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Abstract

We present a short and self-contained proof of Jin’s theorem about the piecewise
syndeticity of difference sets which is entirely elementary, in the sense that no use
is made of nonstandard analysis, ergodic theory, measure theory, ultrafilters, or
other advanced tools. An explicit bound to the number of shifts that are needed
to cover a thick set is provided. Precisely, we prove the following: If A and B are
sets of integers having positive upper Banach densities a and b respectively, then
there exists a finite set F of cardinality at most 1/ab such that (A−B) + F covers
arbitrarily long intervals.
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1 Introduction

A beautiful result in additive and combinatorial number theory was proved in 2001 by R.
Jin [8] with the tools of nonstandard analysis, namely the property that sumsets A + B
are piecewise syndetic whenever A,B ⊆ N have positive upper Banach density. (See
§1 for definitions). Researchers showed interest in that result but were not comfortable
with nonstandard analysis. Several papers recently appeared where Jin’s theorem was
re-proved and extended by using more familiar non-elementary tools; most notably, see
the proofs in [4, 1] by means of ergodic theory, and the ultrafilter proof in [2]. Recently,
in [5] I gave a different nonstandard proof of the result, where an explicit bound to the
number of shifts of A+B that are needed to cover arbitrarily large intervals is given.

Here, the underlying ideas of the main constructions used in [5] are suitably trans-
lated into “standard” terms; the goal is to provide a short and elementary proof of Jin’s
theorem, completely from scratch. (Here, by “elementary” we mean that no use is made
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of nonstandard analysis, measure theory and ergodic theory, ultrafilters, or any other ad-
vanced tool; and by “from scratch” we mean that the arguments used are self-contained,
with no references to other existing results in the literature.)

Notation: By N we denote the set of positive integers. If not specified otherwise,
lower-case letters a, b, c, x, y, z, . . . will denote integer numbers, with letters k, n,m re-
served for natural numbers, and upper-case letters A,B,C, . . . will denote sets of integers.
By [a, b] we denote intervals of integers, i.e. [a, b] = {x ∈ Z | a 6 x 6 b}; A−B = {a− b |
a ∈ A, b ∈ B} is the difference set of A and B; and A + B = {a + b | a ∈ A, b ∈ B} is
the sumset. With obvious notation, we shall simply write A− z (or A+ z) to indicate the
left-ward shift A− {z} (or the right-ward shift A+ {z}, respectively).

2 Jin’s theorem with a bound

Recall that a set A of integers is thick if it covers intervals of arbitrary length, i.e. if
for every k there exists an interval I = [x + 1, x + k] of length k such that I ⊆ A; A is
syndetic if it has bounded gaps, i.e. if there exists k such that A∩I 6= ∅ for every interval
I of length k; A is piecewise syndetic if it covers arbitrarily long intervals of a syndetic
set, i.e. if A = B ∩ C where B is thick and C is syndetic. Useful characterizations are
the following: A is syndetic if and only if A+ F = Z for a suitable finite set F ; and A is
piecewise syndetic if and only if A+ F is thick for a suitable finite set F .

A familiar notion in number theory is that of upper asymptotic density d(A) of sets of
natural numbers A ⊆ N:

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

The (upper) Banach density BD(A) refines the upper density to sets of integers by con-
sidering arbitrary intervals instead of just initial intervals:

BD(A) = lim
n→∞

(
max
x∈Z

|A ∩ [x+ 1, x+ n]|
n

)
.

Remark that the above limit always exists, and in fact the following holds:1

BD(A) = inf
n∈N

(
max
x∈Z

|A ∩ [x+ 1, x+ n]|
n

)
.

Trivially BD(A) > d(A) for every A ⊆ N; on the other hand, there exist sets A ⊆ N
with d(A) = 0 and BD(A) = 1. Basic properties of Banach density are the following:
BD(A) = 1 if and only if A is thick; the family of sets with null Banach density is closed
under finite unions; the Banach density is invariant under shifts, i.e. BD(A−z) = BD(A).
Although Banach density is not additive, the additivity property holds for families of
shifts, i.e. BD(

⋃k
i=1A− zi) = k ·BD(Ai) whenever the shifts A− zi are pairwise disjoint.

