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Abstract

A graph G of even order v is called t-extendable if it contains a perfect matching,
t < v/2 and any matching of t edges is contained in some perfect matching. The
extendability of G is the maximum t such that G is t-extendable. In this paper, we
study the extendability properties of strongly regular graphs. We improve previous
results and classify all strongly regular graphs that are not 3-extendable. We also
show that strongly regular graphs of valency k > 3 with λ > 1 are bk/3c-extendable
(when µ 6 k/2) and dk+1

4 e-extendable (when µ > k/2), where λ is the number of
common neighbors of any two adjacent vertices and µ is the number of common
neighbors of any two non-adjacent vertices. Our results are close to being best pos-
sible as there are strongly regular graphs of valency k that are not dk/2e-extendable.
We show that the extendability of many strongly regular graphs of valency k is at
least dk/2e − 1 and we conjecture that this is true for all primitive strongly regular
graphs. We obtain similar results for strongly regular graphs of odd order.

Keywords: strongly regular graphs; matchings; extendability; triangular graphs;
Latin square graphs; block graphs of Steiner systems

1 Introduction

A set of edges M of a graph G is a matching if no two edges of M share a vertex. A
matching M is perfect if every vertex is incident with exactly one edge of M . A matching
is near perfect if all but one of the vertices of G are incident with edges of the matching. A
graph G of even order v is called t-extendable if it contains at least one perfect matching,
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t < v/2 and any matching of size t is contained in some perfect matching. Graphs that are
1-extendable are also called matching covered (see Lovász and Plummer [28, page 113]).
A graph G of odd order v is called t-near-extendable (or t1

2
-extendable in the notation

of Yu [39]) if it contains at least one near perfect matching, t < (v − 1)/2 and for every
vertex x, any matching of size t that does not cover x, is contained in some near perfect
matching that misses x. Graphs that are 0-near-extendable are also called factor-critical
or hypomatchable (see Lovász and Plummer [28, page 89]). The extendability of a graph
G of even order is defined as the maximum t < v/2 such that G is t-extendable; in
this case, we say that the graph G precisely t-extendable. The near-extendability of a
graph G of odd order is the largest t < (v − 1)/2 such that G is t-near-extendable; in
this case, we say that G is precisely t-near-extendable. In this paper, we will use the
terms extendability and (precisely) t-extendable for graphs of even order and the terms
near-extendability and (precisely) t-near-extendable for graphs of odd order.

Motivated among other things by work of Lovász [26] on canonical decomposition of
graphs containing perfect matchings, the notion of extendability was introduced in 1980
by Plummer [32] for graphs of even order, was later extended to graphs of odd order by
Yu [39] and has attracted a lot of attention (see the surveys [33, 34], the book [40] and the
references therein). Zhang and Zhang [41] obtained an O(mn) algorithm for determining
the extendability of a bipartite graph G of order n and size m. At the present time, the
complexity of determining the extendability of a non-bipartite graph is unknown.

A graph G is strongly regular with parameters v, k, λ and µ (shorthanded (v, k, λ, µ)-
srg from now on) if it has v vertices, is k-regular, any two adjacent vertices have exactly λ
common neighbors and any two non-adjacent vertices have exactly µ common neighbors.
The study of strongly regular graphs lies at the intersection of graph theory, algebra and
finite geometry [5, 7, 9, 11, 12, 24, 37] and has important applications in coding theory and
computer science among others [13, 36]. A strongly regular graph is called imprimitive
if it, or its complement, is disconnected. An imprimitive strongly regular graph is a
disjoint union of cliques of the same order or a complete multipartite regular graph. The
extendabilities of such graphs are easy to determine (see Subsection 3.1).

In this paper, we study the extendability of primitive strongly regular graphs. Brouwer
and Mesner [10] proved that the vertex-connectivity of any connected strongly regular
graph equals its valency. Plesńık [31] (or [27, Chapter 7, Problem 30]) showed that if G
is a k-regular and (k − 1)-edge-connected graph with an even number of vertices, then
the graph obtained by removing any k − 1 edges of G, contains a perfect matching. It
follows that every connected strongly regular graph is 1-extendable. Holton and Lou [25]
showed that strongly regular graphs with certain connectivity properties are 2-extendable
and conjectured that all but a few strongly regular graphs are 2-extendable. Lou and
Zhu [29] proved this conjecture and showed that every connected strongly regular graph
of valency k > 3 is 2-extendable with the exception of the complete 3-partite graph K2,2,2

(the (6, 4, 2, 4)-srg) and the Petersen graph (the (10, 3, 0, 1)-srg). Another result worth
mentioning is that any vertex-transitive graph is 1-extendable or 0-near-extendable (see
[24, Theorem 3.5.1] or [28, Theorem 5.5.24]). For other results involving the extendability
of vertex or edge-transitive graphs (with large cyclic connectivity) see Aldred, Holton
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and Lou [1]. Many strongly regular graphs have trivial automorphism groups and our
techniques are different than the ones used for vertex-transitive graphs.

In this paper, we show that every connected (v, k, λ, µ)-srg of valency k > 5 is 3-
extendable with exception of the complete 4-partite graph K2,2,2,2 (the (8, 6, 4, 6)-srg), the
complement of the Petersen graph (the (10, 6, 3, 4)-srg) and the Shrikhande graph (one
of the two (16, 6, 2, 2)-srgs). We also prove that any connected (v, k, λ, µ)-srg with λ > 1
is bk/3c-extendable when µ 6 k/2 and dk+1

4
e-extendable when µ > k/2. This result

is close to being best possible as we will prove that many connected strongly regular
graphs with valency k, λ > 1 are not dk/2e-extendable. On the other hand, we also
determine the extendability of many families of strongly regular graphs including Latin
square graphs, block graphs of Steiner systems, triangular graphs, lattice graphs and
all known triangle-free strongly regular graphs. For each graph of valency k that we
considered, the extendability is at least dk/2e − 1. We conjecture that this is true for
all primitive strongly regular graphs. We also obtain similar results for strongly regular
graphs of odd order.

2 Main tools

In this section, we introduce the notation used in our paper and describe the main tools
used in our proofs. For undefined terms, see Brouwer and Haemers [7]. Let o(G) denote
the number of components of odd order of a graph G. If S is a subset of vertices of G, then
G−S denotes the subgraph of G obtained by deleting the vertices in S. The independence
number of G will be denoted by α(G). If S and T are vertex disjoint subsets of a graph,
let e(S, T ) denote the number of edges with one endpoint in S and the other in T . Let
N(T ) denote the set of vertices outside T that are adjacent to at least one vertex of T .
When T = {x}, let N(x) = N({x}). If x is a vertex of a strongly regular graph G, let
N2(x) = V (G) \ ({x} ∪ N(x)); the first subconstituent Γ1(x) of x is the subgraph of G
induced by N(x) and the second subconstituent Γ2(x) of x is the subgraph of G induced
by N2(x). For a (v, k, λ, µ)-srg G, let k = θ1 > θ2 > . . . > θv denote the eigenvalues of its
adjacency matrix. It is known that G has exactly three distinct eigenvalues k, θ2 and θv
with θ2 +θv = λ−µ and θ2θv = µ−k (see [7, 24] for example). The complete multipartite
graph which is the complement of m disjoint copies of Ka will be denoted by Ka×m.

Theorem 1 (Tutte [38]). A graph G has a perfect matching if and only if o(G−S) 6 |S|
for every S ⊂ V (G).

Theorem 2 (Gallai [23]). A graph G is factor-critical (or 0-near-extendable) if and only
if G has an odd number of vertices and o(G− S) 6 |S| for all ∅ 6= S ⊂ V (G).

Using the above theorems, Yu [39] obtained the following characterizations of graphs
that are not t-extendable (resp. not t-near-extendable).

Lemma 3 (Yu [39]). Let t > 1 be an integer and G be a graph containing a perfect
matching. The graph G is not t-extendable if and only if it contains a subset of vertices
S such that S contains t independent edges and o(G− S) > |S| − 2t+ 2.
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Lemma 4 (Yu [39]). Let t > 1 be an integer and G be a factor-critical graph. The graph
G is not t-near-extendable if and only if it contains a subset of vertices S such that S
contains t independent edges, |S| > 2t+ 1, and o(G− S) > |S| − 2t+ 1.

Theorem 5 (Brouwer and Mesner [10]). If G is a primitive strongly regular graph of
valency k, then G is k-connected. Any disconnecting set of size k must be the neighborhood
of some vertex.

Lemma 6. If G is a distance-regular graph of degree k > 2 and diameter D > 3, then
for any x ∈ V (G), the subgraph induced by the vertices at distance 2 or more from x, is
connected.

