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Abstract

In 2004, the first author gave the combinatorial interpretations of four mock
theta functions of Srinivasa Ramanujan using n-color partitions which were intro-
duced by himself and G.E. Andrews in 1987. In this paper we introduce a new class
of partitions and call them “split (n+t)-color partitions”. These new partitions gen-
eralize Agarwal–Andrews (n + t)-color partitions. We use these new combinatorial
objects and give combinatorial meaning to two basic functions of Gordon-McIntosh
found in 2000. They used these functions to establish the modular transformation
formulas for certain eight order mock theta functions. The work done here has great
potential for further research.
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1 Introduction

Srinivasa Ramanujan is regarded as the most influential Indian mathematician of the
twentieth century. The remarkable thing about him was: without any formal training
and in the midst of extreme poverty he was able to do original mathematics research of
the highest quality. He did not give up even in the face of his death. In his last letter
dated 12 January, 1920, about three months before his death, to G.H. Hardy he listed
17 functions which he called mock theta functions. He separated these 17 functions into
three classes. First containing 4 functions of order 3, second containing 10 functions of
order 5 and the third containing 3 functions of order 7. Watson [17] found three more
functions of order 3 and two more of order 5 appear in the lost notebook [15]. Mock
theta functions of order 2, 6, 8 and 10 have also been studied in [13], [6], [10] and [8],
respectively. Further results for mock theta functions of even order are given in [14]. For
the definition of mock theta functions, the reader is referred to [16]. Ramanujan did not
give a precise definition of “order”. A definition of the “order” of a mock theta function
was given by Gordon and McIntosh in [11].

Mock theta functions have been studied in different directions. For example, Ra-
manujan divided mock theta functions of order 5 into two Groups A and B and gave
many identities, without proofs, satisfied by mock theta functions in each group. Watson
[18] proved all of Ramanujan’s identities by the methods of rearrangement of series. He
also made use of the basic hypergeometric series for finding new representations of many
mock theta functions. The partition theory has also been used in the study of mock theta
functions. A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n. 0 also has a partition called “empty partition”. The rank of
a partition is defined to be the largest part minus the number of its parts. Partition
theoretic interpretations of some of the mock theta functions are found in the literature.
For example, χ(q), defined by (1.1) below, has been interpreted as generating function
for partitions into odd parts without gaps (cf. [9]). Very recently Bringmann and Ono [7]
redefined mock theta functions as the holomorphic projection of weight 1/2 weak maass
forms and used their ideas in solving the classical problem of obtaining formulas for Ne(n)
(resp. N0(n)), the number of partitions of n with even (resp. odd) rank by showing the
equivalence of this problem and the problem of deriving exact formulas for the coefficients
α(n) of the series

f(q) = 1 +
∞∑
n=1

α(n)qn =
∞∑
n=0

qn
2

(−q; q2)n
,

where f(q) is the first mock theta function of order 3 in Ramanujan’s list of 17 mock
theta functions (cf. [9]) and

(a; q)n =
∞∏
i=0

(1− aqi)
(1− aqn+i)

,

for any constant a.
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Recently in [1], the first author interpreted the following four mock theta functions
(first is of order 3 and the remaining three are of order 5) of S. Ramanujan:

χ(q) =
∞∑
m=1

qm
2

(q; q2)m
, (1.1)

F0(q) =
∞∑
m=0

q2m
2

(q; q2)m
, (1.2)

φ0(q) =
∞∑
m=0

qm
2

(−q; q2)m, (1.3)

and

φ1(q) =
∞∑
m=0

q(m+1)2(−q; q2)m, (1.4)

combinatorially by using n-color partitions.
First we recall the definitions of a partition with “(n+ t)-copies of n” or “(n+ t)-color

partition” from [4] and that of the weighted difference from [3].

Definition 1.1. A partition with “(n + t) copies of n”, (also called an (n + t)-color
partition), t > 0, is a partition in which a part of size n, n > 0, can occur in n+ t different
colors denoted by subscripts: n1, n2, . . . , nn+t.
Thus for example, the partitions of 2 with “(n+ 1) copies of n” are

21 , 21 + 01 , 11 + 11 , 11 + 11 + 01,
22 , 22 + 01 , 12 + 11 , 12 + 11 + 01,
23 , 23 + 01 , 12 + 12 , 12 + 12 + 01.

Note that zeros are permitted if and only if t is greater than or equal to one.