1 This is proved by a straight application of Fekete’s lemma: “Every sequence {an} which is subadditive
(i.e. an+m 6 an+am) converges to infn an/n.” Indeed, it is readily seen that an = maxx∈Z |A∩[x+1, x+n]|
is subadditive.
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The following general property of difference sets was first proved (but not published)
by P. Erdős and Sárközy for sets of positive upper density.2

Proposition 1. If BD(A) > 0 then A− A is syndetic.

The proof consists of a pigeonhole principle argument. Since A − A is symmetric
around 0, if it was not syndetic then one could pick a thick set T ⊆ N that does not meet
A − A. Then one can construct a sequence X = {x1 < x2 < . . .} such that xj − xi ∈ T
for all j > i. The shifts A− xi are pairwise disjoint because (X −X)∩ (A−A) = ∅, and
so we would have BD(

⋃k
i=1A − xi) =

∑k
i=1 BD(A − xi) = k · BD(A) > 1 for sufficiently

large k, a contradiction.
Remark that the above property does not extend to the general case A − B; indeed,

it is not hard to find thick sets A,B,C such that also their complements Ac, Bc, Cc are
thick, and A−B ⊂ C. However, Jin’s theorem showed that A−B is in fact syndetic on
a suitable thick set.

Theorem 2 (Jin, with a bound). Let A,B ⊆ Z have positive upper Banach densities
BD(A) = α and BD(B) = β, respectively. Then there exists a finite set F of cardinality
|F | 6 1/αβ such that (A−B) + F is thick (and hence A−B is piecewise syndetic).

Notice that the above result includes the original Jin’s Theorem about sumsets A+B
of sets A,B ⊆ N, because trivially BD(B) = BD(−B). Before giving our elementary
proof, let us show that A−B is thick when the two sets have sufficiently large densities.

Proposition 3. Let A,B ⊆ Z, and assume that there exists α such that:

• sup{an − α · n | n ∈ N} = +∞, where an = maxx∈Z |A ∩ [x+ 1, x+ n]|.

• BD(B) > 1− α.

Then A−B is thick.

Proof. Given k, let m be such that am − α ·m > k, and pick an interval I of length m
with am = |A ∩ I|. For every i = 1, . . . , k we have that:

|(A− i) ∩ I| > |A ∩ I| − i > α ·m+ k − i > α ·m.

Recall that BD(B) = infn bn/n where bn = max{|B ∩ J | | J interval of length n}. Then,
by the hypothesis on BD(B), there exists an interval J of length m such that |B ∩ J | =
bm > (1 − α) · m. Finally, pick x such that x + J = I. We claim that the interval
[x+1, x+k] ⊆ A−B; this will give the thesis because k is arbitrary. For every i = 1, . . . , k
one has

|(A− i)∩ I|+ |(B+x)∩ I| = |(A− i)∩ I|+ |B ∩ J | > α ·m+ (1−α) ·m = m = |I|.

So, (A− i) ∩ (B + x) ∩ I 6= ∅, and there exist a ∈ A and b ∈ B such that a− i = b + x,
and hence x+ i ∈ A−B.

2 This fact is mentioned in I.Z. Ruzsa’s paper [11] of 1974. That result have been then generalized in
several directions; see, e.g., [7] by H. Hegyvári where iterated difference sets are studied in the context
of groups, and [10] by S. Révész in the context of locally compact abelian groups.
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Notice that BD(A) > α implies sup{an − α · n | n ∈ N} = +∞, which in turn implies
BD(A) > α; however, we remark that neither implication can be reversed. The fact
that A− B is thick whenever BD(A) + BD(B) > 1 was first proved by M. Beiglböck, V.
Bergelson and A. Fish in [1]; in fact, their proof actually shows the (slightly) stronger
property stated in the above proposition.

The results mentioned in this section are just a hint of the rich combinatorial structure
of sumsets and sets of differences, whose investigation seems still far from being completed
(see e.g. the monographies [14, 13]).

