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Abstract
In this paper we develop a general method to enumerate the congruences of finite

summations
∑p−1

k=0
ak
mk (mod p) and

∑p−1−h
k=0

akak+h

Bk (mod p) for the infinite sequence

{an}n>0 with generating functions (1+xf(x))
N
2 , where f(x) is an integer polynomial

and N is an odd integer with |N | < p. We also enumerate the congruences of some

similar finite summations involving generating functions
1−αx−

√
1−2(α+β)x+Bx2
βx and

1−αx−
√

1−2αx+(α2−4β)x2
2βx2

.

1 Introduction

Let p be an odd prime number and m be an integer with m 6≡ 0 (mod p). The initial
topic of this article is to enumerate

p−1∑
k=0

ak
mk

(mod p) (1)

∗Partially supported by NSC 100-2115-M-006-008.
†Corresponding author. Partially supported by NSC 101-2115-M-134-134-006.
‡Partially supported by NSC 101-2115-M-001-013-MY3.
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the congruence of the pth partial sum of the infinite sequence {an}∞n=0. The study of
the congruence of a single term, an (mod p), has a long history extending form the most
famous and edge-old problem of Pascal’s fractal, which is originally formed by the parities
of binomial coefficients

(
n
k

)
[5, 6, 13, 14, 15, 16, 19, 25], to the most recent works about

Apéry numbers [2, 4, 9, 11, 20], central Delannoy numbers [9], Catalan numbers [1, 7, 10,
17, 21], Motzkin numbers [7, 9, 18] and etc. [12].

This article focuses on the sequence {an}∞n=0 with generating functions (GF’s) (1 +

xf(x))
N
2 , where f(x) is an integer polynomial and N is an odd integer with |N | < p.

Neither an nor ak
mk in (1) is necessarily an integer if we deal with the field of rational

numbers; therefore, we shall consider both an and ak
mk the congruences in the modular

arithmetic field with modulus p. For instance, usually
(
1/2
k

)
is a fraction; however, in the

modular arithmetic field Zp = {0, 1, . . . , p− 1}, we have(
1
2

k

)
≡
(p+1

2

k

)
(mod p) for k = 0, 1, . . . , p− 1, (2)

which is always an integer. For example let p = 5, and then
( 1

2
2

)
=
(
1
2
· −1

2

)
/2! = −1

8
≡ 3

(mod 5) =
(
3
2

)
.

Z.-W. Sun [24] applied (2) and some other tools to verify the equivalence

p−1∑
k=1

ck
mk
≡ m− 4

2

(
1−

(
m(m− 4)

p

))
(mod p), (3)

where ck is the kth Catalan number and
(
·
p

)
denotes the Legendre symbol defined by

(
a

p

)
=


0 if p | a;

1 if a is a quadratic residue modulo p;

−1 if a is a quadratic nonresidue modulo p.

One has the following well-known and useful congruence:(
a

p

)
≡ a

p−1
2 (mod p), with

(
a

p

)
∈ {−1, 0, 1}. (4)

In [24], Sun also derived
∑p−1

k=1
ak
mk (mod p) for ak being the kth central Delannoy number

or Schröder number respectively. The results by Sun initiate the motivation of our study.
In this article, we wish to provide a systematic method to deal with the problems of this
kind.

The article is organized as follows. In Section 2, we exam the problem in (1) by gen-
erating functions. As applications, similar problems of (1) involving generating functions
modified from

√
1 + Ax+Bx2 are given in Section 3. In Section 4, we focus on another

type of problem
∑p−1−h

k=0
akak+h

(±B)k
(mod p). And then some applications are demonstrated

in Sections 5 and 6.
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2 GF’s of the form (1 + xf(x))
N
2

Let {ak}k>0 be the sequence associating with the generating function

(1 + xf(x))
N
2 ,

where f(x) is an integer polynomial and N is an odd integer with |N | < p. To formulate∑p−1
k=0 akm

k (mod p) and
∑p−1

k=0
ak
mk (mod p), which are same problem in different forms,

we need the following facts:

