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Abstract

Graphs with large minimum degree containing no copy of a clique on r vertices
(Kr) must contain relatively large independent sets. A classical result of Andrásfai,
Erdős, and Sós implies that Kr-free graphs G with degree larger than ((3r−7)/(3r−
4))|V (G)| must be (r− 1)-partite. An obvious consequence of this result is that the
same degree threshold implies an independent set of order (1/(r − 1))|V (G)|. The
following paper provides improved bounds on the minimum degree which would
imply the same conclusion. This problem was first considered by Brandt, and we
provide improvements over these initial results for r > 5.

1 Introduction

In one of the founding results in extremal graph theory, Turán [Tur41] determined the
value of ex(n,Kr), the number of edges which imply that a graph on n vertices contains
a copy of Kr. The extremal graphs are the classical Turán graphs, which, for n divisible
by r− 1, are composed of r− 1 equally-sized independent sets such that two vertices are
adjacent if and only if they are contained in different independent sets. Such graphs are
regular with degree δ = ((r − 2)/(r − 1))n.

In fact, any Kr-free graph with minimum degree “almost as large” as Turán graphs
must share some of the same properties. In particular, Andrásfai, Erdős, and Sós [AES74]
showed that for a Kr-free graph G (on n vertices), δ(G) > ((3r − 7)/(3r − 4))n implies
that χ(G) 6 r − 1. An extension of this problem is the chromatic threshold problem
for a general graph H, which is to determine the threshold on the minimum degree such
that there is a bound (as a function of only H) on the chromatic number. Recently, good
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results have been obtained regarding triangle-free graphs (e.g., [Tho02,  Luc06, BTar]),
and the general problem has been solved for all H [ABG+13].

One can interpret these results as follows: For a suitably large lower bound on the
minimum degree, forbidding a copy of Kr must result in a large independent set. This
interplay between the density of G, the clique number of G, and the independence number
of G is well-studied; it is the classical Ramsey-Turán theory. Let RT(n,H, f(n)) denote
the maximum number of edges in an H-free graph on n vertices containing no independent
set of order f(n). For instance, a construction of Bollobás and Erdős [BE76] and an upper
bound of Szemerédi [Sze72], combined to give

RT(n,K4, o(n)) = (1 + o(1))
n2

8
.

However, not much attention has been paid to the problem of determining exact
bounds on the independence number of Kr-free graphs with large minimum degree. This
is somewhat of a compromise between what is typically considered in Ramsey-Turán
theory and the structural results extending the work of Andrásfai, Erdős, and Sós. In
[Bra01], Brandt first considered this problem, and raised the following question, which is
quite appealing due to its connection with both the results of [AES74] and the classical
result of Turán. Let α(G) denote the independence number of a graph G.

Problem 1. Determine the value of c such that for any Kr-free graph G with δ > cn,

α(G) >
1

r − 1
n.

It was conjectured in [Bra01] that the correct value of c is c = (5r−11)/(5r−5), with
the graphs described below to demonstrate the possible sharpness of this value.

The join of two graphs G and H, denoted G ∨ H, is defined by taking the disjoint
union of the vertex sets from G and H, i.e., V (G ∨ H) = V (G) ∪ V (H) such that the
subgraph induced by V (G) is G, the subgraph induced by V (H) is H, and G ∨ H also
contains all edges of the form (v, w), where v ∈ V (G) and w ∈ V (H). For r odd, choose
` = (r − 1)/2, and consider the graph

H = ∨`i=1C5,

where each vertex in a copy of C5 can be replaced with an independent set of b vertices.
For r even, choose ` = (r − 2)/2, and consider the graph

H = ∨`i=1C5 ∨ I,

where each vertex in a copy of C5 can be replaced with an independent set of b vertices,
and I is an independent set of a vertices, where a = (5/2)b− k, for some k > 0 such that
l� k.

Brandt showed that the conjecture holds for r = 4 and r = 5, and was able to prove
a bound for general r.
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Theorem 2 (Brandt [Bra01]). Let G be a Kr-free graph (r > 4) on n vertices.

1. If r = 4, and δ(G) > (3/5)n, then α(G) > (1/3)n.

2. If r = 5, and δ(G) > (7/10)n, then α(G) > (1/4)n.

3. If r > 5, and

δ(G) >
r2 − 5

r2 + r − 2
n =

(
r − 3

r − 2
+

4

(r − 2)(r + 2)(r − 1)

)
n,

then α(G) > (1/(r − 1))n.

For a quick comparison, the conjectured bound can be written as

δ(G) >
5r − 11

5r − 5
n =

(
r − 3

r − 2
− r − 7

5(r − 1)(r − 2)

)
n.