Definition 1.2 The weighted difference of two elements mi and nj, m > n, is defined by
m− n− i− j and is denoted by ((mi − nj)).

It was proved in [1] that the mock theta functions (1.1)-(1.4) have their n-color parti-
tion theoretic interpretations in the following theorems, respectively,

Theorem 1: For ν > 1, let A1(ν) denote the number of n-color partitions of ν such
that the parts and their subscripts have the same parity, the smallest part is kk for some
k, and the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=1

A1(ν)qν = χ(q). (1.5)
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Theorem 2: For ν > 0, let A2(ν) denote the number of n-color partitions of ν such
that the parts and their subscripts have the same parity, the subscripts are greater than
1, the smallest part is kk for some k, and the weighted difference of any two consecutive
parts is 0. Then,

∞∑
ν=0

A2(ν)qν = F0(q). (1.6)

Theorem 3: For ν > 0, let A3(ν) denote the number of n-color partitions of ν such
that only the first copy of the odd parts and the second copy of the even parts are used,
that is, the parts are of the type (2k − 1)1 or (2k)2, the minimum part is 11 or 22, and
the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=0

A3(ν)qν = φ0(q). (1.7)

Theorem 4: For ν > 1, let A4(ν) denote the number of n-color partitions of ν such
that only the first copy of the odd parts and the second copy of the even parts are used,
the minimum part is 11, and the weighted difference of any two consecutive parts is 0.
Then,

∞∑
ν=1

A4(ν)qν = φ1(q). (1.8)

One more mock theta function of order 5 given by

F1(q) =
∞∑
n=0

q2n(n+1)

(q; q2)n+1

, (1.9)

was also interpreted combinatorially in [5] using partitions with “n + 2 copies of n” or
“(n+ 2)-color partitions” as follows:

Theorem 5: For ν > 0, let A5(ν) denote the number of (n + 2)-color partitions of
ν such that the parts and their subscripts have the same parity, the subscripts are greater
than 1, for some i, ii+2 is a part and the weighted difference of any two consecutive parts
is 0. Then,

∞∑
ν=0

A5(ν)qν = F1(q). (1.10)

the electronic journal of combinatorics 21(2) (2014), #P2.46 4



Remark: An extensive survey of mock theta functions is given in [12].

In our next section, we introduce a new class of partitions and call them “split (n+t)-color
partitions”. These new partitions generalize the (n+t)-color partitions defined above. We
use these partitions in interpreting combinatorially the following two Gordon-McIntosh
basic functions from [10]:

V0(q) = 1 + 2
∞∑
n=1

qn
2
(−q; q2)n
(q; q2)n

, (1.11)

and

V1(q) =
∞∑
n=1

qn
2
(−q; q2)n−1
(q; q2)n

. (1.12)

Remark: These functions V0 and V1 were used by Gordon and McIntosh to establish the
modular transformation formulas for the following eight order mock theta functions:

S0(q) =
∞∑
n=0

qn
2
(−q; q2)n

(−q2; q2)n
, (1.13)

S1(q) =
∞∑
n=0

qn(n+2)(−q; q2)n
(−q2; q2)n

, (1.14)

T0(q) =
∞∑
n=0

q(n+1)(n+2)(−q2; q2)n
(−q; q2)n+1

, (1.15)

T1(q) =
∞∑
n=0

qn(n+1)(−q2; q2)n
(−q; q2)n+1

. (1.16)

We shall prove our main results in Section 3 and conclude in our last section with a
direction for future work.

2 Split (n + t)-color partitions and the main results

Definition 2.1. Let mi be a part in an (n + t)-color partition of a non negative integer
ν. We split the color ‘i’ into two parts - ‘the green part’ and ‘the red part’ and denote
them by ‘g’ and ‘r’, respectively, such that 1 6 g 6 i, 0 6 r 6 i − 1 and i = g + r. An
(n+t)-color partition in which each part is split in this manner is called a split (n+t)-color
partition.

Example. In 73+2, the green part is 3 and the red part is 2.

Remark. If the red part is 0, we will not write it. Thus, for example, we will write
75 for 75+0.
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Remark. In this paper we will use only split n-color partition.