(i)
(N

2
k

)
≡
( p+N

2
k

)
(mod p) for k = 0, 1, . . . , p− 1;

(ii)
(N

2
k

)
≡
( p+N

2
k

)
≡ 0 (mod p) for k = p+N+2

2
, . . . , p− 1;

(iii)
(N

2
p

)
≡ −2−1 (mod p); moreover

( N
2

p+k

)
≡ −2−1

( p+N
2
k

)
(mod p) for k = 0, 1, . . . , p− 1

The reason for (i) is trivial and the congruence 0 in (ii) is due to that p+N
2

is an integer

and k > p+N
2

. The reason for the first equivalence in (iii) is because of the bijection
between {N,N − 2, · · · , N − 2p + 2} and {0, 1, . . . p − 1} under modulo p; however, the
element N − 2i such that N − 2i ≡ 0 (mod p) is −p, and additionally 2−p ≡ 2−1 (mod p).
The second equivalence in (iii) directly follows the first one. The advantage of (i) is that( p+N

2
k

)
is a normal binomial coefficient; therefore, we can apply

( p+N
2
k

)
=
( p+N

2
p+N

2
−k

)
.

In the following, the equivalence f(x) ≡ g(x) (mod h(x)) means that f(x) and g(x)
share same residue with respect to divisor h(x). Moreover, f(x) ≡ g(x) (mod xq, p)
indicates that the coefficients of f(x) and g(x) for the term xk, with k = 0, 1, . . . , q − 1,
are congruent modulo p.

Theorem 1. Given an odd prime p and an integer m with m 6≡ 0 (mod p). Let {ak}k>0

be a sequence of integers whose generating function is (1 + xf(x))
N
2 , where f(x) is an

integer polynomial and N is an odd integer with |N | < p. We have

(1 + xf(x))
N
2 ≡ (1 + xf(x))

p+N
2 (mod xp, p), and (5)

p−1∑
k=0

akm
k ≡ (1 +mf(m))

N+1
2

(
1 +mf(m)

p

)
− E(m) (mod p), (6)

where E(x) is the polynomial consisting of each terms xt with t > p in the expansion of

(1 + xf(x))
p+N

2 .

Proof. Actually, (5) and (6) are equivalent. The following can prove both at the same
time.

p−1∑
k=0

akm
k =

[
(1 + xf(x))

N
2 (mod xp)

]
x=m

(7)
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=

[
p−1∑
k=0

(
N
2

k

)
(xf(x))k (mod xp)

]
x=m

≡

 p+N
2∑

k=0

(p+N
2

k

)
(xf(x))k (mod xp, p)


x=m

(8)

=
[
(1 + xf(x))

p+N
2 − E(x)

]
x=m

(9)

≡ (1 +mf(m))
N+1

2

(
1 +mf(m)

p

)
− E(m) (mod p).

Notice that the equivalence in (8) responses to modulus p by applying (i) and (ii), and the
equation in (9) yields by modulus xp and that p+N

2
is an exponent of positive integer. The

last equivalence is because of (4). Referring to (7) and (8) without substituting x = m,
we then verify (5).

It takes time to enumerate E(x) unless f(x) is simple enough. In the rest of this
section we assume f(x) = A+Bx. Let [xn]g(x) denote the coefficient of xn in the power
series g(x). We derive the following rules:

(r1) If B ≡ 0 (mod p) then E(x) ≡ 0 (mod p). Moreover, we have

t∑
k=0

akm
k ≡ (1 +mf(m))

N+1
2

(
1 +mf(m)

p

)
(mod p),

for t = p+N
2
, p+N+2

2
, . . . , p− 1 due to a p+N+2

2
≡ · · · ≡ ap−1 ≡ 0 (mod p) by (ii).

(r2) If N 6 −1 then E(x) = 0 again.

(r3) If N > 1 and B 6≡ 0 (mod p), then E(x) 6= 0. Let

(1 + Ax+Bx2)
p+N

2 = q0 + q1x+ · · ·+ qp+Nx
p+N .