Proof. As D > 3, G contains an induced path P4 with 4 vertices. By eigenvalue interlac-
ing, the second largest eigenvalue θ2(G) of G, is at least θ2(P4) = −1+

√
5

2
> 0. Cioabă and

Koolen [17] proved that if the i-th entry of the standard sequence corresponding to the
second largest eigenvalue of a distance-regular graph G is positive, then for any vertex x,
the subgraph of G induced by the vertices at distance at least i from x is connected. The
second entry of the standard sequence corresponding to θ2(G) is θ2(G)/k > 0 and this
finishes our proof.

Lemma 7. Let G be a (v, k, λ, µ)-srg with λ > 1. If T is an independent set, then
|N(T )| > 2|T |.

Proof. For any x ∈ N(T ), N(x)∩T is an independent set in the subgraph Γ1(x) which is
induced by N(x). Γ1(x) is λ-regular. Consider the edges in Γ1(x). By counting the edges
coming out of N(x) ∩ T , we get that |N(x) ∩ T |λ 6 kλ/2 and thus, |N(x) ∩ T | 6 k/2.
Therefore, |T |k = e(T,N(T )) =

∑
x∈N(T ) |N(x) ∩ T | 6 |N(T )|k/2 implying |N(T )| >

2|T |.

Lemma 8. Let G be a (v, k, λ, µ)-srg. If T is an independent set, then

|N(T )| > k2|T |
k + |T |µ− µ

. (1)

Proof. For x ∈ N(T ), let dx = |T ∩N(x)| and d̄ =
∑

x∈N(T ) dx

|N(T )| . Counting the edges between

T and N(T ), we have |T |k = |N(T )|d̄. Counting the 3-subsets of the form {x, y, z} such
that x, y ∈ T, z ∈ N(T ), x ∼ z, y ∼ z, we get that(

|T |
2

)
µ =

∑
x∈N(T )

(
dx
2

)
> |N(T )|

(
d̄

2

)
(2)

Combining these equations, we obtain that (|T | − 1)µ > k
(

k|T |
|N(T )| − 1

)
which implies the

desired inequality |N(T )| > k2|T |
k+|T |µ−µ .
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Note that the result of Lemma 8 is better than the one obtained by applying Bonfer-
roni’s inequality |N(T )| = |∪x∈TN(x)| >

∑
x∈T |N(x)|−

∑
x 6=y∈T |N(x)∩N(y)| = kt−µ

(
t
2

)
when t > 1 + k/µ.

Lemma 9. Let G be a primitive (v, k, λ, µ)-srg with λ > 1. If T is an independent set,
then

|N(T )| − |T | >

{
k − 1 if 1 6 |T | 6 (k−µ)(k−1)

µ
or if |T | > k − 1.

(k−2)[k(k−1)−(k−3)µ]
(k−3)µ+k otherwise.

(3)

Proof. Define f(x) = k2x
µx+k−µ − x for x > 1. Note that f(1) = f

(
(k−µ)(k−1)

µ

)
= k − 1 and

that f ′(x) = k2(k−µ)
(µx+k−µ)2−1. Hence, x0 = k

√
k−µ−(k−µ)

µ
is the only critical point of f(x). Since

k−µ > 1, we deduce that 1 < x0 <
(k−µ)(k−1)

µ
. Also, f ′(x) > 0 for x ∈ [1, x0) and f ′(x) < 0

for x > x0. This implies that |N(T )| − |T | > f(|T |) > f(1) = f
(

(k−µ)(k−1)
µ

)
= k − 1

whenever 1 6 |T | 6 (k−µ)(k−1)
µ

. If |T | > k−1, Lemma 7 implies that |N(T )|− |T | > |T | >
k − 1. If (k−µ)(k−1)

µ
< |T | 6 k − 2, then the previous arguments and Lemma 8 imply that

|N(T )| − |T | > f(|T |) > f(k − 2) = (k−2)[k(k−1)−(k−3)µ]
(k−3)µ+k .

Note that if λ > 1 and µ 6 k/2, then Lemma 9 implies that

|N(T )| − |T | > k − 1 (4)

for any independent set of vertices T .

Lemma 10 (Lemma 2.3 [16]). Let G be a connected (v, k, λ, µ)-srg. Let S be a disconnect-
ing set of vertices of G and denote by A a subset of vertices of G that induces a connected
subgraph of G− S and B := V (G) \ (A ∪ S). If |A| = a and |B| = b, then

|S| > 4abµ

(λ− µ)2 + 4(k − µ)
. (5)

The following lemma extends Theorem 5.1 of [18].

Lemma 11. Let G be a primitive (v, k, λ, µ)-srg. If A is a subset of vertices with 3 6
|A| 6 v/2 and Ac denotes its complement, then

e(A,Ac) > 3k − 6. (6)

Proof. If k = 3, then G is K3,3 or the Petersen graph. If G is K3,3, the proof is immediate.
If G is the Petersen graph, and A is a subset of vertices with 3 6 |A| 6 4, then the number
of edges contained in A is at most |A| − 1 and therefore e(A,Ac) > 3|A| − 2(|A| − 1) =
|A|+2 > 5. If |A| = 5, then the number of edges inside A is at most |A| = 5 and therefore
e(A,Ac) > 3|A| − 2|A| = |A| = 5. If k = 4, then G is K4,4, K2,2,2 or the Lattice graph
L2(3) which is the unique (9, 4, 1, 2)-SRG. If G is K4,4 or K2,2,2, the proof is immediate. If
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G is the Lattice graph L2(3), and A is a subset of vertices with |A| = 3, then e(A,Ac) > 6
with equality if and only if A induces a clique of order 3. If |A| = 4, then the number of
edges contained in A is at most 4 and therefore, e(A,Ac) > 4|A| − 8 = 8.

Assume k > 5. If |A| 6 k − 2, then e(A,Ac) > |A|(k − |A| + 1) > 3(k − 2). Assume
|A| = k−1. If every vertex ofA has at least 3 neighbors outsideA, then e(A,Ac) > 3(k−1).
Otherwise, there exists a vertex x ∈ A that has exactly 2 neighbors outside A. Therefore,
e(N(x) ∩ Ac, A) > 2 + 2(λ − 1) = 2λ. Each vertex in N(x) has k − λ − 1 neighbors
outside {x}∪N(x). Thus, e(N(x)∩A, V (G)\ (N(x)∪{x})) > (k− 2)(k−λ− 1). Hence,
e(A,Ac) > (k − 2)(k − λ− 1) + 2λ > 3(k − 2) since λ 6 k − 2.

If k 6 |A| 6 v/2, then e(A,Ac) > (k−θ2)|A|(v−|A|)
v

> (k−θ2)k
2

(see [7, Corollary 4.8.4]
or [30]). If G is a conference graph of parameters (4t + 1, 2t, t − 1, t), then k − θ2 =
4t+1−

√
4t+1

2
> 6 for t > 4 and consequently, e(A,Ac) > 3k. If t = 3, G has parameters

(13, 6, 2, 3) and therefore, e(A,Ac) > (k−θ2)|A|(v−|A|)
v

> (13−
√
13)|A|(13−|A|)
2·13 > 12. If G is not

a conference graph and k − θ2 > 6, then e(A,Ac) > 3k and we are done again. The
only case left is when G is not a conference graph and k − θ2 6 5. In this case, the
eigenvalues of G are integers, θ2 > k − 5 and θv 6 −2 as G is not a complete graph.
Since k − 1 > k − µ = θ2(−θv) > 2k − 10, we get 5 6 k 6 9. If θv = −2, then by
Seidel’s characterization of strongly regular graphs with minimum eigenvalue −2 (see [7,
Section 9.2] or [35]), there are three cases to consider. If G is a (16, 6, 2, 2)-srg, then

its second largest eigenvalue is 2 and e(A,Ac) > (k−θ2)|A|(v−|A|)
v

= |A|(16−|A|)
4

> 15 for
k = 6 6 |A| 6 8 = v/2. If G is a (15, 8, 4, 4)-srg, then since k > v/2, |A| 6 k − 1 and
e(A,Ac) > 3k − 6 by a previous case. If G is a (25, 8, 3, 2)-srg, then its second largest

eigenvalue is 3 and e(A,Ac) > (k−θ2)|A|(v−|A|)
v

= |A|(25−|A|)
5

> 24 for k = 8 6 |A| 6 12 =
bv/2c. If θv 6 −3, then we obtain k − 1 > k − µ = θ2(−θv) > 3k − 15 which implies
5 6 k 6 7. If k = 5, then G is a (16, 5, 0, 2)-srg whose second largest eigenvalue is 1. Thus,

e(A,Ac) > (k−θ2)|A|(v−|A|)
v

= |A|(16−|A|)
4

> 13 for k = 5 6 |A| 6 8 = bv/2c. If k = 6, then G

is a (15, 6, 1, 3)-srg whose second largest eigenvalue is 1. Thus, e(A,Ac) > (k−θ2)|A|(v−|A|)
v

=
|A|(15−|A|)

3
> 18 for k = 6 6 |A| 6 7 = bv/2c. If k = 7, then G is a (50, 7, 0, 1)-srg whose

second largest eigenvalue is 2. Therefore, e(A,Ac) > (k−θ2)|A|(v−|A|)
v

= |A|(50−|A|)
10

> 28 for
k = 7 6 |A| 6 25 = v/2. This finishes our proof.

