > r− 1 and k > 1,
let c(r, α, k) be the smallest integer c such that c(H) 6 c for all non-trivial r-uniform
k-edge-colored hypergraph H with α(H) = α. The hypergraph is called non-trivial if it
has at least one edge.

Our main result is the following theorem.

Theorem 5. Let r > 2. Let H be an r-uniform hypergraph with α(H) = r, |V (H)| > r,
and its edges are colored with k 6 r colors. Then V (H) can be covered by at most two
monochromatic components. That is, c(r, r, r) 6 2.
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The bound in Theorem 5 is sharp, c(r, r, r) > 2. A trivial example is the complete r-
uniform hypergraph plus one isolated vertex. Color its edges with r colors arbitrarily. This
H satisfies α(H) = r and one needs two monochromatic components to cover all vertices
because H is not connected. Another example is the following. Set V = {1, 2, . . . , r+ 2},
and let E(H) be all the r-sized subsets of V except {1, 2, . . . , r}, and color the edge E
with the smallest element of V \E (this is at most r). It is easy to check that α(H) = r,
and it cannot be covered by one monochromatic connected component, because for any
i ∈ {1, 2, . . . , r} the vertex i is not covered by any edge in color i. A less trivial example is
the r-uniform hypergraph with vertices partitioned into r classes and having all edges that
do not meet all classes. The color of an edge E is the smallest index i for which E does
not meet class i. For this hypergraph H, α(H) = r and one monochromatic component
does not cover its vertices.

The theorem is also sharp in another sense, namely c(r, r+1, r) > 2 and c(r, r, r+1) >
2. The first is shown by the example of a complete r-uniform hypergraph and two isolated
vertices with an arbitrary coloring of the edges. To see the second inequality, take a
complete r-uniform hypergraph on r+ 1 vertices whose r+ 1 edges colored with different
colors and add one isolated vertex.

Our second result makes one more step (we do not have a reasonable conjecture for
c(r, α, k) in general).

Theorem 6. Let r > 3 and H be an r-uniform hypergraph with α(H) = r, |V (H)| > r,
and its edges are colored with k 6 r + 1 colors. Then V (H) can be covered by at most
three monochromatic components. That is, c(r, r, r + 1) 6 3.

For r = 2 Theorem 6 is not true, c(2, 2, 3) = 4, in fact c(2, α, 3) = 2α follows from the
result of Aharoni [1]. To see that Theorem 6 is sharp, partition V into r+2 nonempty sets
Ai, |Ar+2| = 1. The edges are defined as r-element subsets T ⊂ V not covering Ar+2 and
the color of T is defined as the smallest i such that Ai ∩ T = ∅. Since each independent
set must contain the vertex in Ar+2, the independence number of this hypergraph is r and
it is immediate that two monochromatic components cannot cover V .

We present the proof of Theorem 6 first (although it uses Theorem 5 for r = 3) because
its proof is easier.

2 Proof of Theorem 6

Let H be a non-trivial r-uniform (r + 1)-edge-colored hypergraph with α(H) = r. We
distinguish two cases.
Case 1: r = 3. If each edge E of H in color 1 is covered by a monochromatic component
of some color c(E) different from 1 then we can recolor all edges E of color 1 with c(E) and
let H′ be the resulting hypergraph. By Theorem 5, we can cover H′ with c(3, 3, 3) = 2
monochromatic components. Then we can find the corresponding two monochromatic
components in H and they cover V (H), as desired. Thus we may assume that there is an
edge E in color 1, such that E is not covered by any component of color different from 1.
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For each 2-element subset Y of E, let CY be the set of colors i for which there exists
a monochromatic connected component of color i which contains Y . Since E has color
1, 1 ∈ CY for every Y ⊂ E. Note that for two different 2-element subsets Y1, Y2 ⊂ E,
(CY1∩CY2)−{1} = ∅ by the definition of E. Hence, using thatH is 4-edge-colored one can
easily see that there is a Y0 ⊂ E, |Y0| = 2 with |CY0 | 6 2. Let H1 be the component of color
1 containing E and H2 be the component containing Y0 in the color of CY0 different from
1, say 2. In the case where CY0 = {1}, let H2 be empty. Set Z = V (H)−(V (H1)∪V (H2)).

