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Abstract

We revisit a classic partition theorem due to MacMahon that relates partitions
with all parts repeated at least once and partitions with parts congruent to 2, 3, 4, 6
(mod 6), together with a generalization by Andrews and two others by Subbarao.
Then we develop a unified bijective proof for all four theorems involved, and obtain
a natural further generalization as a result.
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1 Introduction

In his classic work Combinatory Analysis, MacMahon [8, page 54] proves the following
theorem:

Theorem 1.1. The number of partitions of n wherein no part appears with multiplicity
one equals the number of partitions of n where all parts must be even or congruent to 3
(mod 6).

MacMahon utilizes a generating function argument to prove Theorem 1.1. (Indeed,
Berndt [4, page 5] mentions MacMahon’s identity as a straightforward exercise in gener-
ating function manipulations.)

In 1967, half a century after MacMahon published this result, Andrews [1] stated and
proved the following natural generalization of Theorem 1.1:
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Theorem 1.2. Let r be a positive integer. The number of partitions of n in which any
part with odd multiplicity must appear at least 2r+1 times equals the number of partitions
of n where all parts must be even or congruent to 2r + 1 (mod 4r + 2).

As with MacMahon, Andrews’ proof is a straightforward generating function argu-
ment. (We note in passing that MacMahon’s result has been generalized in directions
other than Theorem 1.2; in particular, see the works of Holroyd [6] and Yee [10].)

In 1971, Subbarao [9] stated that Andrews’ theorem above “is itself a special case of
the following result”:

Theorem 1.3. Let k > 2 be an integer and let ` be a positive integer which is not a
multiple of k. The number of partitions of n in which the multiplicity of each part is
either congruent to 0 (mod k) or else at least ` and congruent to ` (mod k) equals the
number of partitions of n where all parts must be congruent to 0 (mod k) or congruent to
` (mod 2`).

Subbarao goes on to say, “Andrews’ result corresponds to the choice k = 2, ` = 2r+1.
The proof of this is analogous to that of Andrews’ and is therefore omitted.” Interesting
enough, for many choices of k and `, the right–hand side of Subbarao’s result is not
naturally interpreted as a statement about (ordinary) integer partitions. Rather, one
must invoke the idea of colored partitions or something similar. We will discuss this
further below.

Besides Theorem 1.3, Subbarao supplied another generalization in that same paper
[9]. Instead of relaxing the constraints on the modulus (k and ` in Theorem 1.3), he
considered a “finite version” of Theorem 1.2. Namely, he gave the following:

Theorem 1.4. Let m > 1, r > 0 be integers, and let Cm,r(n) be the number of partitions of
n such that all even multiplicities of the parts are less than 2m, and all odd multiplicities
are at least 2r + 1 and at most 2(m+ r)− 1. Let Dm,r(n) be the number of partitions of
n into parts which are either odd and congruent to 2r + 1 (mod 4r + 2), or even and not
congruent to 0 (mod 2m). Then Cm,r(n) = Dm.r(n).

Note that when we choose m sufficiently large, say m = n, then the three conditions
that involve m become redundant, and we are back to exactly Theorem 1.2.

While generating function proofs such as those supplied by MacMahon and Andrews
are of great value, bijective proofs of such integer partition identities are also quite
beneficial. In 2007, Andrews, Eriksson, Petrov, and Romik [3] appear to have provided
the first bijective proof of MacMahon’s Theorem (Theorem 1.1). However, their bijection
is quite different in nature than the one we give below and, more importantly, does not
seem to generalize naturally to a proof of either of Subbarao’s Theorems given above.
With this in mind, our first goal in this note is to provide transparent bijections between
the partitions enumerated in Theorems 1.1 and 1.2. From there, we will discuss Subbarao’s
two results in more detail and then extend our bijective proof of Theorem 1.2 to obtain
natural bijective proofs of Theorem 1.3 and Theorem 1.4.
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2 A Unified Set of Bijective Proofs

We begin this section by proving Theorem 1.1 bijectively. We outline this proof in great
detail because this bijection will serve as the foundation for the remaining bijections in
the paper.

Proof: (of Theorem 1.1). Let

p1 + p1 + · · ·+ p1︸ ︷︷ ︸
m1 times

+ p2 + p2 + · · ·+ p2︸ ︷︷ ︸
m2 times

+ · · ·+ pt + pt + · · ·+ pt︸ ︷︷ ︸
mt times

be a partition of n counted by the left–hand side of Theorem 1.1. Thus, we know that
each mi, the multiplicity of the part pi in our given partition, is either even or is odd and
at least three. We now consider two cases, depending on the parity of mi for each i, in
order to define our bijection.