Lemma 12. If G is a (v, k, λ, µ)-srg of even order with independence number 2, then the
extendability of G is dk

2
e − 1.

Proof. The fact that the extendability is at least dk
2
e − 1 follows from Lemma 3. If G

is imprimitive, then G must be K2×m for some m and the conclusion will follow from
Section 3.1. Assume that G is primitive and α(G) = 2. For any vertex x ∈ V , let
N2(x) = V (G) \ ({x} ∪ N(x)). The second subconstituent Γ2(x) must be a complete
graph with k− µ+ 1 vertices. As the clique number is at most λ+ 2, we have θ2(−θv) =
k − µ 6 λ + 1. Since θv 6 −2, we obtain that θ2 6 λ+1

2
6 λ− 1 (when λ > 3). The first

subconstituent Γ1(x) is λ-regular with second largest eigenvalue at most θ2. By [15], Γ1(x)
contains a matching of size bk/2c. If k is even, then this matching cannot be extended to
a maximum matching of G. If k is odd, one can add one disjoint edge to this matching
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such that the result matching of size dk
2
e cannot be extended to a maximum matching of

G. It is easy to see that when λ is 1 or 2, Γ1(x) contains a perfect matching or an almost
perfect matching.

Lemma 13. If G is a primitive (v, k, λ, µ)-srg of even order with independence number

α(G) > 3, then the extendability of G is at least dk+3
2
− α(G)

2
e−1 > dk+3

2
− v

2(1+k/(−θv))e−1.

Proof. Let t = dk+3
2
− α(G)

2
e − 1. Assume that G is not t-extendable. By Lemma 3,

there is a vertex disconnecting set S containing t independent edges, such that o(G −
S) > |S| − 2t + 2 > k − 2t + 2 > 3. Because G is primitive, Theorem 5 implies that
|S| > k + 1. Thus, α(G) > o(G − S) > |S| − 2t + 2 > k − 2t + 3, contradiction with

t = dk+3
2
− α(G)

2
e−1. The second part follows from the Hoffman-ratio bound [6, 24] stating

that α(G) 6 v
1+k/(−θv) .

Lemma 14. If G is a (v, k, λ, µ)-srg with λ = 0, then v > 3α(G) except when G is the
Petersen graph.

Proof. The Hoffman-ratio bound [6, 24] states that α(G) 6 v
1+k/(−θv) . As θ2(−θv) =

k − µ < k, when θ2 > 2, we have k/(−θv) > 2, thus α(G) < v/3. If θ2 = 1, then
θv = µ − k and −µ = λ − µ = θ2 + θv = 1 + µ − k. Thus, k = 2µ + 1 and v =
1 + k + k(k − 1)/µ = 3k + 1 = 6µ + 4. Let f be the multiplicity of θ2 and g be the
multiplicity of θv. We have 1 + f + g = v and k + f + (µ − k)g = 0 and therefore,
v = 1− k+ (k− µ+ 1)g. Hence, g = 8µ+4

µ+2
= 8− 12

µ+2
. As g is an integer, µ ∈ {1, 2, 4, 10}.

When µ = 4 or 10, we get v > g(g + 3)/2, which is impossible by Seidel’s absolute
bound (see [7, Section 9.1.8] or [19]). When µ = 1, G must be the Petersen graph, where
α(G) = 4 and v = 10 6 3α(G) = 12. Finally, when µ = 2, G is the (16, 5, 0, 2)-srg, where
16 = v > 3α(G) = 15.

Lemma 15. Let G be a (v, k, λ, µ)-srg with v even, λ = 0 and k > 7. If A is a subset of
vertices such that 5 6 |A| 6 v − k − 1 and |A| is odd, then e(A,Ac) > 5k − 12.

Proof. Assume that 5 6 |A| 6 2k−5. As G is triangle-free, so is the subgraph induced by

A. By Turán’s Theorem, the number of edges inside A is at most |A|
2−1
4

. So, e(A) 6 |A|2−1
4

and e(A,Ac) = k|A| − 2e(A) > k|A| − |A|2−1
2

. The minimum is attained at |A| = 5 or
2k − 5. In either case, we have e(A,Ac) > 5k − 12.

Assume that 2k−3 6 |A| 6 v/2. We have e(A,Ac) > (k−θ2)|A|(v−|A|)
v

> (k−θ2)(2k−3)
2

(see
[7, Corollary 4.8.4] or [30]). Since θ2(−θv) = k − µ 6 k − 1 and θv 6 −3 when k > 7, we

have θ2 6 k−1
3

and k − θ2 > 2k+1
3

. So, when k > 7, k − θ2 > 5 and e(A,Ac) > 5(2k−3)
2

>
5k − 12.

Assume that v/2 < |A| 6 v − k − 1. It is equivalent to that k + 1 6 |Ac| < v/2. We
can apply the same argument to Ac and show that e(A,Ac) > 5k − 12.

Lemma 16. Let G be a primitive (v, k, λ, µ)-srg and S be a disconnecting set of vertices.
If G − S contains at least two singleton components, then S contains at least µ(k − µ)
edges.
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Proof. Let x and y be two singleton components of G − S. Then N(x) ∪ N(y) ⊆ S. If
z ∈ N(x) \ N(y), then z and y are non adjacent and they have exactly µ common. So,
z is adjacent to at least µ vertices of S, and there are |N(x) \N(y)| = k − µ such z. By
the same argument, each vertex inside N(y) \N(x) is adjacent to at least µ vertices of S.
Thus, 2e(S) > 2µ(k − µ).

3 The extendability of strongly regular graphs

3.1 Imprimitive strongly regular graphs

A strongly regular graph is imprimitive if it, or its complement, is disconnected. The
only imprimitive strongly regular graphs are disjoint unions of cliques of the same order
and their complements (complete multipartite regular graphs). A disjoint union mKa of
some number m > 2 of cliques Ka does not contain a perfect matching nor a near perfect
matching if a is odd. If a is even, the extendability of this graph is am/2 − 1. The
complete multipartite graph Ka×m (which is the complement of mKa) has extendability

am/2−1 if m = 2. When m > 3, if am is even, the extendability of Ka×m is a(m−2)
2

= k−a
2

and if am is odd, the near-extendability of Ka×m is a(m−2)−1
2

= bk−a
2
c.

3.2 Lower bounds for the extendability of strongly regular graphs

In this section, we classify the primitive strongly regular graphs of even order that are
not 3-extendable. We first provide results giving some general lower bounds for the
extendability of a primitive strongly regular graphs.

Theorem 17. If G is a (v, k, λ, µ)-srg with v even and k/2 < µ < k and α(G) > 3, then

the extendability of G is at least max
(
dk+3

2
− 3k−2λ−3

2(2θ2+1)
e − 1, dλ/2 + 1e

)
.

Proof. Since µ > k/2, we get that v = 1 + k + k(k − λ − 1)/µ < 3k − 2λ − 1. Also,
µ > k/2 implies that G has integer eigenvalues and θ2(−θv) = k − µ < k/2. By the
Hoffman-ratio bound [6, 24], α(G) 6 v

1+k/(−θv) <
v

1+2θ2
. Combining these inequalities,

we get that α(G) 6 3k−2λ−3
1+2θ2

. The second subconstituent Γ2(x) is connected (see [7,

Proposition 9.3.1]) and |N2(x)| = k(k−λ− 1)/µ < 2(k−λ− 1). Thus, α(G) 6 1 + |N2(x)|
2

which implies α(G) 6 k − λ − 1. By Lemma 13, the extendability of G is at least

max
(
dk+3

2
− 3k−2λ−3

2(2θ2+1)
e − 1, dλ/2 + 1e

)
.

Note that the bounds in Theorem 17 are incomparable. When θ2 = 1, the first bound
gives us dλ/3 + 1e and the second bound dλ/2 + 1e is better. On the other hand, when
λ = k/2 and θ2 > 2, the first bound gives us d3k/10 + 4/5e which is better than the
second bound dk/4 + 1e. There exist strongly regular graphs with λ = k/2 and θ2 > 2,
for example, the (36, 20, 10, 12)-srg.

Corollary 18. Any primitive (v, k, λ, µ)-srg with v even, µ > k/2 and k > 8 is 3-
extendable.
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Proof. If θ2 > 2, then θv = µ−k
θ2

> −k/4 as µ > k/2. Thus, λ = µ+θ2+θv > k/2+2−k/4 =

k/4+2. By Theorem 17, the extendability is at least d2k+2λ+8
10
e > dk/4+1.2e > 4 for k > 8.