2 Results

Our contribution is to prove a “bootstrapping lemma”, which will allow us to give an
improvement on Theorem 2 for Kr-free graphs where r > 6, and additional structural
information in the cases r = 4 and r = 5. In particular, we prove the following result
(conjectured in [Bra01]) regarding K4-free graphs which cannot be decomposed as the
join of a triangle-free graph and an independent set.

Theorem 3. Let G be a maximal K4-free graph such that δ(G) > (4/7)n.
If G is not the join of an independent set and a triangle-free graph, then α(G) > 4δ− 2n.

As a result, we obtain an alternative proof of the bound in Theorem 2 in the case
where r = 4.

For the case r = 5, we can prove a similar result regarding large independent sets in
K5-free graphs which cannot be decomposed as a join of either a K4-free graph and an
independent set, or as two triangle-free graphs.

Theorem 4. Let G be a maximal K5-free graph such that δ(G) > (11/16)n.
If G is not the join of two triangle-free graphs, then

α(G) > min

{
3(3δ − 2n),

1

6

(
20δ − 25

2
n

)
,
2

3
(2δ − n)

}
.

As in the case of K4-free graphs, we obtain an alternative proof on the bound of the
minimum degree of a K5-free graph on n vertices which forces an independent set of order
(1/4)n. In addition, bounds on the minimum degree which force an independent set of
order (1/5)n are also demonstrated.

Corollary 5. Let G be a maximal K5-free graph.
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r 6 7 8 9 10

Conjecture 19
25

= .76 4
5

= .8 29
35
≈ .829 17

20
= .85 13

15
= .86

Theorem 2 31
40

= .775 22
27

= .814 59
70
≈ .843 19

22
= .863 95

108
≈ .880

Theorem 6 61
80

= .7625 121
150

= .806 211
252
≈ .837 337

392
≈ .860 505

576
≈ .877

Table 1: Comparison of the conjectured thresholds with Theorems 2 and 6.

1. If δ > (7/10)n, then α(G) > (1/4)n.

2. If δ > (31/45)n, then α(G) > (1/5)n.

Finally, we obtain a bound on the minimum degree of a Kr-free graph on n vertices
which forces an independent set of order (1/(r−1))n. This provides an improvement over
Theorem 2 for all r > 5.

Theorem 6. Let G be a Kr-free graph (r > 4). If

δ(G) > δrn :=

(
r − 3

r − 2
+

1

(r − 2)2(r − 1)

)
n,

then α(G) > (1/(r − 1))n.

As a guide, Table 1 provides a comparison between the minimum degree bounds in
Theorems 2 and 6, as well as the conjectured bound.

3 A General Lemma for Kr-free graphs

To start with, the following lemma can be used to magnify weaker lower bounds on the
independence number or obtain information regarding the structure of Kr-free graphs.
The general idea is to examine a clique of order Kr−1 contained outside of an independent
set I. Either vertices in I are adjacent to the clique in a “nice”, well-distributed manner,
and a graph can be constructed which places an upper bound on α(G), or there is a large
Kk-free subgraph which arises as the common neighborhood of a suitably chosen clique.

Given a Kr-free graph G and an independent set I, we define a sunflower subgraph
SGr as follows: First, take a clique of order r − 1 (the “head” of the sunflower) which is
disjoint from I. Then take r − 1 vertices in I, each corresponding to (and adjacent to)
one of the r − 1 subsets of vertices of order r − 2 in this clique. The presence of such a
subgraph can be used to provide an upper bound on the order of an independent set.

Bootstrapping Lemma. Let G be a maximal Kr-free graph with n vertices.
One of the following statements regarding G must be true.

1. G is the join of an independent set and a Kr−1-free graph.
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2. For some k such that 2 6 k 6 r − 2, there is a set Uk ⊂ V (G) such that the graph
induced by Uk is Kr−k-free, and

|Uk| > kδ − (k − 1)n+
k − 1

k
α(G).

3. The value of α(G) is bounded above by

α(G) 6 2(n− δ)− 2

r − 2
δ.

Proof. Let I be a maximum independent set in G. If every other vertex is adjacent to all
of I, then G is the join of an independent set and a Kr−1-free set, so we are done. Thus
we may assume that there exists a vertex s1 ∈ V (G)− I such that I 6⊆ N(s1) (but by the
maximality of I, N(s1) ∩ I 6= ∅).