• mi is even: In this case, we simply map the parts

pi + pi + · · ·+ pi︸ ︷︷ ︸
mi times

to the parts
2pi + 2pi + · · ·+ 2pi︸ ︷︷ ︸

mi/2 times

.

Each of these new parts is even as is necessary according to the right–hand side of
Theorem 1.1.

• mi is odd: Given that mi is odd, we know that mi > 3. Thus, we split off three
copies of the part pi and combine any of the remaining pairs of occurrences of pi
(if mi > 3) as was done in the previous step of the algorithm. This now leaves us
with three copies of each of the parts pi which had odd multiplicity in the original
partition. We now take one copy of each such part and realize that these define
a subpartition into distinct parts. We then use any of the well–known bijections
for converting distinct–part partitions into odd–part partitions (thanks to Euler’s
classic result) to convert the parts of this distinct–part subpartition into a partition
into odd parts. For example, following [2], we can take this subpartition into distinct
parts, and keep splitting all the even parts (if any) into two equal halves until there
are no more even parts left and we get a subpartition into purely odd parts. Finally,
in order to get back to the weight of n which we need, we multiply each of the parts
in this odd–part subpartition by 3. (Each of these parts will then be congruent to
3 modulo 6.)

The reverse map should be clear; one simply cuts each even part counted on the right–
hand side into two parts of half the size, and reverses the map above for those parts which
are congruent to 3 modulo 6.
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We provide an example here to demonstrate the above. We begin with

5 + 5 + 5 + 5 + 5 + 5 + 5 + 4 + 4 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1

which is a partition of n = 60 counted by the left–hand side of Theorem 1.1. We see that
the part 2 has even multiplicity. Thus, we simply convert these occurrences of the part 2
by pairing:

2 + 2 + 2 + 2→ 4 + 4 (1)

Next, we see that the parts 5, 4, and 1 have odd multiplicities. For now, we set aside
three copies of each of these parts and then convert the “excess” copies of each of these
parts by pairing them:

5 + 5 + 5 + 5→ 10 + 10, 1 + 1→ 2 (2)

(Note that the part 4 has multiplicity 3, so there are no “excess” copies of 4 with which
we need to deal.) We now consider the distinct–part partition 5+4+1 and convert it in a
natural way to a partition into odd parts. We simply use the splitting process as outlined
by Andrews and Eriksson [2, Section 2.3]. We will abbreviate this as A–E conversion
throughout the remainder of the paper.

5 + 4 + 1→ 5 + 2 + 2 + 1→ 5 + 1 + 1 + 1 + 1 + 1

We now multiply each of these parts by 3 to obtain the partition

15 + 3 + 3 + 3 + 3 + 3. (3)

Collecting all the parts from (1), (2), and (3) we have the new partition

15 + 10 + 10 + 4 + 4 + 3 + 3 + 3 + 3 + 3 + 2.

This is our partition of n = 60 which is enumerated by the right–hand side of Theorem
1.1. Moreover, each of the steps mentioned above is naturally reversible, so the bijection
is complete.

For completeness’ sake, we now provide the proof of Theorem 1.2. This is a very
straightforward matter given the bijective proof of Theorem 1.1 provided above.

Proof: (of Theorem 1.2). Let

p1 + p1 + · · ·+ p1︸ ︷︷ ︸
m1 times

+ p2 + p2 + · · ·+ p2︸ ︷︷ ︸
m2 times

+ · · ·+ pt + pt + · · ·+ pt︸ ︷︷ ︸
mt times

be a partition of n counted by the left–hand side of Theorem 1.2. Thus, we know that
each mi, the multiplicity of the part pi in our given partition, is either even or is odd and
at least 2r + 1. We now consider two cases, depending on the parity of mi for each i, in
order to define our bijection.
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• mi is even: In this case, we simply map the parts

pi + pi + · · ·+ pi︸ ︷︷ ︸
mi times

to the parts
2pi + 2pi + · · ·+ 2pi︸ ︷︷ ︸

mi/2 times

.

Each of these new parts is even as is necessary according to the right–hand side of
Theorem 1.2.

• mi is odd: Given that mi is odd, we know that mi > 2r + 1. Thus, we split off
2r + 1 copies of the part pi and combine any of the remaining pairs of occurrences
of pi (if mi > 2r + 1) as was done in the previous step of the algorithm. This now
leaves us with 2r+ 1 copies of each of the parts pi which had odd multiplicity in the
original partition. We now take one copy of each such part and realize that these
define a subpartition into distinct parts. We then utilize A–E conversion as seen in
the proof of Theorem 1.1. Finally, in order to get back to the weight of n which we
need, we multiply each of the parts in this odd–part subpartition by 2r + 1. (Each
of these parts will then be congruent to 2r + 1 modulo 4r + 2.)