If θ2 = 1, we will show that λ > k−3
2

. The second bound in Theorem 17 will then imply
the extendability is at least dk+1

4
e > 3. Since θ2 = 1, then −θv = k − µ, 1 + θv = λ − µ

and consequently, λ = 2µ + 1 − k and v = 1 + k + k(k−λ−1)
µ

= 1 + k + 2k(k−µ−1)
µ

. If

3k/4 6 µ < k, then λ > k/2 + 1 > k−3
2

. Otherwise, assume that k/2 < µ < 3k/4, and
let f be the multiplicity of θ2 and g be the multiplicity of θv. We have 1 + f + g = v
and k + f + (µ − k)g = 0 and therefore, 1 − k + (k − µ + 1)g = v = 1 + k + 2k(k−µ−1)

µ
.

Hence, 2(k − 1)k = g(k − µ+ 1)µ > g(1 + k/4)(3k/4) (as (k − µ+ 1)µ attains minimum

at µ = 3k/4) and g < 32(k−1)
3(k+4)

< 11. Thus, g 6 10. By Seidel’s absolute bound (see [7,

Section 9.1.8] or [19]), v < g(g+3)
2

6 65. We checked all the possible parameter sets of
strongly regular graphs with v even and θ2 = 1 from the list [4]. All of them have the
property that λ > k−3

2
, and there is exactly one parameter set which attains the equality.

It is the (28, 15, 6, 10) and there are 4 such strongly regular graphs, the triangular graph
T (8) and the three Chang graphs (see Brouwer’s list [4] or [7, page 123]).

Note that Chen [14] proved that every (2t+ n− 2)-connected K1,n-free graph of even
order is t-extendable (see also Aldred and Plummer [2] for extensions of Chen’s result).
When λ > 1, every (v, k, λ, µ)-srg is k-connected and K1,bk/2c+1-free. If we let t = b1

2
dk+2

2
ec

and n = bk/2c+1, then Chen’s result implies that such strongly regular graph is b1
2
dk+2

2
ec-

extendable. This is the same as our result when θ2 = 1, µ > k/2 and λ 6 k−3
2

. For other
cases, our lower bound is better than Chen’s result. Note that Chen’s bound can be
improved if one has a better bound than k/2 for the independence number of the first
subconstituents of the strongly regular graph.

Theorem 19. Let G be a primitive (v, k, λ, µ)-srg with v even and λ > 1. If µ 6 k/2,
then G is n-extendable, where n = dk2−k−3

3k−7 e − 1.

Proof. If G is not n-extendable, by Lemma 3, there is a vertex set S with s vertices such
that S contains n independent edges, and G−S has at least s− 2n+ 2 odd components.
Let O1, O2, . . . , Or be all the odd components of G − S, with r > s − 2n + 2. Let a > 0
denote the number singleton components among O1, . . . , Or. Counting the number of
edges between S and O1 ∪ · · · ∪Or and using Lemma 11, we get the following

ks− 2n > e(S,O1 ∪ · · · ∪Or) > ak+ (r− a)(3k− 6) > ak+ (s− 2n+ 2− a)(3k− 6). (7)

This inequality is equivalent to

n >
(k − 3)(s− a) + 3k − 6

3k − 7
(8)

and since s− a > k − 1 (see the remark following Lemma 9), we obtain that

n >
(k − 3)(k − 1) + 3k − 6

3k − 7
=
k2 − k − 3

3k − 7
. (9)

This is a contradiction with n = dk2−k−3
3k−7 e − 1 < k2−k−3

3k−7 .
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Corollary 20. Any primitive (v, k, λ, µ)-srg with v even, λ > 1 and k > 8 is 3-extendable.

Proof. Note that dk2−k−3
3k−7 e − 1 = bk/3c if k ≡ 0, 1 (mod 3) and bk/3c + 1, otherwise.

Corollary 18 and Theorem 19 imply that any primitive (v, k, λ, µ)-srg with λ > 1 and
k > 8 is 3-extendable.

Theorem 21. Any primitive (v, k, λ, µ)-srg with v even, λ = 0 and k > 8 is 3-extendable.

Proof. We show that G is 3-extendable by contradiction. Assume that G is not 3-
extendable. Lemma 3 implies that G has a vertex subset S, such that S contains 3
independent edges, and o(G − S) > |S| − 4. Let S be such disconnecting set with max-
imum size. We first claim that any non-singleton component of G − S cannot induce a
bipartite graph. If that was the case, the respective component would have two parti-
tions X and Y . Assume that |X| > |Y |, then define S ′ = S ∪ Y . Then |S ′| > |S| and
o(G−S ′) > |S ′|−4, contradicting the maximality of |S|. Note that G−S cannot contain
exactly 3 vertices, because G is triangle free and any component with 3 vertices must be
a path, which is bipartite. By similar argument, G − S contains no even components.
If it contains a even component, we can put one vertex of this even component into S,
which make |S| larger and S still satisfy o(G − S) > |S| − 4. But it contradicts to the
maximality of |S|. Let O1, O2, . . . , Or be all the odd components of G− S. If G− S has
only singleton components, then α(G) > o(G − S) > |S| − 4 > v − α(G) − 4. Thus,
3α(G) < v 6 2α(G) + 4 and k 6 α(G) < 4, which contradicts to k > 8. If G − S has
at most one singleton component, as o(G − S) > |S| − 4 > 3, G − S has at least two
non-singleton components, thus |S| > k + 1. By using Lemma 15 and counting the edges
between S and O1 ∪ · · · ∪Or, we will get the following,

k|S| − 6 > e(S,O1 ∪ · · · ∪Or) > k + (|S| − 5)(5k − 12)

which implies that
12k − 33 > (2k − 6)|S| > (2k − 6)(k + 1).

Thus, 2k2 − 16k + 27 6 0, contradiction with k > 8.
If G − S has at least one non-singleton components and at least two singleton com-

ponents, by using Lemma 15 and Lemma 16 and counting the edges between S and
O1 ∪ · · · ∪Or, we will get that

k|S|−2(k−1) > k|S|−2µ(k−µ) > k|S|−2e(S) > e(S,O1∪· · ·∪Or) > 5k−12+(|S|−5)k

which will yield another contradiction with k > 8.

Note that this theorem covers all known primitive triangle-free strongly regular graph
with even order with precisely three exceptions. These are the Petersen graph, which is
the unique (10, 3, 0, 1)-srg (and has extendability 1 as shown in [29]), the folded 5-cube,
which is the unique (16, 5, 0, 2)-srg (and has extendability 3; see Theorem 32) and the
Hoffman-Singleton graph, which is the unique (50, 7, 0, 1)-srg (and has extendability 5;
see Theorem 33).
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Corollary 22. Let G be a primitive (v, k, λ, µ)-srg with v even and k > 5. Then G
is 3-extendable unless G is the complete 4-partite graph K2,2,2,2 (the (8, 6, 4, 6)-srg), the
complement of the Petersen graph (the (10, 6, 3, 4)-srg) or the Shrikhande graph (one of
the two (16, 6, 2, 2)-srgs).

Proof. If k > 8, then G is 3-extendable by Corollary 20 and Theorem 21. There are two
primitive parameter sets with v even, λ > 1 and 5 6 k 6 7: (10, 6, 3, 4) and (16, 6, 2, 2).
There is a unique (10, 6, 3, 4)-srg, the complement of Petersen graph or the triangular
graph T (5). Theorem 24 will show that the extendability of this graph is 2. There are
two non-isomorphic strongly regular graphs with parameter set (16, 6, 2, 2). One is the
Shrikhande graph (see [7, page 123] for a description) and the other is the line graph of
K4,4. In the Shrikhande graph, the first subconstituent of a fixed vertex is isomorphic
to the cycle C6 and thus, contains a matching of size 3. This matching is not contained
in any perfect matching. Thus, the Shrikhande graph is not 3-extendable; by Lou and
Zhu [29], the extendability of the Shrikhande graph is 2. Proposition 30 will show that
the extendability of the line graph of K4,4 is 3. To finish the proof, the only strongly
regular graph with 5 6 k 6 7 and λ = 0 is the folded 5-cube whose extendability is 3 (see
Theorem 32).

By a more extensive case analysis which we omit here, we can show that a primitive
strongly regular graph of even order and valency k > 9 is 4-extendable. Similarly, we
can show that every strongly regular graph of odd order and valency k > 3 is 1-near-
extendable. Also, there is exactly one primitive strongly regular graph with k > 3 which
is not 2-near-extendable, namely the Paley graph on 9 vertices (the unique (9, 4, 1, 2)-srg).

4 The extendability of some specific strongly regular

graphs

In this section, we determine the extendability of several families of strongly regular
graphs. In the first three subsections, we show that there are many strongly regular
graphs with extendability equal or slightly larger than dk/2e − 1. In the last subsection,
we show that the extendability of any known triangle-free strongly regular graph of even
order and valency k equals k − 2.