Observe that for any two vertices z1, z2 ∈ Z, the triples Y0∪z1, Y0∪z2 cannot be edges
of H from the definition of Y0 and Z. Thus, in the quadruple Y0, z1, z2 one of the triples
containing both z1, z2 must be edges of H, because α(H) = 3. This induces a coloring
on the complete graph with vertex set Z, with 2 colors (colors 3, 4) if H2 is nonempty,
or with 3 colors (colors 2, 3, 4) if H2 is empty. Using Theorem 3, Z can be covered by
the vertices of one (if H2 is nonempty) or two monochromatic connected components and
they are obviously subsets of components in the same color in H as well. Together with
H1, H2 (if H2 is nonempty) or with H1 (if H2 is empty) we have the required cover with
three monochromatic components.
Case 2: r > 3. Set t = d r

2
e. If there is a t-element set S that is not covered by

any monochromatic component, consider T ⊂ V − S such that |T | = r + 1 − t. From
the assumption of the theorem, the set S ∪ T must contain an edge E ∈ H and since
S is not covered by E from the choice of S, T ⊂ E. Thus we may color the complete
hypergraph H∗ on the (r + 1 − t)-element subsets of V − S by the color of E. Since
r + 1 − t = r + 1 − d r

2
e > 3 for r > 4, we can apply Theorem 4 to H∗. Observing that

2(r + 1 − t) > r + 1, H∗ can be covered by two connected monochromatic components
and (since the r-sets defining the colors cover S apart from possibly one vertex) these
two components must cover S also, apart from at most one vertex. Thus, adding the
possibly non-covered vertex as a trivial component, we have the required cover with three
components.

If all t-element subsets S of vertices of H are covered by some monochromatic compo-
nent, then we may color the complete hypergraphH∗∗ of the t-setsH with r+1 colors. For
r > 5 we have t = d r

2
e > 3 and can apply Theorem 4 again and, since 3t = 3d r

2
e > r + 1

we can cover H∗∗ with at most three components, and this obviously induces the required
cover for H.

The only remaining case is when r = 4 and every pair of vertices is covered by a
monochromatic component. First suppose that there is a pair of vertices x, y contained in
just one monochromatic component C1. Then we color every triple T in Z = V (H) \ C1

with the color of the edge of H in T ∪ {x, y} containing T and one of x, y. The used
color must be different from the color of C1 therefore the obtained complete 3-uniform
hypergraph will be colored with 4 colors. By Theorem 4 it can be covered by at most
two monochromatic components which expand to monochromatic components of H, and
with C1 they form the required covering. Similarly, if there is a pair of vertices x, y
contained in exactly two monochromatic components C1, C2, then again, we color the
triples of Z = V (H) \ (C1 ∪ C2) as we did before. In this case the triples could get
just three colors so by Theorem 4, Z can be covered by one monochromatic component,
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and with C1, C2 we get the required covering of H. Note that (in both cases) if there
is no triple in Z, that is |Z| 6 2, then our argument still works since we need only one
monochromatic component to cover Z (because every pair of vertices is covered by a
monochromatic component). Finally, when every pair of vertices is contained in at least
three monochromatic components, we pick an arbitrary vertex x and choose three colors
whose monochromatic components cover x. These components must cover the whole
vertex set of H because if any vertex z would be uncovered, the pair x, z would be in at
most two monochromatic components. �

3 Proof of Theorem 5

The statement for r = 2 is a solved special case of Conjecture 1. Let r > 3.
We may assume that c(H) > 2 allowing us to define t as the smallest positive integer

such that there are t vertices of H which are not contained in any non-trivial monochro-
matic component of H. We may also assume that t > 2, otherwise we would have an
isolated vertex, and then the remaining at least r vertices form a complete r-uniform hy-
pergraph colored with r colors. Then, by the case k = r of Theorem 4 it can be spanned
by one monochromatic component. Adding the isolated vertex as a single component we
have a cover with two components.

In the following we consider three cases according to the value of t (and r), and handle
them separately.

Case 1: t > max{r
2
+ 1, 4}, or (r, t) = (3, 3).

Proof in case 1. By the definition of t we know that for every (t− 1)-element subset S of
V (H) there is a monochromatic component CS containing S. We color any S with the
color of CS, and obtain a complete (t− 1)-uniform hypergraph on V (H), whose edges are
colored with k colors. This hypergraph is denoted byH∗. Any monochromatic component
of H∗ is a subset of a monochromatic component of H.