3 The elementary proof of Jin’s theorem

We prove here our main Theorem 2, that was stated in the previous section. By the
definition of upper Banach density, we can pick two sequences of integers 〈xn | n ∈ N〉
and 〈yn | n ∈ N〉 such that, if we let:

• An = A ∩ [xn + 1, xn + n2]

• Bn = B ∩ [yn + 1, yn + n]

then limn→∞ |An|/n2 = α and limn→∞ |Bn|/n = β. As the first step in our proof, for
every n we shall find a suitable shift of An that meets Bn on a set whose relative density
approaches αβ as n goes to infinity. To this end, we shall use the following inequality,
obtained as a simple application of the pigeonhole principle.3

Lemma 4. Let N, n ∈ N, C ⊆ [1, N ], D ⊆ [1, n]. Then there exists z such that

|(C − z) ∩D|
n

>
|C|
N
· |D|
n
− |D|

N
.

Proof. Let ϑ : N→ {0, 1} be the characteristic function of C. Then:

N∑
x=1

(∑
d∈D

ϑ(x+ d)

)
=

∑
d∈D

(
N∑

x=1

ϑ(x+ d)

)
=
∑
d∈D

|C ∩ [d+ 1, N ]|

>
∑
d∈D

(|C| − d) > |D| · (|C| − n).

By the pigeonhole principle, there must be at least one z such that

|(C − z) ∩D|
n

=
1

n

∑
d∈D

ϑ(z + d) >
1

n
· |D| · (|C| − n)

N
=
|C|
N
· |D|
n
− |D|

N
.

3 It is Lemma 5.1 of [5], but we re-prove it here to keep the paper self-contained.
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For every n, apply the above lemma where C = An − xn ⊆ [1, n2] and D = Bn −
yn ⊆ [1, n]. Clearly, |C| = |An| and |D| = |Bn|. Then we can pick a suitable sequence
〈zn | n ∈ N〉 such that

|(An − xn − zn) ∩ (Bn − yn)|
n

>
|An|
n2
· |Bn|
n
− |Bn|

n2
.

Now let:

• En = (An − xn − zn) ∩ (Bn − yn) ⊆ [1, n].

By passing the previous inequality to the limit, we obtain limn→∞ |En|/n > αβ.
Next, we shall use a property of difference sets of a sequence of subsets of [1, n], which

can be seen as a refinement of Proposition 1.

Lemma 5. For n ∈ N, let En ⊆ [1, n]. If limn→∞ |En|/n = γ > 0, then there exists a
finite set F of cardinality |F | 6 1/γ such that for every m:

(?) [1,m] ⊆ (En − En) + F for infinitely many n.

Proof. We inductively define a finite increasing sequence σ = 〈mi | i = 1, . . . , k〉. Set
m1 = 0. If property (?) is satisfied by F = {0}, then put σ = 〈m1〉, and stop. Otherwise,
let m2 ∈ N be the least counterexample. So, Γ1 = {n | [1,m2 − 1] ⊆ (En − En) + m1}
is infinite, but Λ1 = {n ∈ Γ1 | m2 ∈ (En − En) + m1} is finite. Notice that for every
n ∈ Γ1\Λ1 one has (En+m1)∩(En+m2) = ∅. If for every m ∈ N the set of all n ∈ Γ1 such
that [1,m] ⊆

⋃2
i=1(En−En +mi) is infinite, then put σ = 〈m1,m2〉 and stop. Otherwise,

let m3 ∈ N be the least counterexample. So, the set Γ2 = {n ∈ Γ1 | [1,m2 − 1] ⊆⋃2
i=1(En − En +mi)} is infinite, but Λ2 = {n ∈ Γ2 | m3 ∈

⋃2
i=1(En − En) +mi} is finite.

Notice that for every n ∈ Γ2 \ Λ2 one has (En +mi) ∩ (En +m3) = ∅ for i = 1, 2. Iterate
this process. We claim that we must stop at a step k 6 1/γ. To see this, we show that
whenever m1 < . . . < mk are defined, one necessarily has k 6 1/γ. This is trivial for
k = 1, so let us assume k > 2.

The set X = Γk \ (Λ1 ∪ . . . ∪ Λk) is infinite, and since X ⊆ Γi \ Λi for all i, the sets
in the family {EN + mi | i = 1, . . . k} are pairwise disjoint for every N ∈ X. Now, every
EN +mi ⊆ [1, N +mk], and so we obtain:

N +mk >

∣∣∣∣∣
k⋃

i=1

(EN +mi)

∣∣∣∣∣ =
k∑

i=1

|EN +mi| = k · |EN | =⇒ |EN |
N

6
1

k
+
mk

kN
.