The reason that the graphs considered in the next three subsections (except for the
graphs in Theorem 30) are not dk/2e-extendable (when v is even) or not k/2-near-
extendable (when v is odd) is the following. Consider the first subconstituent Γ1(x)
of any fixed vertex x; this is the subgraph induced by N(x). If v is even, we will show
that Γ1(x) has a matching of size k/2 if k is even and of size (k−1)/2 if k is odd. When k
is odd, there is one vertex y not covered by the matching of size (k− 1)/2 and we choose
a vertex z not adjacent to x such that z is adjacent with y. In each case, we construct
a matching of size dk

2
e that cannot be contained in a perfect matching since its removal

leaves x isolated. If v is odd, then k is even. We will show that Γ1(x) has a matching of
size k/2. Choose a vertex y ∈ N2(x). The matching of size k/2 in Γ1(x) does not cover y.
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Thus, we construct a matching that cannot be contained in a near perfect matching that
misses y since the removal of N(x)∪ {y} leaves x isolated. We will also use the following
lemma.

Lemma 23. Let G be a graph of order am whose vertex set can be partitioned into m
subsets, A1, A2, . . . , Am with equal size a, such that for 1 6 i 6 m, Ai induce a clique, and
the graph obtained by vertex contracting each Ai contains a perfect matching (when m is
even) or a near perfect matching (when m is odd). Then G contains a perfect matching
if am is even, and G contains a near perfect matching if am is odd.

Proof. If a is even, the lemma is obvious. If a is odd and m is even, we can find a matching
u1u2, · · · , um−1um such that ui ∈ Ai for 1 6 i 6 m. Now, each subgraph induced by Ai\ui
contain a perfect matching. Thus G contains a perfect matching. If a is odd and m is
odd, we can find a matching u1u2, · · · , um−2um−1 such that ui ∈ Ai for 1 6 i 6 m − 1.
Now, each subgraph induced by Ai \ ui contain a perfect matching for 1 6 i 6 m− 1 and
Am contains a near perfect matching. Thus G contains a near perfect matching.

4.1 Triangular graphs

The triangular graph T (m) is the line graph of the complete graph Km; its vertices are
the 2-subsets of [m] := {1, . . . ,m} and {u, v} ∼ {x, y} if and only if |{u, v} ∩ {x, y}| = 1.
The triangular graph T (m) is an (

(
m
2

)
, 2(m− 2),m− 2, 4)-srg.

Theorem 24. Let m be an integer such that m > 4 and
(
m
2

)
is even. The extendability

of T (m) is k/2− 1 = m− 3.

Proof. The subgraph induced by N({1, 2}) contains a perfect matching.
Take {({1, i}, {2, i})|3 6 i 6 m} for example. By the observation at the beginning of
Section 4, this shows that T (m) is not (m− 2)-extendable.

Assume that T (m) is not (m−3)-extendable. By Lemma 3, there is a subset of vertices
S such that S contains m− 3 independent edges and r = o(G− S) > |S| − 2(m− 3) + 2.
Let O1, O2, . . . , Or be the odd components of G − S. Denote by Pi the union of the 2-
subsets corresponding to the vertices of Oi, for 1 6 i 6 r. If r 6 3, then by Theorem 5,
|S| > 2(m − 2) and therefore, 3 > o(G − S) > |S| − 2(m − 3) + 2 > 4, contradiction. If
r > 4, then since P1, P2, . . . , Pr are disjoint subsets of [m], and |Pi| > 2, we have m > 8.
There exists two odd components, say O1, O2, such that 3 6 |P1 ∪ P2| 6 m− 3. We have
{{u, v} | u ∈ P1 ∪ P2, v ∈ [m] − (P1 ∪ P2)} ⊂ N(O1 ∪ O2) ⊂ S. Thus |S| > 3(m − 3).
On the other hand, as 2r 6 |P1| + |P2| + . . . + |Pr| 6 m, we have r 6 m/2. So,
m/2 > o(G− S) > |S| − 2(m− 3) + 2 > 3(m− 3)− 2(m− 3) + 2 = m− 1, contradiction
with m > 8.

Theorem 25. Let m be an integer such that m > 6 and
(
m
2

)
is odd. The near-extendability

of T (m) is k/2− 1 = m− 3.

Proof. By a similar argument as above, it is easy to see that T (m) is not (m − 2)-near-
extendable. Assume that T (m) is not (m− 3)-near-extendable. By Lemma 4, there is a
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subset of vertices S such that S contains m − 3 independent edges, |S| > 2(m − 3) + 1
and r = o(G − S) > |S| − 2(m − 3) + 1. If r = 2, then by Theorem 5, |S| > 2(m − 2)
and therefore, 2 = o(G − S) > |S| − 2(m − 3) + 1 > 3, contradiction. If r = 3, S is
not the neighborhood of some vertex. By Theorem 5, |S| > 2(m− 2) + 1, and therefore,
3 = o(G− S) > |S| − 2(m− 3) + 1 > 4, contradiction. The rest of the proof is similar to
the proof of Theorem 24.

4.2 Block graphs of Steiner systems

A 2-(n,K, 1)-design or a Steiner K-system is a point-block incidence structure on n points
such that each block has K points and any two distinct points are contained in exactly
one block. The block graph of such a Steiner system has as vertices the blocks and two
distinct blocks are adjacent if they intersect. The block graph of a Steiner K-system is a(
n(n−1)
K(K−1) ,

K(n−K)
K−1 , (K − 1)2 + n−1

K−1 − 2, K2
)

-srg.

Theorem 26. Let G be the block graph of a Steiner K-system on n points such that
n(n−1)
K(K−1) is even. If K ∈ {3, 4} and n > K2 or K > 5 and n > 4K2 + 5K + 24 + 96

K−4 , the

extendability of G is dk/2e − 1, where k is the valency of G.

Proof. Let G be the block graph of a Steiner K-system, and let B denote the block
sets of the 2-(n,K, 1) design. Consider the neighborhood N({1, . . . , K}) of the vertex
{1, 2, . . . , K}. There is a partition of N({1, . . . , K}) into cliques, which is Ai =

{
b ∈ B |

b∩{1, 2, . . . , K} = {i}
}

for 1 6 i 6 K. For any Ai and Aj, there exist bi ∈ Ai and bj ∈ Aj
such that n ∈ bi and n ∈ bj. So, bi and bj are adjacent. The graph obtained by contracting
each Ai is a complete graph. By Lemma 23, the first subconstituent Γ1(x) contains a
perfect matching or a near perfect matching. There are dk/2e independent edges incident
with all N(x) and not incident with x. This implies G is not dk/2e-extendable.

Assume that G is not (dk/2e−1)-extendable. By Lemma 3, there is a subset of vertices
S such that S contains dk/2e− 1 independent edges and r = o(G− S) > |S| − 2(dk/2e−
1) + 2. Let O1, O2, . . . , Or be all the odd components of G− S, and Pi denote the union
of the blocks corresponding to the vertices of Oi, where 1 6 i 6 r. Since |Pi| > K and
Pi ∩ Pj = ∅ for i 6= j, we have that n > |P1|+ |P2|+ . . .+ |Pr| > Kr.

If r 6 2, then as |S| > k by Theorem 5, we get that 2 > o(G− S) > |S| − 2(dk/2e −
1) + 2 > k − 2dk/2e + 4 > 3, contradiction. Otherwise, if r > 3 and there exists two
singleton components among O1, . . . , Or, then |S| > 2k−µ. This implies that n/K > r >
|S|−2(dk/2e−1) + 2 > 2k−µ−2dk/2e+ 4 > k−µ+ 3 = K(n−K)

K−1 −K
2 + 3, contradiction

with K ∈ {3, 4} and n > K2, or K > 5 and n > 4K2 + 5K + 24 + 96
K−4 . Otherwise, if

there is at most one singleton component, then there are at least two non-singleton odd
components, say O1, O2. By the results in [18, Section 3], |S| > |N(O1)| > 2k − λ − 2.
As before, n/K > r > |S| − 2(dk/2e − 1) + 2 > 2k − λ − 2 − 2dk/2e + 4 > k − λ + 1 =
K(n−K)
K−1 − (K − 1)2 − n−1

K−1 + 3 = n−K2 +K + 1, contradiction.

Note that when K ∈ {3, 4} and n 6 K2, the block graph of Steiner K-system is either

a complete graph or a complete multipartite graph. If v = n(n−1)
K(K−1) is odd, then k = K(n−K)

K−1
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must be even. The proof of the next result is similar to the proof of Theorem 26 and will
be omitted.

Theorem 27. Let G be the block graph of a Steiner K-system on n points such that
n(n−1)
K(K−1) is odd. If K ∈ {3, 4} and n > K2 or K > 5 and n > 4K2 + 5K + 24 + 96

K−4 , the

near-extendability of G is k/2− 1, where k is the valency of G.