For the precise value of qm, we can simply apply the following formula:

[xe](1 + αx+ βx2)M

=

{∑min{e,M}
k=d e

2
e

(
M

M−k, 2k−e, e−k

)
α2k−eβe−k if M > 0 and e 6 2M ;∑e

k=d e
2
e(−1)k

( −M+k−1
−M−1, 2k−e, e−k

)
α2k−eβe−k if M < 0.

Therefore,

qm =

min{m, p+N
2
}∑

k=dm
2
e

( p+N
2

p+N
2
− k, 2k −m,m− k

)
A2k−mBm−k.
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Particularly, if N = 1 then E(x) ≡ A
2

(
B
p

)
xp + B

(
B
p

)
xp+1 (mod p); if p > 3 and

N = 3 then

E(x) ≡
(

3

22
A

(
B

p

)
− 1

24
A3B−1

(
B

p

))
xp +

(
3

2
B

(
B

p

)
+

3

23
A2

(
B

p

))
xp+1

+
3

2
AB

(
B

p

)
xp+2 +B2

(
B

p

)
xp+3 (mod p).

In case that E(x) = 0, we reach a particular case as follows.

Corollary 2. If f(x) is a constant function or f(x) = A + Bx with N 6 −1, then we
have E(x) = 0 and

p−1∑
k=0

ak
mk
≡
(
m2 + Am+B

m2

)N+1
2
(
m2 + Am+B

p

)
(mod p).

Here we recall some sequences as applications of the last corollary:

sequence name first few terms GF
∑p−1

k=0
ak
mk (mod p)

central binomial coeff. 1, 2, 6, 20, 70, . . . 1√
1−4x

(
m2−4m

p

)
central trinomial coeff. 1, 1, 3, 7, 19, 51, . . . 1√

1−2x−3x2

(
m2−2m−3

p

)
central Delannoy numbers 1, 3, 13, 63, 321, . . . 1√

1−6x+x2

(
m2−6m+1

p

)
(see [24])

A002457, in [22] 1, 6, 30, 140, 630, . . . (1− 4x)
−3
2

m2

m2−4m

(
m2−4m

p

)
A002420, in [22] 1,−2,−2,−4,−10, . . .

√
1− 4x m2−4m

m2

(
m2−4m

p

)
Table 1: Some direct applications of Corollary 2

Let us take advance to enumerate
∑p

k=0
ak
mk and

∑p+1
k=0

ak
mk , which will be used in the

nest section. We need to enumerate two additional terms, ap
mp and ap+1

mp+1 . Using (4), (i),
(ii) and (iii), we calculate ap and ap+1 as follows:

[xp](1 + Ax+Bx2))
N
2 =

p∑
k=0

[xp]

(
N
2

k

)
(x(A+Bx))k

=

p∑
k= p+1

2

(
N
2

k

)
[xp−k](A+Bx)k

≡
( N

2
p+1
2

)
[x

p−1
2 ](A+Bx)

p+1
2 +

(
N
2

p

)
[x0](A+Bx)p (mod p)
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≡
(p+N

2
p+1
2

)
p+ 1

2
AB

p−1
2 − 1

2
Ap (mod p)

≡ A

2

((p+N
2
p+1
2

)(
B

p

)
− 1

)
(mod p),

[xp+1](1 + Ax+Bx2))
N
2 =

p+1∑
k= p+1

2

(
N
2

k

)
[xp−k+1](A+Bx)k

≡
( N

2
p+1
2

)
[x

p+1
2 ](A+Bx)

p+1
2 +

(
N
2

p

)
[x](A+Bx)p

+

(
N
2

p+ 1

)
[x0](A+Bx)p+1 (mod p)

≡
(p+N

2
p+1
2

)
B

p+1
2 + 0− 1

2

(p+N
2

1

)
Ap+1 (mod p)

≡
(p+N

2
p+1
2

)(
B

p

)
B − N

22
A2 (mod p).

If B ≡ 0 (mod p) or N 6 −1, then
∑p

k=0
ak
mk and

∑p+1
k=0

ak
mk are ready because we have

ap
mp ≡ − A

2m
(mod p), ap+1

mp+1 ≡ −NA2

4m2 (mod p), E(x) = 0 and referring (6). When B 6≡ 0
(mod p) and N > 1, then the larger N is, the more complicate E(x) is. However the two
summations for N = 1 are also ready as follows.