By taking limits as N ∈ X approaches infinity, one gets the desired inequality γ 6 1/k.
Finally, observe that, by the definition of σ = 〈mi | i = 1, . . . , k〉, for every n ∈ Γk and
for every m ∈ N we have the inclusion [1,m] ⊆

⋃k
i=1(En − En + mi). This shows that

property (?) is fulfilled by setting F = {m1, . . . ,mk}.
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By the above lemma where γ = αβ > 0, we can pick a finite set F of cardinality
|F | 6 1/αβ and such that property (?) is satisfied by the sets

En = (An − xn − zn) ∩ (Bn − yn).

So, for every m there exists n (in fact, infinitely many n) such that:

[1,m] ⊆ (En − En) + F ⊆ (An − xn − zn)− (Bn − yn) + F ⊆ (A−B) + F − tn,

and hence [tn + 1, tn + m] ⊆ (A − B) + F , where we denoted tn = xn − yn + zn. This
completes the proof that (A−B) + F is thick.

4 Final remarks and open problems

R. Jin’s nonstandard proof in [8] was grounded on the following observation. Consider
the set ∗N of nonstandard natural numbers; then a set A ⊆ N is piecewise syndetic if
and only its nonstandard extension ∗A ⊆ ∗N is somewhere dense (i.e. not nowhere dense)
in a suitable order-topology on ∗N, as determined by the additive cut of (finite) natural
numbers. A few years later, R. Jin’s himself [9] elaborated a “standard” proof of his
theorem, where the nonstandard reasonings were directly translated into the language of
elementary combinatorics. Unfortunately, in this way “certain degree of intuition and
motivation are lost” (ibid.), also because of the partly topological nature of the original
arguments.

In a note with comments on a previous version of this paper, I.Z. Ruzsa pointed out
that by similar arguments as the ones used here, an elementary proof of Jin’s theorem
can also be obtained by utilizing results from his 1978 paper [12]. Precisely, by referring
to terminology and numbered theorems as presented there, one can proceed as follows.4

Given A,B ⊆ Z with positive upper Banach densities d∗(A) = α and d∗(B) = β, take
the corresponding homogeneous systems h1(A) and h1(B). By Theorem 3, their densities
as homogeneous systems – that we denote here by δ to avoid ambiguities – are the same
as the original sets: δ(h1(A)) = α and δ(h1(B)) = β. Now consider the homogeneous
system H = h1(A)∩h1(B) given by the intersection. By Theorem 5, δ(H) > α ·β and so,
by Theorem 4, there exists a set E with asymptotic density d(E) > δ(H), and such that
h1(E) ⊆ H. By a pigeonhole principle argument, it is shown that the positive density
of E implies the existence of a finite set F with cardinality |F | 6 1/d(E) 6 1/αβ and
such that (E − E) + F = Z. Now notice that, since h1(E) ⊆ h1(A) and h1(E) ⊆ h1(B),
for every finite G ⊂ E there exist x, y such that x + G ⊂ A and y + G ⊂ B, and hence
(x+ y) + (G−G) +F ⊂ (A−B) +F . Since (E−E) +F = Z, it follows that every finite
set has a shift included in (A−B) + F , which is therefore thick.

We close this paper by posing a couple of open questions. Recall that a family F
of sets of integers is partition regular if it is closed under supersets and it satisfies the
Ramsey property that A ∪ B ∈ F implies A ∈ F or B ∈ F (three relevant examples are

4 The contents of I.Z. Ruzsa’s note are reproduced here under his permission.
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given by the infinite sets, by the sets with positive upper density, and by the piecewise
syndetic sets). We remark that, by exactly the same proof, the property of Lemma 5 also
holds if one replaces (?) with

(?)F {n ∈ N | [1,m] ⊆ (En − En) + F} ∈ F
where F is any partition regular family of infinite sets. Can one derive a stronger version
of Jin’s theorem by using that stronger version of Lemma 5?

In §1, we recalled the property that A − B is thick whenever BD(A) + BD(B) > 1.
Can one combine this fact with similar arguments as the ones presented in this paper, and
prove interesting structural properties involving the three difference sets A − B, A − C,
B − C, under the assumption that BD(A) + BD(B) + BD(C) > 1?
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