When t− 1 > 3, we can use Theorem 4, so H∗ can be covered by at most dk/(t− 1)e
monochromatic components. Also, t > r

2
+ 1, this gives us a covering with dk/(t− 1)e 6

dr/(r/2 + 1− 1)e = 2 monochromatic components.
When t − 1 = 2 and k 6 r = 3, we apply Theorem 3, and obtain that H∗ can be

covered by at most k − 1 6 2 monochromatic components. �

Case 2: t = 2.

First we need some definitions and a lemma.
A bipartite hypergraph [A,B] is a hypergraph whose vertex set is partitioned into

nonempty sets A,B and for every edge E, E∩A,E∩B are both nonempty. An r-uniform
bipartite hypergraph [A,B] is complete if its edge set is all r-element sets of A ∪ B that
meet both A,B. An r-edge-coloring of a complete r-uniform bipartite hypergraph [A,B]
is special if the following holds. One of A,B is specified as the kernel and the other
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contains disjoint subsets Xi, i ∈ {1, 2, . . . , r}. For every i, the edges of color i form only
one non-trivial component, Ci, with vertex set V (H) \ Xi. When r = 2 we extend the
definition of special as follows. We call a 2-edge-coloring of a bipartite graph special also
when A and B are divided into two nonempty parts A = A1 ∪ A2, B = B1 ∪ B2 and the
edges between Ai and Bj are colored according to the parity of i+ j.

Lemma 7. Let F = [A,B] be a complete bipartite r-uniform hypergraph, and r > 2.
If the edges of F are colored with r − 1 colors then some color class spans a connected
hypergraph on V (F). This remains true even for r-edge-colorings of F unless the coloring
is special.

Proof of Lemma 7. Suppose that the edges of F are colored with r − 1 colors. We add
every r-subsets of A and B to the edge set, and color them with a new color. The r-
uniform hypergraph so obtained is complete, and its edges are colored with r colors. By
Theorem 4 one color spans a connected component on the whole vertex set, but this
cannot be in the new color. This shows that the first part of the lemma is true.

Now we consider an r-edge-coloring of F . We may assume that for any color c, there
is a component in c which is not contained by any other component. (Otherwise, the color
c could be eliminated, by recoloring each edge in color c to the color of the component
which contains them.)

Claim 8. Let r > 3. For any color c, there is just one non-trivial component in c, and it
contains A or B.

Proof. Let C be a component in color c which is not contained by any other component, so
assume that ∃a ∈ A, ∃b ∈ B: a, b /∈ C. We define a complete (r− 1)-uniform hypergraph
on C colored with r− 1 colors, in the following way. For any X ⊆ C, |X| = r− 1, the set
X∪{a} or X∪{b} is an edge EX of F , and we transfer the color of EX to X. By Theorem
4 (using r − 1 > 2) this hypergraph is spanned by one monochromatic component D in
color d 6= c. But D is a monochromatic component also of F which contains C (and also
at least one of a, b), this contradicts the choice of C. Therefore C contains A or B. The
other components in c must be in the other part of the bipartite hypergraph, and so they
must be trivial. �

Claim 9. All the non-trivial components defined in Claim 8 contain A or all of them
contain B.

Proof. Let ui be any isolated vertex in color i, for i = 1, 2, . . . , r. (For every color i we
have such a vertex, otherwise the non-trivial component in color i would span a connected
component on the whole vertex set.) Take the set of all ui-s, and extend it to an r-element
set if some of the ui-s are equal. This set is not an edge of F because it cannot be colored by
any color. Therefore all the possible ui-s are in the same side of the bipartite hypergraph,
proving the statement. �

Suppose that r > 3 and the hypergraph cannot be covered by a single monochro-
matic component. We will show that the coloring is special. By Claims 8 and 9, every
monochromatic component contains one of the parts of the bipartite hypergraph, say A.
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Moreover, we have r non-trivial monochromatic components and the intersections of their
complements must be disjoint in B, otherwise we could choose at most r−1 vertices from
B such that from the complement of each monochromatic component we picked at least
one, and by adding a vertex from A the formed r-tuple cannot be colored by any of the r
colors. Therefore in this case the coloring is special with exactly r colors (note that the
kernel is A).