Corollary 3. Let {an}n>0 be the sequence whose generating function is
√

1 + Ax+Bx2.
We have

p∑
k=0

ak
mk

≡ m2 + Am+B

m2

(
m2 + Am+B

p

)
− A

2m
− B

m2

(
B

p

)
(mod p),

p+1∑
k=0

ak
mk

≡ m2 + Am+B

m2

(
m2 + Am+B

p

)
− A

2m
− A2

4m2
(mod p).

3 GF’s modified from
√

1 + Ax + Bx2

Many well-known sequences are associated with generating functions modified from (1 +

Ax+Bx2)
1
2 . In this section, we consider two types:

1− αx−
√

1− 2(α + β)x+Bx2

βx
and

1− αx−
√

1− 2αx+ (α2 − 4β)x2

2βx2
.

Let
1−αx−

√
1−2(α+β)x+Bx2
βx

be the generating function of the sequence {bn}n>0, and let

A = −2(α + β) for convenience. For examples, (α, β,B) = (0, 2, 0) yields the Catalan

the electronic journal of combinatorics 21(2) (2014), #P2.45 6



number, (1, 2, 1) and (−1, 4, 1) provide the large and the little Schröder numbers respec-
tively, and (1, 2, 5) is associated with the number of restricted hexagonal polyominoes [22,
A002212].

Theorem 4. We have

p−1∑
k=0

bk
mk

≡ 1 +
m2 + Am+B

βm

(
1−

(
m2 + Am+B

p

))
+

B

βm

((
B

p

)
− 1

)
(mod p).

Proof. We still let {an}n>0 associate with
√

1 + Ax+Bx2. Notice that bk = −ak+1

β
for

k > 1. Also it is clear that a0 = 1, a1 = A
2

and b0 = 1.

p−1∑
k=0

bk
mk

= 1− m

β

p∑
k=2

ak
mk

= 1 +
m

β
+
A

2β
− m

β

p∑
k=0

ak
mk

≡ 1 +
m

β
+
A

2β
− m

β

(
m2 + Am+B

m2

(
m2 + Am+B

p

)
− A

2m

− B

m2

(
B

p

))
(mod p),

= 1 +
m2 + Am+B

βm

(
1−

(
m2 + Am+B

p

))
+

B

βm

((
B

p

)
− 1

)
.

In particular, the last term in the last theorem is zero if B ≡ 0 (mod p) or
(
B
p

)
= 1.

This particular case happens for the Catalan numbers (see (3) and also [24, Lemma 2.1]),
the large Schröder numbers (see [24, Theorem 1.2]) and the little Schröder numbers.

Now let
1−αx−

√
1−2αx+(α2−4β)x2

2βx2
be the generating function of the sequence {dn}n>0.

For convenient, let A = −2α and B = α2 − 4β. Lots of famous sequences have GF’s
of this form. For examples, (α, β) = (1, 1) yields the Motzkin number, and (3, 9) as
well as (5, 5) are associated with the numbers of Motzkin paths with multiple colors for
level steps. Also (α, β) = (2, 1) creates a shifted Catalan number, (3, 2) a shifted little
Schröder number [22, A001003], and (4, 1) the number of walks on cubic lattice starting
and finishing on the horizontal plane but never going below it [22, A005572]. For more
examples, please refer to [3]. The next result can be verified by a process similar to the
proof of the last theorem.