We now transition to Theorem 1.3 as published by Subbarao.
First off, we take the liberty of restating Subbarao’s Theorem with changes needed to

clarify the case when a part is both congruent to 0 (mod k) and congruent to ` (mod 2`).
(This may happen if no further restrictions are placed on k and `.) We then provide a
bijective proof that is quite similar to what we have seen in the previous two theorems.

Theorem 2.1. Let k > 2 be an integer and let ` be a positive integer which is not a
multiple of k. The number of partitions of n in which the multiplicity of each part is
either congruent to 0 (mod k) or else at least ` and congruent to ` (mod k) equals the
number of partitions of n into parts with two colors, say blue and red, where all parts
in blue must be congruent to 0 (mod k) while all parts in red must be congruent to `
(mod 2`).

Proof: The bijection is essentially the same as we see in the proof of Theorems 1.1 and 1.2;
we only need to specify when and how we should color the parts going from the left-hand
side of Theorem 2.1 (uncolored parts) to the right-hand side (colored parts). Let

p1 + p1 + · · ·+ p1︸ ︷︷ ︸
m1 times

+ p2 + p2 + · · ·+ p2︸ ︷︷ ︸
m2 times

+ · · ·+ pt + pt + · · ·+ pt︸ ︷︷ ︸
mt times

be a partition of n counted by the left–hand side of Theorem 2.1. Thus, we know that each
mi, the multiplicity of the part pi in our given partition, is either congruent to 0 (mod k)
or else at least ` and congruent to ` (mod k). We now consider two cases, depending on
the divisibility of mi by k for each i, in order to define our bijection.
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• mi is divisible by k: In this case, we simply map the parts

pi + pi + · · ·+ pi︸ ︷︷ ︸
mi times

to the parts
kpi + kpi + · · ·+ kpi︸ ︷︷ ︸

mi/k times

.

And we color these new parts blue. Each of these new blue parts is congruent to 0
(mod k) as is necessary according to the right–hand side of Theorem 2.1.

• mi is not divisible by k: Given that mi is not divisible by k, we know that mi > `
and mi ≡ ` (mod k). Thus, we split off ` copies of the part pi and combine any of
the remaining k-tuples of occurrences of pi (if mi > `) as was done in the previous
step of the algorithm, and we should also color them blue. This now leaves us with
` copies of each of the parts pi. We now take one copy of each such part and realize
that these define a subpartition into distinct parts. We then use A–E conversion as
above to convert the parts of this distinct–part subpartition into a partition into odd
parts. Finally, in order to get back to the weight of n which we need, we multiply
each of the parts in this odd–part subpartition by ` and color them red. (Each of
these red parts will then be congruent to ` modulo 2`.)

We also provide an example here to demonstrate the above. We use the subscripts
“b” or “r” to denote the color of each resulting part. Let k = 3 and ` = 2. We begin with

6 + 6 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 4 + 4 + 4 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1

which is a partition of n = 75 counted by the left–hand side of Theorem 2.1. We see
that the parts 4 and 2 have multiplicity divisible by k = 3. Thus, we convert these by
combining:

4 + 4 + 4→ 12b, 2 + 2 + 2→ 6b (4)

Next, we see that the parts 6, 5, and 1 have multiplicities 2, 8, and 5 respectively. For
now, we set aside ` = 2 copies of each of these parts and then convert the “excess” copies
of each of these parts by combining them in groups of k = 3:

5 + 5 + 5 + 5 + 5 + 5→ 15b + 15b, 1 + 1 + 1→ 3b (5)

(Note that the part 6 has multiplicity 2, so there are no “excess” copies of 6 with which
we need to deal.) We now consider the distinct–part partition 6 + 5 + 1 and convert it in
a natural way to a partition into odd parts. We simply use the A–E conversion.

6 + 5 + 1→ 5 + 3 + 3 + 1
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We now multiply each of these parts by ` = 2 to obtain the partition

10r + 6r + 6r + 2r. (6)

Combining the parts from (4), (5), and (6) we have the new partition

15b + 15b + 12b + 10r + 6b + 6r + 6r + 3b + 2r.