Consider some vertex x ∈ I that is not adjacent to s1. As G is a maximal Kr-free
graph, there must be vertices {s2, . . . , sr−1} in N(s1) ∩ N(w) which induce a clique of
order r − 2. Let S = {s1, . . . , sr−1}, so that S induces a copy of Kr−1, but S ∩ I = ∅.

At this point, we consider two cases, based on the diversity of neighborhoods of vertices
of I in S. For a set S ′ ⊂ S, let N(S ′) denote the common neighborhood of vertices in S ′.

1. For every subset S ′ ⊆ S of r − 2 vertices, N(S ′) ∩ I 6= ∅.
As each set of r−2 vertices in S has a common neighbor in I, this forms a sunflower
graph SGr. To bound the independence number from above, we use double counting
on the adjacencies from SGr to the rest of the graph. Each vertex in G can be
adjacent to at most r − 2 of the vertices of S without forming a copy of Kr. As a
result, a vertex in I can be adjacent to at most r− 2 vertices of SGr. Every vertex
in V (G)− I can be adjacent to at most 2r− 4 (either r− 1 of the vertices in I, and
r − 3 vertices in S, or at most r − 2 from both the vertices in S and the vertices of
SGr in I). As each vertex in SGr has degree δ, we obtain the following:

2(r − 1)δ 6 (2r − 4)(n− |I|) + (r − 2)|I| = (2r − 4)n− (r − 2)|I|.

Solving for |I| yields, |I| 6 2(n− δ)− (2/(r − 2))δ.

2. There is a subset S ′ ⊆ S of k vertices (2 6 k 6 r − 2), N(S ′) ∩ I = ∅.
In this case, let k be the smallest such value for which this is true, and let S ′ ⊂ S be
the corresponding set of vertices. Recall that S is disjoint from I; by the maximality
of I, every vertex in S is adjacent to a vertex in I, so k > 2. Our goal is to build a
set of vertices S ′′′ which induce a clique of order k and consider the intersection of
the neighborhoods of these vertices.

Before determining the set S ′′′, we introduce the slack of a family of sets, as a
convenient tool to clarify the discussion of this case (used for a similar purpose in
[GL11]). Consider a family of sets A = {A1, A2, . . . , Ak} on the set {1, 2, . . . , n}, and
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let Ni denote the pairwise disjoint sets of elements which are contained in exactly i
sets. We define the slack of A is defined to be

Slack(A) =
k−2∑
i=0

(k − i− 1)|Ni|.

We note that the sum of orders of the sets Ai can be written as a weighted sum of
the orders of the Ni sets, that is

k∑
i=1

|Ai| = k|Nk|+ (k − 1)|Nk−1|+ (k − 2)|Nk−2|+ · · ·+ |N1|.

The slack will be used to help determine a bound on |Nk|. Isolating one copy of
|Nk|, we get

|Nk| =
k∑

i=1

|Ai| − [(k − 1)|Nk−1|+ (k − 2)|Nk−2|+ · · ·+ |N1|]− (k − 1)|Nk|,

=
k∑

i=1

|Ai| − (k − 1) (|Nk|+ |Nk−1|+ · · ·+ |N1|+ |N0|) + Slack(A).

As the sets Ni are pairwise disjoint, |Nk| + |Nk−1| + · · · + |N1| + |N0| = n, and we
obtain the following equality,

|Nk| =
k∑

i=1

|Ai| − (k − 1)n+ Slack(A). (1)

Now, choose a set S ′′′ by first choosing a suitable subset S ′′ ⊂ S ′ according to one
of the following cases:

(a) Suppose there is a vertex v ∈ S ′ such that |N(v) ∩ I| > k−1
k
|I|.

In this case, choose S ′′ = S ′−{v}. Since N(S ′)∩I = ∅, each vertex in N(v)∩I
is not adjacent to at least one vertex in S ′′. Then, chose a vertex w ∈ N(S ′′)∩I
to add to form S ′′′ = S ′′ ∩ {w}. By forming the clique in this way, at least
k−1
k
|I| vertices are adjacent to at most k − 2 vertices in S ′′′. Let S denote the

family of neighborhoods of each of the vertices in S ′′′. Then,

Slack(S) >
k − 1

k
|I|.

(b) Suppose there is no vertex v ∈ S ′ such that |N(v) ∩ I| > k−1
k
|I|.

In this case, choose S ′′ to be any set of k − 1 vertices in S ′. Then there are at
least ((k − 1)/k)|I| non-adjacencies between S ′ and I. Again, chose a vertex
w ∈ N(S ′′) ∩ I to add to form S ′′′ = S ′′ ∩ {w}, and let S denote the family of
neighborhoods of each of the vertices in S ′′′. Then,

Slack(S) >
k − 1

k
|I|.
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Let U denote the common neighborhood of S ′′′, and note that U must be Ks-free,
where s = r − k. Taking into account the slack observed above, we use Equation 1
to obtain

|U | > kδ − (k − 1)n+
k − 1

k
|I|.