Theorem 5. We have

p−1∑
k=0

dk
mk
≡ m2 + Am+B

2β

(
1−

(
m2 + Am+B

p

))
+ 2 (mod p).

the electronic journal of combinatorics 21(2) (2014), #P2.45 7



4 Enumerating
∑p−1−h

k=0
akak+h

(±B)k
(mod p)

Let {an}n>0 still associate with a generating functions of form (1 + Ax + Bx2)
N
2 . In

this and the next sections we assume B 6≡ 0 (mod p). Given nonnegative integer h with
h 6 p − 1, we are interested in two summations: (S1)

∑p−1−h
k=0

akak+h

Bk (mod p) and (S2)∑p−1−h
k=0

akak+h

(−B)k
(mod p). For convenience, we use ±B to denote B and −B simultaneously.

Let G(x) = a0 + a1x+ · · · ap−1xp−1 ≡ (1 +Ax+Bx2)
N
2 (mod xp) and Q(x) = (1 +Ax+

Bx2)
p+N

2 = q0 + q1x + · · · + qp+Nx
p+N . (See (r3) for the formula of qm.) Now we apply

[x−h]G(x)G( 1
x
) to evaluate

∑p−1
k=0 akak+h and also use the fact G(x) ≡ Q(x) (mod p, xp)

(see Theorem 1).

p−h−1∑
k=0

akak+h
(±B)k

= [x−h]G(
x

±B
)G(

1

x
)

≡ [x−h]Q(
x

±B
)Q(

1

x
)−

∑
k>p−h

qkqk+h
(±B)k

(mod p)

= [x−h]

(
1 +

Ax

±B
+
x2

B

) p+N
2
(

1 +
A

x
+
B

x2

) p+N
2

−
∑
k>p−h

qkqk+h
(±B)k

= B
p+N

2 [xp+N−h]

(
1 +

Ax

±B
+
x2

B

) p+N
2
(

1 +
Ax

B
+
x2

B

) p+N
2

−
∑
k>p−h

qkqk+h
(±B)k

= −
∑
k>p−h

qkqk+h
(±B)k

+B
p+N

2 × [xp+N−h]

{
(1 + A

B
x+ 1

B
x2)p+N for (S1);

(1 + 2B−A2

B2 x2 + 1
B2x

4)
p+N

2 for (S2).
(10)

The first common term
∑

k>p−h
qkqk+h

(±B)k
can be avoided if and only if N 6 −1 (see (r2) and

(r3)). Now the result of (S2) is ready.

Theorem 6. The summation
∑p−h−1

k=0
akak+h

(−B)k
(mod p) is equivalent to

B
N+1

2

(
B

p

)
[xp+N−h]

(
1 +

2B − A2

B2
x2 +

1

B2
x4
) p+N

2

−
∑
k>p−h

qkqk+h
(−B)k

(mod p).

Particularly, if h is odd then the first term is 0, and if N 6 −1 then the last term is 0.

Example 7. Let N = −1 and B = 1. For instances, 1√
1−6x+x2 is the GF of the central De-

lannoy numbers, 1√
1−10x+x2 is associated with the colored Delannoy paths, and 1√

1−14x+x2

is associated with the central coefficients of (1 + 7x+ 12x2). So
∑p−h−1

k=0 (−1)kakak+h ≡ 0

(mod p) if h is odd; otherwise let p−h−1 = 2e and p−1
2

= M , and then
∑p−h−1

k=0 (−1)kakak+h
(mod p) is equivalent to

[xe](1 + (2− A2)x+ x2)M =
e∑

k=d e
2
e

(
M

M − k, 2k − e, e− k

)
(2− A2)2k−e.
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As for (S1), we continuously simplify the last term in (10) as

[xp+N−h]

(
1 +

A

B
x+

1

B
x2
)N

+
A

B
[xN−h]

(
1 +

A

B
x+

1

B
x2
)N

,

because (1+ A
B
x+ 1

B
x2)p ≡ 1+ A

B
xp+ 1

B
x2p (mod p) in which x2p is ignored for its exponent

being too large.