4.3 Latin square graphs

An orthogonal array OA(t, n) with parameters t and n is a t×n2 matrix with entries from
the set [n] = {1, . . . , n} such that the n2 ordered pairs defined by any two distinct rows
of the matrix are all distinct. It is known that an orthogonal array OA(t, n) is equivalent
to the existence of t − 2 mutually orthogonal Latin squares. Given an orthogonal array
OA(t, n), one can define a graph G as follows. The vertices of G are the n2 columns of the
orthogonal array and two distinct columns are adjacent if they have the same entry in one
coordinate position. The graph G is an (n2, t(n−1), n−2+(t−1)(t−2), t(t−1))-srg. Any
strongly regular graph with such parameters is called a Latin square graph (see [6, Section
9.1.12], [24, Section 10.4] or [37, Chapter 30]). When t = 2 and n 6= 4, such a graph must
be the line graph of Kn,n which is also the graph associated with an orthogonal array
OA(2, n) (see [7, page 123])

Theorem 28. Let n and t be two integers such that n is even and n > 2t > 6. If G is a
Latin square graph corresponding to an OA(t, n), then the extendability of G is dk/2e−1,
where k is the valency of G.

Proof. Let C denote the column set of the orthogonal array OA(t, n) corresponding to
G. Consider the neighborhood N(c1) of a column c1 = (c1(1), . . . , c1(t))

T of C. There is
a partition of N(c1) into cliques, which is Ai = {c ∈ C | c(i) = c1(i)} for 1 6 i 6 t. Let
l ∈ [n] such that l 6= c1(3). There exist c ∈ A1 such that c(3) = l and there is c′ ∈ A2

such that c′(3) = l. Thus c and c′ are adjacent. The graph obtained by contracting each
Ai is a complete graph. By Lemma 23 and the same argument in Theorem 26, we deduce
that G is not dk/2e-extendable.

Assume that G is not (dk/2e−1)-extendable. By Lemma 3, there is a subset of vertices
S such that S contains dk/2e− 1 independent edges and r = o(G− S) > |S| − 2(dk/2e−
1) + 2. Let O1, O2, . . . , Or be all the odd components of G− S.

If r 6 2, then as |S| > k by Theorem 5, we have 2 > r > |S| − 2(dk/2e − 1) + 2 >
k − 2dk/2e + 4 > 3, contradiction. Otherwise, if r > 3 and there exists two singleton
components among O1, . . . , Or, then |S| > 2k − µ. Because α(G) 6 n, we deduce that
n > r > |S|−2(dk/2e−1)+2 > 2k−µ−2dk/2e+4 > k−µ+3 = t(n−1)− t(t−1)+3 =
t(n − t) + 3 > 2(n − 2) + 3. Thus, n 6 1, contradiction. If r > 3 and there is at most
one singleton component, then there are at least two non-singleton odd components, say
O1, O2. By the results in [18, Section 4], |N(O1)| > 2k−λ−2. Thus |S| > 2k−λ−2. As
before, n > o(G−S) > k−λ+1 = t(n−1)−n+2−(t−1)(t−2)+1 = (t−1)(n−t+1)+2 >
n+ 1, contradiction.
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The proof of our next result is similar and will be omitted.

Theorem 29. Let n and t be two integers such that n is odd and n > 2t > 6. If G is
a Latin square graph corresponding to an OA(t, n), then the near-extendability of G is
k/2− 1, where k is the valency of G.

The line graph of Kn,n is a (n2, 2(n− 1), n− 2, 2)-srg. It can be regarded as a strongly
regular graph corresponding to an OA(2, n).

Theorem 30. Let n be an even integer such that n > 4. If G is the line graph of Kn,n,
the extendability of G is k/2 = n− 1.

Proof. The first subconstituent Γ1(x) of some vertex x of G is the disjoint union of two
cliques of odd order. Pick two vertices y and z that are not adjacent to x. If S =
N(x) ∪ {y, z}, then S contains a matching of size n that is not contained in any perfect
matching. Therefore, G is not n-extendable.

Assume that G is not k/2-extendable. By Lemma 3, there is a subset of vertices S
such that S contains k/2 independent edges (therefore, S is not the neighborhood of some
vertex) and r = o(G−S) > |S|−2(k/2)+2. Let O1, O2, . . . , Or be all the odd components
of G − S. If r 6 2, then as S is not the neighborhood of some vertex, by Theorem 5
|S| > k+1 and therefore, 2 > r > |S|−k+2 > 3, contradiction. If r > 3, the proof is the
same as Theorem 28 except for the case when there is at most one singleton component
among O1, . . . , Or. In this case, we need to show that o(G− S) 6 n− 1. This inequality
can be proved by contradiction. We know that o(G − S) 6 α(G) = n. If o(G − S) = n,
then we can pick a vertex xi from each component Oi and I = {x1, . . . , xn} will form
an independent set of size n. The set I can be regarded as a perfect matching in Kn,n.
Any edge in Kn,n outside this perfect matching will have non-empty intersection with two
edges of this perfect matching. Hence, any vertex in the line graph of Kn,n but not in I
will be adjacent with two vertices in I. If O1 is not a singleton, then there is a vertex
y ∈ O1, where y 6= x1 and y is adjacent to xi for some i 6= 1. This contradicts the fact
that O1 and Oi are two distinct components in G− S.

Theorem 31. Let n be an odd integer such that n > 3. If G is the line graph of Kn,n,
the near-extendability of G is k/2− 1 = n− 2.

Proof. The first subconstituent Γ1(x) of some vertex x of G is the disjoint union of two
cliques of even order. Thus, Γ1(x) contains a matching of size n − 1 and this will imply
that G is not (n − 1)-near-extendable. The proof that G is (n − 2)-near-extendable is
similar to the proof of Theorem 30 and will be omitted.

4.4 The extendability of the known triangle-free strongly regu-
lar graphs

We determine the extendability or near-extendability of the known primitive triangle-free
strongly regular graphs. There are seven known examples of such graphs and they have
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parameter sets: (5, 2, 0, 1), (10, 3, 0, 1), (16, 5, 0, 2), (50, 7, 0, 1), (56, 10, 0, 2), (77, 16, 0, 4),
(100, 22, 0, 6).

We first discuss the known triangle-free strongly regular graphs of even order. Lou
and Zhu [29] proved that the extendability of the (10, 3, 0, 1)-srg (the Petersen graph) is
1.

The (16, 5, 0, 2)-srg is called the folded 5-cube as it can be obtained from the 5-
dimensional cube on 32 vertices by identifying antipodal vertices. The (16, 5, 0, 2)-srg
is known as the complement of the Clebsch graph (see [7, page 117]) or as the Clebsch
graph (see [37, Example 21.4, page 263]).

Theorem 32. The folded 5-cube is precisely 3-extendable.

Proof. Let G be the (16, 5, 0, 2)-srg. We first show that G is not 4-extendable. Let x
be a vertex of G. It is known that the second subconstituent Γ2(x) of x is isomorphic
to the Petersen graph. Consider four independent edges of Γ2(x). We claim that these
four edges are not contained in a perfect matching of G. Let S be the complement of the
neighborhood of x in G. Then S contains four independent edges and 5 = o(G − S) >
|S| − 2 · 4 + 2 = 5. Lemma 3 implies that G is not 4-extendable.

We show that G is 3-extendable by contradiction. Assume that G is not 3-extendable.
Lemma 3 implies that G has a vertex subset S, such that S contains 3 independent
edges, and o(G− S) > |S| − 4. Let S be such disconnecting set with maximum size. By
the same argument in the proof of Theorem 21, any non-singleton component of G − S
cannot contain exactly 3 vertices. If G − S has no singleton components, then G − S
has at most two odd components (since α(G) = 5 and each non-singleton component
has two non-adjacent vertices). Thus, |S| 6 o(G − S) + 4 6 6. Lemma 10 implies
that |S| > 25/2, a contradiction. If G − S has one or two singleton components, then
G − S has at most three odd components. Thus, |S| 6 o(G − S) + 4 6 7. However,
S contain the neighborhood of a vertex, which is an independent set of size 5. Since
S also contains three independent edges, |S| > 8, contradiction. The remaining case
is when G − S has at least three singleton components, say x, y, z. As o(G − S) 6 5,
|S| 6 o(G− S) + 4 6 9. However, |N({x, y, z})| = 10. This is because y, z are contained
in Γ2(x) which is isomorphic to the Petersen graph. Because y and z are not adjacent,
they have one common neighbor in Γ2(x). Hence, there are five vertices adjacent to y or
z in Γ2(x). Thus, |S| > |N({x, y, z})| = 10, contradiction.

The (50, 7, 0, 1)-srg is called the Hoffman-Singleton graph and its independence number
is 15 (see [5, Section 13.1] or [7, page 117]).

Theorem 33. The Hoffman-Singleton graph is precisely 5-extendable.

Proof. Let G be the (50, 7, 0, 1)-srg. We first show that G is not 6-extendable. Let x
and y be two non-adjacent vertices of G and let S = N(x) ∪ N(y). Then |S| = 13
and S contains 6 independent edges. Since the second subconstituent Γ2(x) of x is a
distance-regular graph with intersection array {6, 5, 1; 1, 1, 6}, Lemma 6 implies that the
subgraph of Γ2(x) obtained by removing the neighbors of y in Γ2(x), has exactly two
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odd components. Hence, 3 = o(G − S) > 3 = |S| − 2 · 6 + 2. By Lemma 3, G is not
6-extendable.