To apply the Bootstrapping Lemma, we next consider modest lower bounds on α(G).
For Kr-free graphs which are not the join of an independent set and a Kr−1-free graph,
this serves the dual purposes of

1. demonstrating that the second statement from the Bootstrapping Lemma must be
true, and

2. providing a bound on the Kr−k-free set |Us| from the second statement.

In particular, in the case r = 4, modest bounds on α(G) result in improved bounds on
α(G) (Hence, this is a “bootstrapping” lemma). In fact, the same holds true for r > 4
(though not as directly).

4 “Modest” bounds on α(G).

4.1 Kr-free graphs (r > 4).

To provide a “modest” bound on the independence number, we define a function f =
f(r, δ, n) as follows:

f(r, δ, n) = δ − r − 3

r − 1
n.

This function provides a bound on α(G), and is well-known (for example, see [ES70]).
For completeness the following lemma gives a proof of this simple result.

Lemma 7. For any Kr-free graph G

α(G) > f(r, δ, n).

Proof. Let s be the minimum value such that G contains a copy of Ks−1. Choose a copy
of S = Ks−1 in G. At least (s− 1)δ− (s− 3)n vertices in G are adjacent to r− 2 vertices
in this copy. For any S ′ ⊂ S of order s− 2, N(S ′) is independent. Since there are s− 1
different choices for S ′, then there is some S ′ such that |N(S ′)| > δ − ((s− 3)/(s− 1))n,
and N(S ′) must necessarily be independent. Note that s 6 r and f(s, δ, n) is decreasing
in s, implying the result.

This bound on α(G) can be used to determine when statement (3) in the Bootstrapping
Lemma is not satisfied. Solving, we obtain the following:
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Fact 8.

f(r, δ, n) > 2(n− δ)− 2

r − 2
δ for δ >

(3r − 5)(r − 2)

(3r − 4)(r − 1)
.

For r = 5, the bound on δ above is 15/22 = .681. In fact, for r > 5, we note
that ((5r − 11)/(5r − 5))n is larger than the bound on δ provided. Therefore, in the
results regarding both r = 5 or r > 5 described in the introduction, we may assume that
statement (3) in the Bootstrapping Lemma is not satisfied.

4.2 K4-free graphs.

For r = 4, the modest bounds on α(G) are improved in order to apply the bootstrapping
lemma effectively for a larger range of values on δ. First, we obtain a simple bound in
the case when the neighborhood of a minimum degree vertex is bipartite or has large odd
girth.

Lemma 9. Let G be a maximal K4-free graph. Suppose u is a vertex of minimum degree.
If C5 6⊆ N(u), then

α(G) > min

{
δ

2
,
17

7
δ − n

}
.

Proof. Let G be a maximal K4-free graph. Consider a minimum degree vertex u. If the
graph induced by N(u) is bipartite, then one of the bipartitions has order at least δ/2.
Otherwise, the graph induced by N(u) is not bipartite, and does not contain C5. In this
case, consider the shortest odd cycle C = C2k+1 for some k > 2.

Each vertex in N(u) can be adjacent to at most 2 vertices on this cycle. As a result, the
number of edges from the vertices in N(u)−C to the vertices in C is at most 2(δ−(2k+1)).
Adding the degrees of end-vertices over all edges in the cycle C gives twice the number
of edges from the vertices in N(u) − C to the vertices in C (minus 2(2k − 1), twice the
number of edges of the cycle), so there is some edge such that the endvertices are adjacent
to at most (4/(2k+1))δ vertices in N(u). The common intersection of the neighborhoods
of the end-vertices of this edge form an independent set. As a result, we obtain

α(G) > 2δ − (n− ((2k − 3)/(2k + 1))δ).

This is minimized at k = 3, and yields α(G) > 2δ − n+ (3/7)δ = (17/7)δ − n.

Next, we consider more closely the case when C5 ⊆ N(u) (where u is a minimum
degree vertex), that is, W5 (the 5-wheel) is a subgraph of G. We will make use of W5 for
double counting, a strategy used effectively in a variety of ways by Brandt (e.g. [Bra03]).
In order to use double counting, we define the following sets.