Theorem 8. Let (1 +Ax+Bx2)
N
2 =

∑
n>0 anx

n and (1 +Ax+Bx2)
p+N

2 =
∑p+N

n=0 qnx
n.

Then
∑p−h−1

k=0
akak+h

Bk (mod p) is equivalent to

B
N+1

2

(
B

p

)
[xp+N−h]

(
1 +

A

B
x+

1

B
x2
)N

+ AB
N−1

2

(
B

p

)
[xN−h]

(
1 +

A

B
x+

1

B
x2
)N

−
∑
k>p−h

qkqk+h
Bk

.

Particularly, only the first term remains when N 6 −1, the first term is zero when N > 1
and p > N + h, and the second term is zero when N < h.

Example 9. Again, let N = −1 and then
∑p−h−1

k=0
akak+h

Bk (mod p) is equivalent to(
B

p

)
[xe](1 +

A

B
x+

1

B
x2)−1 =

e∑
k=d e

2
e

(−1)k
(

k

2k − e, e− k

)
A2k−eB−k

where e = p− h− 1.

Since x/(1 + A
B
x + 1

B
x2) is the generating function of the Lucas sequence un that

satisfies the second order recurrence relation

un = −A
B
un−1 −

1

B
un−2,

with the initial u0 = 0 and u1 = 1, we also have

p−h−1∑
k=0

akak+h
Bk

≡ up−h

(
B

p

)
(mod p)

=
αp−h − βp−h

α− β

(
B

p

)
,

where α and β are roots of x2 + A
B
x+ 1

B
.

the electronic journal of combinatorics 21(2) (2014), #P2.45 9



5 Summations
∑p−2−h

k=0
bkbk+h

(±B)k
and

∑p−3−h
k=0

dkdk+h

Bk

We observe some applications here. Let
1−αx−

√
1−2αx+(α2−4β)x2

2βx2
be the generating function

of {dn}n>0. For convenience let A = −2α and B = α2 − 4β.
Since dk−2 = − ak

2β
(mod p) for k = 2, 3, . . . , p− 1, we have

p−3−h∑
k=0

dkdk+h
(±B)k

≡ B2

4β2

p−1−h∑
k=2

akak+h
(±B)k

(mod p)

=
B2

4β2

(
p−1−h∑
k=0

akak+h
(±B)k

− a0ah −
a1ah+1

±B

)
.

Before we apply the formula of
∑p−1−h

k=0
akak+h

(±B)k
given in the last section, let us recall the

term
∑

k>p−h
qkqk+h

(±B)k
in both Theorems 6 and 8. With N = 1 we have

∑
k>p−h

qkqk+h

(±B)k
=

qp−hqp
(±B)p−h +

qp−h+1qp+1

(±B)p−h+1 . Notice that, the coefficients of (1 + Ax + Bx2)M = q0 + q1x + · · · +
q2Mx

2M have a sort of symmetric property, i.e., BM−kqk = q2M−k for k = 1, 2, . . . , 2M ,
which can be easily proved by induction on M . Let M = p+1

2
and we get

p2M−k−hp2M−k
(±B)2M−k−h

= (±1)h
pkpk+h
(±B)k

≡ (±1)h
akak+h
(±B)k

(mod p). (11)

Particularly,
pp+1−hpp+1

(±B)p+1−h ≡ (±1)ha0ah (mod p) and
pp−hpp
(±B)p−h ≡ (±1)h a1ah+1

±B (mod p). More-

over, for N = 1 and h 6 p−3, the term B
N+1

2

(
B
p

)
[xp+N−h](1+ A

B
x+ 1

B
x2)N in Theorem 8

must be 0. Now we derive conclusion and show some examples as follows.

Theorem 10. The congruence
∑p−3−h

k=0
dkdk+h

Bk (mod p) is equivalent to

B2

4β2

(
A

(
B

p

)
[x1−h]

(
1 +

A

B
x+

1

B
x2
)
− 2a0ah −

2a1a1+h
B

)
.