We show that G is 5-extendable by contradiction. Assume that G is not 5-extendable.
By Lemma 3, there exists a subset of vertices S such that S contains five independent edges
and o(G− S) > |S| − 8. Consider such a set S of maximum size. By the same argument
as in the proof of Theorem 21, the maximality of |S| implies that any non-singleton odd
component of G− S cannot be bipartite. We use this observation to prove that any non-
singleton odd component must has at least 7 vertices. Assume that C is a non-singleton
component with 5 vertices (Otherwise, C induces a bipartite graph). Then C must induce
a cycle on 5 vertices. Thus, o(G − S) 6 α(G) − 1 = 14 and |S| 6 o(G − S) + 8 6 22.
However, |N(C)| = 25 because each vertex in C has 5 neighbors in S, and any two vertices
in C have no common neighbors in S. Thus, 22 > |S| > |N(C)| > 25, a contradiction.

Thus, any odd non-singleton component of G−S has at least 7 vertices. If G−S has at
least 2 non-singleton odd components, then o(G−S) 6 11, and |S| 6 o(G−S) + 8 6 19.

Lemma 10 implies that |S| > 4×7×(50−19−7)
25

> 26, a contradiction. If G − S has exactly
one non-singleton odd component, then o(G − S) 6 13 and |S| 6 o(G − S) + 8 6
21. If G − S contains at least 7 singleton components, then Lemma 10 implies that
|S| > 4×7×(50−21−7)

25
> 24, a contradiction. If G − S contains between 3 and 6 singleton

components, then |S| 6 o(G− S) + 8 6 15. However, for any three independent vertices
x, y, z, |N(x) ∪ N(y) ∪ N(z)| > 3 · 7 −

(
3
2

)
· 1 = 18, a contradiction. If G − S has one

or two singleton components, then |S| 6 o(G − S) + 8 6 11. Since S contains the
neighborhood N(x) of a vertex x and S contains 5 independent edges, S must contain
another 5 vertices outside of N(x). Thus, |S| > 12, a contradiction. If G − S only
has singleton odd components, then G − S has no even components. Otherwise, we can
put one vertex of the even components into S. In this way, |S| will increase by one,
and o(G − S) will increase at least by one, contradicting the maximality of |S|. Thus,
|S| = 50− o(G− S) > 35 contradicting the inequality |S| 6 o(G− S) + 10 6 25.

The (56, 10, 0, 2)-srg is known as the Gewirtz graph or the Sims-Gewirtz graph and its
independence number is 16 (see [5, page 372] or [7, page 117]).

Theorem 34. The Gewirtz graph is precisely 8-extendable.

Proof. Let G be the Gewirtz graph. We first show that G is not 9-extendable. Let x and
y be two non-adjacent vertices of G. Because every vertex in N(x) \ N(y) has exactly
2 neighbors in N(y) \ N(x) and every vertex in N(y) \ N(x) has exactly 2 neighbors in
N(x) \N(y), we can find 8 independent edges with one endpoint in N(x) \N(y) and the
other endpoint in N(y) \N(x). Let z ∈ N(x)∩N(y) and let w be a neighbor of z that is
not x nor y. Let S = N(x)∪N(y)∪{w}. It follows that S contains 9 independent edges,
|S| = 19 and o(G − S) > 3. Thus, o(G − S) > 3 = |S| − 16 and by Lemma 3, G is not
9-extendable.

Assume G is not 8-extendable. Lemma 3 implies the existence of subset of vertices S
such that S contains 8 independent edges, and o(G − S) > |S| − 14. Take such a set S
of maximum size. By a similar argument as before, any non-singleton odd component of
G− S must have at least 7 vertices.
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Assume that C is a non-singleton component with 5 vertices. If C has no odd cycles,
then C is a bipartite graph and we can add two vertices of C to S. Then |S| will increase
by 2 and o(G − S) will increase by 2, contradicting the maximality of S. If C induces
a pentagon, then o(G − S) 6 α(G) − 1 = 15 and, |S| 6 o(G − S) + 14 6 29. However,
|N(C)| = 8 × 5 − 5 = 35, a contradiction. Thus, any non-singleton component should
have size at least 7.

If G − S has at least 2 non-singleton odd components, then o(G − S) 6 12, and

|S| 6 o(G−S)+14 6 26. Lemma 10 implies that |S| > 2×7×(56−26−7)
9

= 322
9

= 35.77 > 35, a
contradiction. If G−S has exactly one non-singleton odd component, then o(G−S) 6 14,
and |S| 6 o(G − S) + 14 6 28. Let t be the number of singleton components. If t > 7,

then Lemma 10 implies that |S| > 2×7×(56−28−7)
9

= 98
3

= 32.66 > 32, a contradiction.
If 3 6 t 6 6, then |S| − 14 6 o(G − S) = 7. Thus, |S| 6 21. However, for any
three independent vertices x, y and z, |S| > |N(x) ∪ N(y) ∪ N(z)| > 10 × 3 − 6 = 24, a
contradiction. If 1 6 t 6 2, then |S|−14 6 o(G−S) 6 3. Thus, |S| 6 17. Since S contains
the neighborhood of a vertex, which is an independent set, in order for S to contain 8
independent edges, S must contain another 8 vertices. Thus, |S| > 18, a contradiction. If
G− S only has singleton components. Then G− S has no even components. Otherwise,
we can put one vertex of an even components into S. In this way, |S| will increase by one,
and o(G − S) will increase at least by one, contradicting the maximality of |S|. Thus,
|S| = 56− o(G− S) > 40, contradicting |S| 6 o(G− S) + 14 6 30.

The (100, 22, 0, 6)-srg is called Higman-Sims graph and its independence number is 22
(see [7, Section 3.5 and Section 9.1.7]).

Theorem 35. The Higman-Sims graph is precisely 20-extendable.

Proof. Let G denote the Higman-Sims graph. Let x and y be two non-adjacent vertices.
Because every vertex in N(x) \ N(y) has exactly 6 neighbors in N(y) \ N(x) and every
vertex in N(y)\N(x) has exactly 6 neighbors in N(x)\N(y), we can find 16 independent
edges with one endpoint in N(x) \ N(y) and the other endpoint in N(y) \ N(x). Every
vertex from N(x) ∩ N(y) has exactly 21 neighbors in the second subconstituent of x.
Each vertex in the second subconstituent of x has 16 neighbors in N(x)∩N(y). By Hall’s
Marriage Theorem, we can find five independent edges wiui such that ui ∈ N2(x) and
wi ∈ N(x) ∩ N(y) for 1 6 i 6 5. Let S = N(x) ∪ N(y) ∪ {w1, w2, w3.w4, w5}. It follows
that S contains 21 independent edges, |S| = 43 and o(G − S) > 3 = |S| − 21 × 2 + 2.
Lemma 3 implies that G is not 21-extendable.

If G were not 20-extendable, by Lemma 3, there is a subset of vertices S such that S
contains 20 independent edges and o(G−S) > |S|−38. As before, we may assume that S
is such a disconnecting set with maximum size. Then any non-singleton odd component
of G − S has at least 5 vertices. Furthermore, we can prove that any non-singleton
odd component has at least 7 vertices. Assume that C is a non-singleton component
with 5 vertices. If C has no odd cycle, then C is bipartite graph and we can add two
vertices from the same color class of C into S. Then |S| will increase by 2 and o(G− S)
will increase by 2, contradicting the maximality of |S|. If C induces a pentagon, then
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|S| > |N(C)| = 20 × 5 − 5 × 5 = 75. However, since o(G − S) 6 α(G) − 1 = 21, we
get that |S| 6 o(G − S) + 38 6 59, a contradiction. Note that any non-singleton odd
component of G− S contains an independent set of order 3.

If G−S has at least two non-singleton odd components, then o(G−S) 6 18, and |S| 6
o(G − S) + 38 6 56. However, by Lemma 10, |S| > 6×7×(100−56−7)

25
> 62, contradiction.

If G − S has exactly one non-singleton odd component, then o(G − S) 6 20, and |S| 6
o(G − S) + 38 6 58. Let t be the number of singleton components. If t > 7, then

Lemma 10 implies that |S| > 6×7×(100−58−7)
25

> 58, a contradiction. If 3 6 t 6 6, then
|S| 6 o(G − S) + 38 = 45. However, for any three independent vertices x, y and z from
G− S, |S| > |N(x) ∪N(y) ∪N(z)| > 22× 3− 3× 6 = 48, a contradiction. If 1 6 t 6 2,
then |S| 6 o(G − S) + 38 6 41. Since S contains the neighborhood of a vertex, which
is an independent set, in order for S to contain 20 independent edges, S must contain
another 20 vertices. Thus, |S| > 42, a contradiction.