Xi = {v ∈ V (G)−N(u) : |N(v) ∩W5| = i} for i = 0, 1, 2, 3, 4, 5.
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Since there are 6 vertices in W5, there are at least 6δ neighbors of vertices in W5. Also,
any vertex in N(u) can be adjacent to at most 3 vertices of W5. Therefore,

6δ 6 3δ + |X1|+ 2|X2|+ 3|X3|+ 4|X4|+ 5|X5|.

Since the sets Xi partition V (G) − N(u), we can refine this expression in two different
ways to obtain the following two bounds.

6δ 6 3δ + 2(n− δ) + |X3|+ 2|X4|+ 3|X5|,
6δ 6 3δ + 3(n− δ) + |X4|+ 2|X5|.

These yield the following two inequalities regarding the cardinalities of Xi:

|X4|+ 2|X5| > 6δ − 3n, (2)

|X3|+ 2|X4|+ 3|X5| > 5δ − 2n. (3)

Note that the vertices in X5 cannot be adjacent to any vertex in X4 ∪ X3, or K4 ⊂ G.
Since both X4 and X5 are independent sets,

|X4|+ |X5| 6 α(G). (4)

In the following lemmas, we shall provide bounds on α(G) using the inequalities above,
based on the structure of the graph induced by X3 ∪X4.

Lemma 10. Let G be a maximal K4-free graph such that the neighborhood of a vertex of
minimum degree contains a copy of C5. Then,

α(G) > g(n, δ) := min

{
9

4
δ − n, 1

3
(5δ − 2n),

5

2
(2δ − n)

}
.

Proof. To obtain these bounds, we consider different cases based on the graph induced
by X3 ∪X4.

1. The graph induced by X3 ∪X4 is triangle-free and non-bipartite,

In the set X3∪X4, form a set S such that X4 ⊂ S and S is a maximal independent.
Since X3 ∪ X4 is not bipartite, there must be some edge (u, v) such that u, v ∈
(X3 ∪ X4) − S and |N(u) ∩ S|, |N(v) ∩ S| 6= ∅. Furthermore, since X3 ∪ X4 is
triangle-free, |N(u) ∩ N(v) ∩ S| = 0, implying either |N(u) ∩ S| < (1/2)|S| or
|N(v) ∩ S| < (1/2)|S|. Without loss of generality, suppose |N(u) ∩ S| < (1/2)|S|,
and consider a vertex s ∈ N(u)∩ S. Neither vertex of the edge (u, s) is adjacent to
the vertices in S −N(u) or X5, and therefore,

α(G) > 2δ − n+ |X5|+
1

2
|S|

> 2δ − n+
1

2
(2|X5|+ |X4|)

>
5

2
(2δ − n).
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2. The graph induced by X3 ∪X4 contains a triangle.

Each vertex of the triangle in X3 ∪ X4 cannot be adjacent to X5. Therefore, we
obtain the following bound on α(G):

α(G) >
1

3
(3δ − n+ |X5|)

>
1

3
(3δ − n+ |X5|) +

1

3
(|X4|+ |X5|)−

1

3
α(G).

Applying Inequality 2 yields the bound α(G) > (9/4)δ − n.

3. The graph induced by X3 ∪X4 is triangle-free and bipartite.
Since X5 is not adjacent to any vertex in X3 ∪X4,

α(G) >
1

2
(|X3|+ |X4|) + |X5|

=
1

2
(|X3|+ 2|X4|+ 3|X5|)−

1

2
(|X4|+ |X5|) .

Applying Inequalities 2 and 3 yields the bound α(G) > (1/3)(5δ − 2n).

The result of this section is the following fact:

Fact 11.

g(n, δ) > 2(n− δ)− δ = 2n− 3δ for δ >
4

7
n.

Now, as in the case with r > 5, we may assume that statement (3) in the Bootstrapping
Lemma is not satisfied for our results regarding r = 4.

5 Applying the Bootstrapping Lemma

5.1 K4-free graphs

In the case of r = 4, applying the Bootstrapping Lemma to prove Theorem 3 is a very
simple matter.

Proof of Theorem 3. Suppose that G is a K4-free graph on n vertices with δ > (4/7)n,
such that G cannot be decomposed as the join of an independent set and a triangle-free
graph. By the structure of G and Fact 11, both statements (2) and (3) in the Bootstrap-
ping Lemma are not satisfied, implying that there is a set U2 which is independent, such
that

α(G) > |U2| > 2δ − n+
1

2
α(G).