Suppose that r = 2. Since the statement of Claim 8 holds only for r > 3, besides the
structure described above, it also could happen that there is a component C = A′ ∪B′ in
color 1 where A′ ⊆ A, B′ ⊆ B, and none of A′, A \ A′, B′, B \ B′ is empty. In this case
the edges between A and B′ are colored with color 2 as well as the edges between A′ and
B. The remaining edges must be colored with 1, otherwise one component would cover
the whole vertex set. Hence also in this case the coloring is special. This completes the
proof of Lemma 7. �

Proof in case 2. Since t = 2, we have two vertices, a, b such that {a, b} is not covered by
any monochromatic component of H, but each of them is covered by some monochromatic
component. Set X = V (H) \ {a, b}.
Let C be a maximal monochromatic component containing a, say in color 1 (clearly
b /∈ C). Set A = V (C) ∩ X, B = X \ A, we may clearly assume that B is nonempty,
otherwise C and {b} cover V (H).

Let H∗ be the complete (r − 1)-uniform bipartite hypergraph [A,B] on vertex set X.
For any S ⊆ X with |S| = r− 1, the set S ∪{a} or S ∪{b} is an edge of H, otherwise the
(r+1)-sized set S∪{a, b} would be an independent set in H, contradicting the assumption
α(H) = r. Transfer the color of S ∪ {a} or S ∪ {b} to S. From the definition of C, the
color of the the edges of H∗ in the transferred coloring cannot be 1, therefore H∗ is colored
with r − 1 colors: 2, . . . , r.

Apply Lemma 7 to H∗ (which is (r − 1)-uniform, and r − 1 > 2). If some color class
spans a connected component in H∗ covering A ∪ B then clearly at least one of {a, b}
extends this component to a component of H and with the trivial component on the
remaining vertex we have the required cover. Otherwise we have a special coloring of H∗
with exactly r − 1 colors (2, . . . , r).

Case 2.a. First consider the case r−1 > 3 when there is just one type of special structure.
Observe that for every 2 6 i 6 r the non-trivial component D∗i in this special coloring is
part of a component Di of H. For example, a or b is in Di for every i ∈ {2, . . . , r}. In
addition, edges of color i inside X may also contribute to the extension of D∗i to Di. For
convenience, we keep the notation Xi used for the exceptional part in X, thus for each i,
Di covers V (H) with the exception of Xi and exactly one vertex from {a, b}. If the kernel
of the special coloring is A (reps. B) then ∪ri=2Xi ⊆ B (resp. ∪ri=2Xi ⊆ A).

Suppose that ∪ri=2Xi ⊆ B (the kernel is A). Consider the (r + 1)-element set W =
{a, y, x2, . . . , xr}, where y ∈ A, xj ∈ Xj. The sets W \ {a},W \ {y} cannot be edges of H
since any color on them would contradict the definition of A or Di. By the same reason,
if W \ {xj} is an edge of H for some j > 1 then its color can be only j. But in this case
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C ⊂ Dj with a proper containment, contradicting the definition of C. Therefore W is
independent set in H, contradicting α(H) = r.

Suppose that ∪ri=2Xi ⊆ A (the kernel is B). If b is covered by some Di (i > 1) then
C ∪Di covers V (H). Thus we may assume that b is not covered by any Di. Consider the
(r+ 1)-element set W = {b, y, x2, . . . , xr}, where y ∈ B, xj ∈ Xj. The set W \ {b} cannot
be an edge of H since any color on it would contradict the definition of A or Di. Suppose
W \ {y} is an edge of H and its color is i. Since b /∈ C, i > 1, but then Di ∪ C cover
V (H). Thus we may assume that W \{y} is not an edge of H. However, W \{xj} cannot
be an edge of H either, because b is not covered by Dj. Therefore W is independent set
in H, contradicting α(H) = r.

Case 2.b. When r− 1 = 2 and the special coloring has a kernel then the same argument
shows that c(H) 6 2. In the case of the other special coloring, H∗ has two non-trivial
components in both colors, and these components cover X in both colors. Consider the
two components in H∗ in color 2. These components are either joined by one of a, b then
this component cover all the vertices of H but at most one of a, b; or one of them with a
and the other with b cover all the vertices of H.