If G − S only has singleton odd components, then G − S has no even components.
Otherwise, we can put one vertex of an even components into S. In this way, |S| will
increase by one, and o(G−S) will increase at least by one, contradicting the maximality of
|S|. Thus, |S| = 100−o(G−S) > 78 which contradicts with |S| 6 o(G−S)+38 6 60.

We also determine the near-extendability of the known triangle-free strongly regu-
lar graphs with odd order. The (5, 2, 0, 1)-srg is precisely 0-near-extendable. The only
other known triangle-free strongly regular graph of odd order is the M22 graph which is
(77, 16, 0, 4)-srg with independence number 21 (see [7, page 118]).

Theorem 36. The M22 graph is precisely 13-near-extendable.

Proof. Let G denote the M22 graph. Let x and y be two non-adjacent vertices. Because
every vertex in N(x) \N(y) has exactly 4 neighbors in N(y) \N(x) and every vertex in
N(y) \ N(x) has exactly 4 neighbors in N(x) \ N(y), we can find 12 independent edges
with one endpoint in N(x) \N(y) and the other endpoint in N(y) \N(x). Every vertex
from N(x) ∩ N(y) has exactly 14 neighbors in the second subconstituent of x. We can
find two independent edges wiui such that ui is in the second subconstituent of x and
wi ∈ N(x) ∩ N(y) for 1 6 i 6 2. Let S = N(x) ∪ N(y) ∪ {w1, w2}. It follows that S
contains 14 independent edges, |S| = 30 > 29 and o(G − S) > 3 = |S| − 14 × 2 + 1.
Lemma 4 implies that G is not 14-near-extendable.

If G were not 13-near-extendable, by Lemma 4, there is a subset of vertices S such that
|S| > 27 and S contains 13 independent edges and o(G−S) > |S|−25. As before, we may
assume that S is such a disconnecting set with maximum size. Then any non-singleton
odd component of G − S has at least 5 vertices. Furthermore, we can prove that any
non-singleton odd component has at least 7 vertices. Assume that C is a non-singleton
component with 5 vertices. If C has no odd cycle, then C is bipartite graph and we can
add two vertices from the same color class of C into S. Then |S| will increase by 2 and
o(G−S) will increase by 2, contradicting the maximality of |S|. If C induces a pentagon,
then |S| > |N(C)| = 14 × 5 − 3 × 5 = 55. However, since o(G − S) 6 α(G) − 1 6 20,
we get that |S| 6 o(G− S) + 25 6 45, a contradiction. Note that any non-singleton odd
component of G− S contains an independent set of order 3.
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If G − S has at least two non-singleton odd components, then o(G − S) 6 17, and

|S| 6 o(G− S) + 25 6 42. However, by Lemma 10, |S| > 7×(77−42−7)
4

= 49, contradiction.
If G − S has exactly one non-singleton odd component, then o(G − S) 6 19, and |S| 6
o(G − S) + 25 6 44. Let t be the number of singleton components. If t > 7, then

Lemma 10 implies that |S| > 7×(77−42−7)
4

= 49, a contradiction. If 3 6 t 6 6, then
|S| 6 o(G − S) + 25 6 32. However, for any three independent vertices x, y and z from
G− S, |S| > |N(x) ∪N(y) ∪N(z)| > 16× 3− 3× 4 = 36, a contradiction. If 1 6 t 6 2,
then |S| 6 o(G − S) + 25 6 27. Since S contains the neighborhood of a vertex, which
is an independent set, in order for S to contain 13 independent edges, S must contain
another 13 vertices. Thus, |S| > 29, a contradiction. If t = 0, then o(G − S) = 1. It is
also impossible since by our assumption o(G− S) > |S| − 25 > 2.

If G − S only has singleton odd components, then G − S has no even components.
Otherwise, we can put one vertex of an even components into S. In this way, |S| will
increase by one, and o(G−S) will increase at least by one, contradicting the maximality of
|S|. Thus, |S| = 77−o(G−S) > 56 which contradicts with |S| 6 o(G−S)+25 6 46.

5 Final Remarks

The extendability of a strongly regular graph is not determined by its parameters. The
Shrikhande graph and the line graph of K4,4 both have parameter set (16, 6, 2, 2). The
extendability of the Shrikhande graph is 2 and the extendability of L(K4,4) is 3. However,
we find it remarkable that the extendability of every known primitive triangle-free strongly
regular graph of valency k and even order, equals k − 2.

We make the following conjecture regarding the extendability properties of strongly
regular graphs of valency k.

Conjecture 37. If G is a primitive strongly regular graph of valency k, then its extend-
ability (or near-extendability) is at least dk/2e − 1.

Note that this conjecture is not true for imprimitive strongly regular graph. For ex-
ample, the extendability of Ka×3 is a/2 = k/4. The conjecture above would be essentially
best possible since there are many strongly regular graphs of valency k that are not dk/2e-
extendable. If Γ is a (v, k, λ, µ)-srg with λ > θ2, then the first subconstituent Γ1(x) of
any vertex x is connected by eigenvalue interlacing. If G is not a conference graph, then
λ − θ2 > 1 as θ2 is an integer. The first subconstituent Γ1(x) is λ-regular with second
largest eigenvalue at most θ2. By [15], Γ1(x) contains a matching of size bk/2c. If k
is even, then this matching cannot be extended to a maximum matching of G. If k is
odd, one can add one disjoint edge to this matching such that the result matching of size
dk
2
e cannot be extended to a maximum matching of G. If G is a conference graph with

parameters (4t + 1, 2t, t − 1, t)-srg, λ − θ2 > 1 when t > 4. If t = 2 or t = 3, then the
first subconstituent contains a matching of size t that cannot be extended to a maximum
matching of G. We also remark that there are strongly regular graphs Γ such that the
first subconstituent Γ1(x) does not contain a matching of size bk/2c for any vertex x. For
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example, if Γ1(x) is a disjoint union of cliques Kλ+1 and λ is even, then Γ1(x) will not
contain a matching of size bk/2c.

It would be nice to use the extendability properties of strongly regular graphs to study
the edge-chromatic number of such graphs of even order. Results from [6, 15] imply that
any k-regular graph with second largest eigenvalue θ2 contains at least (k − θ2)/2 edge
disjoint perfect matchings. It would be interesting to improve this bound for strongly
regular graphs.

Counting perfect matchings in regular graphs is an important problem in discrete
mathematics (see [22, 28]) and a well-known conjecture (see [28, Conjecture 8.18]) states
that for any k > 3, there exists positive constants c1(k) and c2(k) such that any k-
regular 1-extendable graph of order v contains at least c2(k)c1(k)v perfect matchings (also
c1(k)→∞ as k →∞). Seymour (see [20]) showed that k-regular (k− 1)-edge-connected
graphs of order v contains at least 2(1−1/k)(1−2/k)v/3656 perfect matchings. It would be nice
to improve these estimate for strongly regular graphs.

Investigating the extendability properties of distance-regular graphs is also an interest-
ing problem that we leave for a future work. One can deduce from the work of Brouwer
and Koolen [8] and Plesńık [31] that every distance-regular graph of even order is 1-
extendable, but it is quite possible that the extendability of many distance-regular graphs
is much larger.
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Sloven. Akad. Vied 22 (1972), 310–318.

[32] M.D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980), 201–210.

[33] M.D. Plummer, Extending matchings in graphs: A survey, Discrete Math. 127
(1994), 277–292.

[34] M.D. Plummer, Recent progress in matching extension, Building Bridges, Bolyai Soc.
Math. Stud., 19, Springer, Berlin, 2008, 427–454.

[35] J.J. Seidel, Strongly regular graphs with (−1, 1, 0) adjacent matrix having eigenvalue
3, Linear Alg. Appl. 1 (1968), 281–298.

[36] D. Spielman, Faster isomorphism testing of strongly regular graphs, Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, STOC’96
(Philadelphia, PA, 1996) (1996), 576–584.

[37] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University
Press 2nd Edition (2001).

[38] W.T. Tutte, The factorizations of linear graphs, J. London Math. Soc. 22 (1947)
107-111.

[39] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J.
Combin. 7 (1993), 55–64.

[40] Q. Yu and G. Liu, Graph Factors and Matching Extensions, Higher Education Press,
Beijing; Springer-Verlag, Berlin, 2009. xii+353 pp.

[41] F. Zhang and H. Zhang, Construction for bicritical graphs and k-extendable bipartite
graphs, Discrete Math. 306 (2006), 1415–1423.

the electronic journal of combinatorics 21(2) (2014), #P2.34 23


	Introduction
	Main tools
	The extendability of strongly regular graphs
	Imprimitive strongly regular graphs
	Lower bounds for the extendability of strongly regular graphs

	The extendability of some specific strongly regular graphs
	Triangular graphs
	Block graphs of Steiner systems
	Latin square graphs
	The extendability of the known triangle-free strongly regular graphs

	Final Remarks