Solving for α(G) yields α(G) > 2(2δ−n), and we note that for this bound, δ(G) > (3/5)n
implies α(G) > (2/5)n > (1/3)n.
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When G = H ∨ I is the join of a triangle-free graph H and an independent set I with
α(G) < (1/3)n, it is easy to show that δ < (3/5)n, completing an alternative proof of
Theorem 2 (for the case r = 4). It must be the case that |H| > (2/3)n, where n is the
number of vertices in G, or α(G) > |I| > (1/3)n. As a consequence, H must also not be
bipartite, implying that the minimum degree of H is at most (2/5)|V (H)|. Considering
the degree in such a graph, we get

δ 6 (n− |H|) +
2

5
|H| = n− 3

5
|H|.

This is maximized at the minimum value of |H| (and |H| > (2/3)n) implying that the
graph G must have minimum degree less than (3/5)n.

5.2 K5-free graphs

The approach for K5-free graphs is dependent on the structure. Graphs which can be
written as the join of an independent set and a K4-free set, or as the join of two triangle-
free graphs are treated separately. However, graphs which cannot be written as the join
of an independent set and a K4-free set, or as the join of two triangle-free graphs have
large independent sets, and this is demonstrated by the proof of Theorem 4, given below.

Proof of Theorem 4. For δ > (15/22)n, the bootstrapping lemma, combined with the
structure of G and the modest bounds on α(G) for K5-free graphs, yields a set Uk for
either k = 2 or k = 3, such that the set is K5−k-free and

|Uk| > kδ − (k − 1)n+
k − 1

k
α(G). (5)

For k = 3, the set U3 is an independent set. Using α(G) > |U3| and substituting k = 3
into Equation 5, the bound α(G) > 3(3δ − 2n) is obtained.

For k = 2, the set U2 induces a triangle-free graph, and certainly |U2| is at most as large
as the order of the largest induced triangle-free subgraph (say S). If the largest induced
triangle-free subgraph is bipartite, then applying 2α(G) > |S| > |U3| and substituting
k = 3 into Equation 5, yields the bound α(G) > (2/3)(2δ − n).

In the event that S is not bipartite, there is some edge (s, t) ∈ S, such that both
end-vertices of the edge are not adjacent to a common set of at least (1/5)|S| vertices in
S (by the same reasoning as in Lemma 9). The intersection of the neighborhoods of s
and t is again a triangle-free graph, so we obtain

|S| > 2δ − n+
1

5
|S|.

Solving, we obtain |S| > (5/4)(2δ − n). In fact, this yields two disjoint triangle-free
sets (S and the common neighborhood of s and t), both of order at least (5/4)(2δ − n).
Therefore, we may choose S1 and S2 to be disjoint sets such that S1 and S2 both induce
triangle-free graphs, and both have order at least (5/4)(2δ−n), such that the union of S1
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and S2 is maximal. That is, any vertex v ∈ V (G)− (S1 ∪ S2) cannot be added to either
S1 or S2 without creating a triangle. Equivalently, each vertex v ∈ V (G) − (S1 ∪ S2) is
adjacent to both vertices of an edge (u1, u2) ∈ S1 and an edge (w1, w2) ∈ S2. For these
vertices, we bound the degrees in terms of α(G), |S1|, and |S2|.

1. S1 and S2 both induce triangle-free graphs, implying

|N(u1) ∩ S1|+ |N(u2) ∩ S1| 6 2α(G), and

|N(w1) ∩ S2|+ |N(w2) ∩ S2| 6 2α(G).

2. The common intersection of neighborhoods of the vertices of a triangle must be
independent, implying

|N(u1) ∩ S2|+ |N(u2) ∩ S2|+ |N(v) ∩ S2| 6 2|S2|+ α(G), and

|N(w1) ∩ S1|+ |N(w2) ∩ S1|+ |N(v) ∩ S1| 6 2|S1|+ α(G).

3. Trivially, for any vertex x, |N(x) ∩ (V (G)− (S1 ∪ S2)| 6 n− (|S1|+ |S2|).

Therefore, summing the degrees of the vertices v, u1, u2, w1, and w2, we obtain

5δ 6 4α(G) + 2|S1|+ 2|S2|+ 2α(G) + 5(n− |S1| − |S2|)
6 5n− 3|S1| − 3|S2|+ 6α(G).

Applying the lower bound on |S1| and |S2| and solving for α(G), we obtain

α(G) >
1

6

(
20δ − 25

2
n

)
.

At this point, we proceed to consider graphs that can be written as the join of a
K4-free graph and an independent set.

Lemma 12. Let G be a maximal K5-free graph, such that G is the join of a K4-free graph
and an independent set, and G is not the join of two triangle-free graphs. Then,

α(G) >
2

3
(2δ − n).