This is our partition of n = 75 which is enumerated by the right–hand side of Theorem
2.1. Moreover, when we consider the reverse map, the color (subscript) of the parts clearly
tells us which case we are dealing with and enables us to return to the correct preimage
for each partition enumerated by the right–hand side of Theorem 2.1.

We close this section by explaining how to prove Theorem 1.4 by making some neces-
sary changes to our original bijection.

We start with a partition enumerated by Cm,r(n). If the multiplicity of some part is
odd, say mi for part pi is odd, then we know mi > 2r + 1. We peel off 2r + 1 copies of
the part pi, then we convert all these parts (each has 2r + 1 copies) into a subpartition
with parts odd and congruent to 2r+ 1 (mod 4r+ 2), using A–E conversion we have seen
in the proofs of the previous theorems. After that, the remaining parts in the original
partition will have even multiplicity mj with 2 6 mj 6 2m − 2. Now we convert these
parts into even parts not congruent to 0 (mod 2m), so besides pairing the parts to make
the new parts even, we must also factor out all the powers of m which are present. Thus,
we map the parts

pj + pj + · · ·+ pj︸ ︷︷ ︸
mj times

to the parts
2pj
mαj

+
2pj
mαj

+ · · ·+ 2pj
mαj︸ ︷︷ ︸

mjm
αj /2 times

,

where αj = ordm(pj) := max{α ∈ N | mα|pj}. Note that 1 6 mj/2 6 m − 1, so the
reverse map is well defined as a result of the uniqueness of the m-ary representation of an
integer.

We illustrate this new bijection with an example for m = 3, r = 2. We consider the
following partition enumerated by C3,2(389) :

20 + 20 + 20 + 20 + 20 + 20 + 20 + 16 + 16+

15 + 15 + 15 + 15 + 15 + 15 + 15 + 15 + 15+

7 + 7 + 7 + 7 + 7 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 3 + 3 + 3 + 3

We first peel off 2r + 1 = 5 copies of parts with odd multiplicity, namely parts 20, 15, 7
and 5, take one copy of each to get the distinct–part partition 20 + 15 + 7 + 5, and trigger
the A–E conversion to get

20 + 15 + 7 + 5→ 15 + 10 + 10 + 7 + 5→ 15 + 7 + 5 + 5 + 5 + 5 + 5.
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We now multiply by 5 to get the subpartition with parts odd and congruent to 5 (mod 10):

75 + 35 + 25 + 25 + 25 + 25 + 25. (7)

Next we proceed to convert the remaining parts in the original partition:

20 + 20→ 40; 16 + 16→ 32; 5 + 5→ 10;

15 + 15 + 15 + 15→ 10 + 10 + 10 + 10 + 10 + 10;

3 + 3 + 3 + 3→ 2 + 2 + 2 + 2 + 2 + 2.

(8)

Note that the total multiplicity for 10 is 6 + 1 = 7, where 6 + 1 = 2 · 3 + 1 is the ternary
representation of 7, so the reverse map is clear. The resulting partition is obtained by
combining all the parts from (7) and (8):

75 + 40 + 35 + 32 + 25 + 25 + 25 + 25 + 25+

10 + 10 + 10 + 10 + 10 + 10 + 10 + 2 + 2 + 2 + 2 + 2 + 2,

which is enumerated by D3,2(389).

3 Concluding Remarks

We close with two remarks. First, it is the case that three proofs of Theorem 1.4 exist in
the literature: Subbarao’s original generating function proof [9], Gupta’s bijective proof
[5], and another bijective proof published quite recently by Kanna, Dharmendra, Sridhara,
and Kumar [7]. Even so, it is important to note that none of these authors treat all four
of the theorems above uniformly as we have done using only splitting and pairing as the
main conversion method. This much desired uniformity is also the main reason for our
choice of A–E conversion to accomplish the distinct–odd transition over other options like
Sylvester’s bijection as seen in [5].

Second, with our method, at least one further generalization is easily within reach. In
essence, this generalization is a fusion of Theorem 1.4 and Theorem 2.1. We state it here
without proof.

Theorem 3.1. Let k > 2,m > 2 be two integers and let ` be a positive integer which is not
a multiple of k. Let Em,`,k(n) be the number of partitions of n such that the multiplicity
of each part is either congruent to 0 (mod k) and less than km or else congruent to `
(mod k) and at least ` and at most `+k(m−1). Let Fm,`,k(n) be the number of partitions
of n into parts with two colors, say blue and red, where all parts in blue must be congruent
to 0 (mod k) but not congruent to 0 (mod km) while all parts in red must be congruent
to ` (mod 2`). Then Em,`,k(n) = Fm,`,k(n).
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