Corollary 11. Let 2 6 h 6 p− 3. We have

p−3−h∑
k=0

dkdk+h
Bk

≡ − B
2

2β2

(
a0ah +

a1a1+h
B

)
(mod p),

which is a fixed number modulo any prime p > 2.

Example 12. Notice that a0 = 1, a1 = A
2
, a2 = B

2
− A2

8
, a3 = −AB

4
+ A3

16
and a4 =

−B2

8
+ 3A2B

16
− 5A4

128
. For h = 0, 1, 2, 3 and p > h+ 3 we have following examples:

p−3∑
k=0

dk
2

Bk
≡ B

8β2

(
2A2

(
B

p

)
− 4B − A2

)
(mod p),
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p−4∑
k=0

dkdk+1

Bk
≡ AB

32β2

(
8B

(
B

p

)
− 12B + A2

)
(mod p),

p−5∑
k=0

dkdk+2

Bk
≡ − B

64β2

(
16B2 − 8A2B + A4

)
(mod p),

p−6∑
k=0

dkdk+3

Bk
≡ 5AB

512β2

(
16B2 − 8A2B + A4

)
(mod p)

Particularly, given (A,B, β) = (−2,−3, 1) (so we need p 6= 3) that yields the Motzkin
numbers, the four summations above are respectively equivalent to

−3

(
−3

p

)
− 3, −9

2

(
−3

p

)
+

15

2
, 12 and 15 (mod p).

Theorem 13. The congruence
∑p−3−h

k=0
dkdk+h

(−B)k
(mod p) is equivalent to 0 if h is odd, and

equivalent to

B2

4β2

(
B

(
B

p

)
[xp+1−h]

(
1 +

2B − A2

B2
x2 +

1

B2
x4
) p+1

2

− 2a0ah − 2
a1a1+h
B

)
,

if h is even.

One can refer to (r3) for the precise value of [xp+1−h]
(

1 + 2B−A2

B2 x2 + 1
B2x

4
) p+1

2
.

Let
1−αx−

√
1−2(α+β)x+Bx2
βx

be the generating function of the sequence {bn}n>0, and

let A = −2(α + β) for convenience. Since b0 = 1 and bk−1 ≡ −ak
β

(mod p) for k =
2, 3, . . . , p− 1, we have

p−2−h∑
k=0

bkbk+h
(±B)k

≡ b0bh +
±B
β2

p−1−h∑
k=2

akak+h
(±B)k

(mod p)

= bh ±
B

β2

(
p−1−h∑
k=0

akak+h
(±B)k

− a0ah −
a1a1+h
±B

)
.

This is quick similar to (11), so we can directly get

Theorem 14. The congruence
∑p−2−h

k=0
bkbk+h

Bk (mod p) is equivalent to

bh +
B

β2

(
A

(
B

p

)
[x1−h](1 +

A

B
x+

1

B
x2)− 2a0ah −

2a1a1+h
B

)
.

The congruence
∑p−2−h

k=0
bkbk+h

(−B)k
(mod p) is equivalent to bh if h is odd, and equivalent

to

bh −
B

β2

(
B

(
B

p

)
[xp+1−h]

(
1 +

2B − A2

B2
x2 +

1

B2
x4
) p+1

2

− 2a0ah − 2
a1a1+h
B

)
,

if h is even.
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6 More applications

Let an =
(
2n
n

)
be the central binomial coefficient whose generating function is G(x) =

1√
1−4x . We have

p−1−h∑
k=0

16kakak+h = 4h[x−h]G(x/4)G(1/4x)

≡ 4h
(
−1

p

)
[x

p−1
2
−h](1− x)p−1 (mod p)

≡ 4h
(
−1

p

)
[x

p−1
2
−h](1− x)−1 (mod p)

= 4h
(
−1

p

)
.

Almost same procedure can be applied on the problem
∑p−1−h

k=0 A−2kakak+h for some other

an whose generating function is G(x) = (1− Ax)
N
2 for odd integer N with |N | < p.