Proof. Let G be the join of a K4-free graph H and an independent set. Note that since G
is not the join of a two triangle-free graphs, then the H cannot be the join of a triangle-free
graph and an independent set. Therefore, there is an independent set in H of order

α(G) > 2(2(δ − α(G))− (n− α(G))).

This yields α(G) > (2/3)(2δ − n).

For a graph that is the join of two triangle-free graphs, results regarding the structure
of triangle-free graphs with large minimum degree can be used.
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Lemma 13. Let G be a maximal K5-free graph, such that G is the join of two triangle-free
graphs. Then,

α(G) >

 1
4
n for δ > 7

10
n

1
5
n for δ > 11

16
n

Proof. Suppose that G is the join of triangle-free graphs H1 and H2. We may choose H1

to be the larger. The relative degree of a vertex in H1 is at least (δ−(n−|H1|))/|H1|. This
can be seen to be increasing in H1, so we choose H1 = (1/2)n to minimize the relative
degree, yielding a relative degree of 2(δ/n)− 1.

When the relative degree is larger than (2/5), the graph H1 must be bipartite. This
occurs at δ = (7/10)n. When the relative degree is larger than (3/8), the graph H1 is
either bipartite or homomorphic to a 5-cycle. This occurs at δ = (11/16)n.

Both of the thresholds in Lemma 13 are sharp, as seen by the join of two 5-cycles, and
the join of two copies of the Wagner graph, the Möbius ladder on 8 vertices.

Define the function g(n, δ), by the following:

h(n, δ) := min

{
3(3δ − 2n),

1

6

(
20δ − 25

2
n

)
,
2

3
(2δ − n)

}
.

To achieve the proof of Corollary 5, it is enough to note that 31/45 > 11/16, and for
δ > (31/45)n, h(n, δ) > (1/5)n.

5.3 Kr-free (r > 5)

In this section, we provide the proof of Theorem 6. In order to present the proof of the
following lemma more smoothly, let

δr =
r − 3

r − 2
+

1

(r − 2)2(r − 1)
.

To begin with, we show that there must be a large Ks-free set in a Kr-free graph with
δ > δrn.

Lemma 14. Let G be a Kr-free graph with δ(G) > δrn that cannot be written as the join
of a Kr−1-free graph and an independent set. Then there is some set S which is Ks-free
(s < r) such that

|S| > s− 1

r − 1
n.

Proof. The bootstrapping lemma guarantees a set Uk which is Kr−k-free, such that

|Uk| > kδ − (k − 1)n+
k − 1

k
α(G). (6)

To show this result, we first show it for the particular cases k = r− 2, k = r− 3, and
k = r − 4, and then for k > r − 4.
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1. Suppose k = r − 2.
If this is the case, Ur−2 is independent, and in particular α(G) > |Ur−2|. Ap-
plying this to Equation 6 allows one to solve for α(G) and obtain α(G) > (r −
2) ((r − 2)δ − (r − 3)n). This bound gives α(G) > (1/(r − 1))n for δ > δrn.

At this point, it is worth noting that the case k = r − 2 determined the choice of δr.
For the remaining cases, it is possible to use a slightly smaller (and cleaner) value on δ
than δrn. In particular, we use

δ > δrn >
r − 3

r − 2
n.

The following two bounds for quantities in Equation 6 (using δr > (r − 3)/(r − 2)) are
also used:

kδ − (k − 1)n >
r − 2− k
r − 2

n, (7)

α(G) > f(r, δ, n) >
r − 3

(r − 2)(r − 1)
, (8)

>
k

k − 1

(
k

(r − 2)(r − 1)

)
for k < r − 4. (9)

2. Suppose k = r − 3.
First, suppose that α(G) > ((r−3)/(r−4))(|Ur−3|−(n−δ)). Then, when substituted
into Equation 6, this yields

|Ur−3| > (r − 2)δ − (r − 3)n+ |Ur−3|.

However, this is a contradiction, as δrn > (r − 3)/(r − 2)n. Therefore, we may
assume that α(G) < ((r − 3)/(r − 4))(|Ur−3| − (n − δ)). Additionally, since Ur−3
induces a triangle-free graph, then |N(v) ∩ Ur−3| 6 α(G). Since this implies that
vertices in Ur−3 may not have many neighbors in Ur−3, we look at the intersection of
the neighborhoods of two adjacent vertices u, v ∈ Ur−3 that occurs outside of Ur−3.

|N(u) ∩N(v)| > 2

(
δ − r − 3

r − 4
(|Ur−3| − (n− δ))

)
− (n− |Ur−3|),

> 2δ − 2

(
r − 3

r − 4

)
(|Ur−3|+ (n− δ))− n+ |Ur−3|).