Thus we have finished the proof in Case 2. �

Case 3: r > 4 and 3 6 t 6 r
2
+ 1.

We need yet another lemma.

Lemma 10. Let F be an r-uniform complete hypergraph with an edge-coloring. Then no
matter how the color set is partitioned into at most r disjoint parts, one of them must
contain such colors whose non-trivial components cover the vertex set of F .

Note, that in this case we do not restrict the number of components just the number
of colors used in them.

Proof of Lemma 10. Let S be the set of colors used in the coloring of F , and consider its
partition into disjoint r′ 6 r subsets S1, S2, . . . , Sr′ . If the non-trivial components in colors
belonging to Si do not cover the vertex set of F then there is a vertex ui which is not
covered by any edge colored with any element of Si. If it holds for every i ∈ {1, 2, . . . , r′}
then let U = {u1, u2, . . . , ur′}, and extend it to an r-sized set if necessary. But U cannot
be colored by any color, and it contradicts the definition of F . Thus there must be an
i ∈ {1, 2, . . . , r′} such that the non-trivial components in the colors belonging to Si cover
the whole vertex set of F , completing the proof. �

Proof in case 3. Let T = {v1, v2, . . . , vt} be a set of vertices not covered by any non-
trivial monochromatic component of H. We know by the definition of t that for any Ti =
T \ {vi}, 1 6 i 6 t, there is at least one monochromatic component covering it. For any
X ⊆ V (H), let s(X) be the set of colors c for which there is a monochromatic non-trivial
component in color c containing X. It is clear that s(Ti) 6= ∅ for any i ∈ {1, 2, . . . , t}. For
different i and j the color sets s(Ti) and s(Tj) must be disjoint, otherwise the whole T
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would be covered by a monochromatic component, since Ti and Tj are intersecting (using
t > 3). Set X = V (H) \ T . Consider any (r − t + 1)-element subset S of X. Using
|S ∪ T | = r + 1, α(H) 6 r and the definition of T there must be an edge ES = S ∪ Ti
for some i ∈ {1, 2, . . . , t}. Define H∗ be a complete (r− t+ 1)-uniform hypergraph on X,
and color the edge S with the color of ES.

We shall find either one color whose non-trivial monochromatic component in H∗
covers X or two colors whose non-trivial monochromatic components cover the vertices of
X and whose components can be extended to different (t− 1)-element subsets of T . This
will be enough, because every monochromatic component of H∗ in a fixed color can be
extended to the same (t− 1)-element subset of T , joining in a monochromatic component
of H.

Let K ′ be the union of the t nonempty disjoint sets, s(T1), s(T2), . . . , s(Tt), and let
k′ = |K ′|. We have k′ 6 k 6 r, t 6 r

2
+ 1.

Claim 11. K ′ can be partitioned into r− t+1 parts, whose sizes are at most 2 (the empty
set is also allowed) and the elements of all 2-sized parts are in different s(Ti)-s.

Proof. We have to create at least M = k′− (r+ 1− t) parts with size 2. Pick one element
from each s(Ti), i = 1, 2, . . . , t and form the set K1, and put the remaining ones into the
set K2. Construct the 2-sized disjoint sets by taking repeatedly one element from K2,
and its mate from K1, so that they are from different s(Ti)-s. When we have M 2-sized
parts or K2 is exhausted, we make the remaining parts arbitrarily (selecting empty or
one-element sets). Since M = k′ − (r + 1 − t) < t = |K1| (because k′ 6 r), this process
can be done. �

Using Claim 11 we partition the color set into r− t+ 1 parts, Z1, . . . , Zr−t+1, with size
at most 2, so that the elements of any part of size two are in different s(Ti)-s. Now we
apply Lemma 10 to H∗, which is an (r−t+1)-uniform hypergraph. Lemma 10 states that
for some i the part Zi contains such colors whose non-trivial components cover the vertex
set of H∗. The component colored with the same color extend to the same monochromatic
component of H, and together they also cover the vertices of T . Hence we obtain at most
two monochromatic components of H which together cover all vertices of H.

Thus we have finished the proof in Case 3. �

We covered all cases: Case 2 solves t = 2 and Case 3 cover the range 3 6 t 6 r
2

+ 1
except when r = 3. The rest is covered by Case 1. Thus Theorem 5 is proven. �
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