In the following final example, we show an application involving two different sequences
by the same technique.

Lemma 15. Given integers r = bp−1
4
c, . . . , p−3

2
, p−1

2
and 0 6 h 6 b3p+1

4
c − 2, we have

r∑
k=0

64−k
(

4k

2k

)
ck+h ≡

{
0 (mod p) if 0 6 h < p−3

4
or p−1

2
< h 6 b3p+1

4
c − 2;

22h+1
(
−1
p

) ( p+1
2

p−1−2h

)
(mod p) if p−3

4
6 h 6 p−1

2
.

Proof. The sequence of the central binomial coefficients
(
2k
k

)
(k > 0) has GF 1√

1−4x that

comes from the identity
(
2k
k

)
= 4k

(−1/2
k

)
. Given t = p−1

2
, p+1

2
, . . . , p− 1, we have

t∑
k=0

(
2k

k

)
xk

4k
=

t∑
k=0

(
−1/2

k

)
xk

≡
p−1∑
k=0

(
−1/2

k

)
xk (mod p)

≡ (1− x)−
1
2 (mod xp)

≡ (1− x)
p−1
2 (mod xp, p) or (mod xp−1, p),

where the equivalence on the second line dues to (ii) in Section 1. By the same reason,
we can write (mod xp−1, p) additionally on the last line. And then we get

b t
2
c∑

k=0

(
4k

2k

)
x2k

16k
≡ 1

2

(
(1− x)

p−1
2 + (1 + x)

p−1
2

)
(mod xp−1, p).
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For convenience, let t = p−1
2

in the rest of the proof.

On the other hand, the sequence of the Catalan numbers ck has GF C(x) = 1−
√
1−4x
2x

.

Again, ck ≡ 0 (mod p) for k = p+1
2
, . . . p− 2 by (ii). So we have

p−1
2∑

k=0

ck
x−2k

4k
≡

p−2∑
k=0

ck
x−2k

4k
(mod p)

≡ C

(
1

4x2

)
(mod xp−1)

= 2x2 − 2x−(p−1)(x2 − 1)
p+1
2 .

Given 0 6 h 6 b3p+1
4
c− 2 (for bp−1

4
c+h 6 p− 2 by considering the term ck+h), finally we

derive that

b p−1
4
c∑

k=0

(
4k
2k

)
16k
· ck+h

4k+h
≡ [x−2h]− x−(p−1)(x2 − 1)

p+1
2

(
(1− x)

p−1
2 + (1 + x)

p−1
2

)
(mod p)

≡ [xp−1−2h]

(
−1

p

)
(1− x2)

p+1
2

(
(1− x)

p−1
2 + (1 + x)

p−1
2

)
(mod p)

= [xp−1−2h]

(
−1

p

)(
(1 + x)

p+1
2 (1− x)p + (1 + x)p(1− x)

p+1
2

)
≡ [xp−1−2h]

(
−1

p

)(
(1 + x)

p+1
2 + (1− x)

p+1
2

)
(mod p)

=

{
0 if 0 6 h < p−3

4
or p−1

2
< h 6 b3p+1

4
c − 2;

2
(
−1
p

) ( p+1
2

p−1−2h

)
if p−3

4
6 h 6 p−1

2
.

We complete the proof by replacing the upper limit bp−1
4
c by any of bp−1

4
c, . . . , p−1

2
.
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131:2387–2397, 2011.

[25] S. Wolfram. A New Kind of Science, Champaign, IL: Wolfram Media. 870 and 931–
932, 2002.

the electronic journal of combinatorics 21(2) (2014), #P2.45 14

http://www.cecm.sfu.ca/organics/papers/granville/Binomial/toppage.html
http://oeis.org

	Introduction
	GF's of the form (1+x f(x))N2
	GF's modified from 1+ Ax +B x2
	Enumerating k=0p-1-h ak ak+h(B)k 8mu(mod6mup)
	Summations k=0p-2-h bk bk+h(B)k and k=0p-3-h dk dk+hBk
	More applications