Since (r − 3)/(r − 4) attains its maximum at r = 6 (when restricted to r > 6), we
can simplify this to the following:

|N(u) ∩N(v)| > 2δ − 3 (|Ur−3|+ (n− δ))− n+ |Ur−3|)
= 2n− δ − 2|Ur−3|.
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We note that δ 6 (r − 2)/(r − 1)n for a Kr-free graph. Thus, either |Ur−3| >
(2/(r − 1))n, or

|N(u) ∩N(v)| > r − 3

r − 1
n.

As N(u) ∩N(v) does not contain a copy of Kr−2, either of these outcomes implies
the result.

3. Suppose k = r − 4.
In this case, Ur−4 is K4-free. We will let S be a set of vertices of largest order
which induce a K4-free graph (so |S| > |Ur−4|). First, we will show that it must be
possible to partition S into an independent set and a triangle-free graph. If not, and
S induces a K4-free graph that cannot be partitioned into a triangle-free graph and
an independent set, then Theorem 3 implies a large independent set. In particular,
each vertex in S must have at least δ − (n− |S|) neighbors in S, so

α(G) > 2 (2(δ − (n− |S|))− |S|) = 2|S| − 4(n− δ).

Since |S| > |Ur−4| > (r − 4)δ − (r − 5)n, and δ > δrn > (r − 3)/(r − 2)n, then the
quantity 2|S| − 4(n− δ) > 0. Using the bound on |Ur−4| and |S| > |Ur−4|, we get

|S| > (r − 4)δ − (r − 5)n+
r − 5

r − 4
(2|S| − 4(n− δ)) .

Using r > 6 in the fraction (r − 5)/(r − 4), we can simplify this to the following:

|S| > (r − 2)δ − (r − 3)n+ |S|.

However, this would imply that δ < (r−2)/(r−3)n, a contradiction. Therefore, we
may assume S can be partitioned into an independent set and a triangle-free graph.

In this case, we may suppose the order of the triangle-free graph is less than (2/(r−
1))n (or we would be done). Therefore,

α(G) > |S| − 2

r − 1
n > (r − 4)δ − (r − 5)n+

r − 5

r − 4
α(G)− 2

r − 1
n.

Solving for α(G), this yields

α(G) > (r − 4)

(
(r − 4)δ − (r − 5)n− 2

r − 1
n

)
.

Finally, applying Equation 9 yields the following inequality (for r > 6),

α(G) > (r − 4)

(
2

r − 2
− 2

r − 1

)
=

2r − 8

r − 2

(
1

r − 1

)
>

1

r − 1
.
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4. Suppose k < r − 4.
In this case, simply apply Equations 9 and 7 to the bound on |Uk| given by the
bootstrapping lemma.

|Uk| > kδ − (k − 1)n+
k − 1

k
α(G)

>

(
r − k − 2

r − 2
+

k

(r − 2)(r − 1)

)
n

=

(
r − k − 1

r − 1

)
n

Now we are ready to prove the main result by adding in the induction step.

Proof of Theorem 6. In the event that G can be written as the join of a Kr−1-free graph S
and an independent set I, than |I| > (1/(r−1))n, and we are done, or |S| > ((r−2)/(r−
1))n. If G cannot be written as the join of a Kr−1-free graph and an independent set,
then Lemma 14 guarantees that there is a Ks-free set S such that |S| > s−1

r−1n. Therefore,
in either case, we want to use induction applied to the set S. If there is an independent
set of order (1/(s − 1))|S| contained in S, then this implies an independent set of order
(1/(r − 1))n in G. Therefore, since the cases r = 4 and r = 5 provide base cases, it only
remains to be shown that a minimum degree greater than δrn implies that the degree of
a vertex in S is at least δs|S|.

For a vertex u ∈ S, we can write

|N(u) ∩ S|
|S|

>
δ − (n− |S|)

|S|
= 1− n− δ

|S|
.

As n− δ > 0, we can use the lower bound from Lemma 14, as well as δ > δrn, to get

1− n− δ
|S|

> 1− r − 1

s− 1

(
1

r − 2
− 1

(r − 2)2(r − 1)

)
= 1− r − 1

(r − 2)(s− 1)
+

1

(r − 2)2(s− 1)
.

At this point, we note that the expression above decreases in r, and certainly r > s.
Therefore,

1− n− δ
|S|

> 1− s− 1

(s− 2)(s− 1)
+

1

(s− 2)2(s− 1)
= δs.
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