In our next section we shall prove that V0(q) and V1(q) have their combinatorial in-
terpretations in the following theorems:

Theorem 2.1. For ν > 1, let A1(ν) denote the number of split n-color partitions of
ν such that
(i) the parts and their subscripts have the same parity,
(ii) the red part of the subscripts cannot exceed 1,
(iii) the least part is either kk (k > 1) or k(k−1)+1 (k > 2), and
(iv) the weighted difference of any two consecutive parts is 0.
Then

V0(q) = 1 + 2
∞∑
ν=1

A1(ν)qν . (2.1)

Remark: In conditions (i) and (iv) we consider the whole subscript i, not its parts g and
r, separately.

Example. A1(5) = 4, the relevant partitions are 55, 54+1, 42 + 11, 41+1 + 11.

Theorem 2.2. For ν > 1, let A2(ν) denote the number of split n-color partitions of
ν such that
(i) the parts and their subscripts have the same parity,
(ii) the red part of the subscripts cannot exceed 1,
(iii) the least part is kk (k > 1), and
(iv) the weighted difference of any two consecutive parts is 0.
Then

V1(q) =
∞∑
ν=1

A2(ν)qν . (2.2)

Remark: As in Theorem 2.1, here also, in conditions (i) and (iv) we consider the whole
subscript i, not its parts g and r, separately.

Example. A2(5) = 3, the relevant partitions are 55, 42 + 11, 41+1 + 11.

In the proofs given in the next section we use the notation Ai(m, ν) (1 6 i 6 2)
to denote the number of split n-color partitions enumerated by Ai(ν) into m parts with
A1(0, 0) = 1. Also, we shall write

f1(z, q) =
∞∑
n=0

qn
2
(−q; q2)nzn

(q; q2)n
, (2.3)
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and

f2(z, q) =
∞∑
n=1

qn
2
(−q; q2)n−1zn

(q; q2)n
, (2.4)

where |q| < 1, |z| < |q|−1.

3 Proofs

Proof of Theorem 2.1.
We split the partitions enumerated by A1(m, ν) into three classes:
(i) those that contain 11 as a part,
(ii) those that contain 21+1 as a part, and
(iii) those that contain kk (k > 1) or k(k−1)+1 (k > 2) as a part.

We transform the partitions in class (i) by deleting 11 and then subtracting 2 from all the
remaining parts ignoring the subscripts. The transformed partition will be of the type
enumerated by A1(m− 1, ν − 2m+ 1).

Next, we transform the partitions in class (ii) by deleting the part 21+1 and then sub-
tracting 4 from all the remaining parts ignoring the subscripts. The transformed partition
will be of the type enumerated by A1(m− 1, ν − 4m+ 2).

Finally, we transform the partitions in class (iii) by replacing kk by (k − 1)(k−1) or
by replacing k(k−1)+1 by (k − 1)(k−2)+1 , as the case may be, and then subtracting 2 from
all the remaining parts. The transformed partition will be of the type enumerated by
A1(m, ν − 2m + 1). Clearly, the above transformations are reversible and so they estab-
lish a bijection between the partitions enumerated by A1(m, ν) and those enumerated by
A1(m−1, ν−2m+1)+A1(m−1, ν−4m+2)+A1(m, ν−2m+1). This leads to the identity

A1(m, ν) = A1(m− 1, ν − 2m+ 1) +A1(m− 1, ν − 4m+ 2) +A1(m, ν − 2m+ 1). (3.1)

Let

h1(z, q) =
∞∑
ν=0

∞∑
m=0

A1(m, ν)zmqν . (3.2)

where |q| < 1, |z| < |q|−1.

Substituting for A1(m, ν) from (3.1) into (3.2) and then simplifying we arrive at the
q-functional equation

h1(z, q) = zq h1(zq
2, q) + zq2 h1(zq

4, q) +
1

q
h1(zq

2, q). (3.3)
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Setting

h1(z, q) =
∞∑
n=0

αn(q)zn, α0(q) = 1, (3.4)

we may easily check by coefficient comparison in (3.3) that

αn(q) =
qn

2
(−q; q2)n
(q; q2)n

. (3.5)

Thus

h1(z, q) =
∞∑
n=0

qn
2
(−q; q2)nzn

(q; q2)n
= f1(z, q). (3.6)

Now

1 +
∞∑
ν=1

A1(ν)qν =
∞∑
ν=0

(
∞∑
m=0

A1(m, ν))qν

= h1(1, q)

= f1(1, q)

=
∞∑
n=0

qn
2
(−q; q2)n
(q; q2)n

= 1 +
∞∑
n=1

qn
2
(−q; q2)n
(q; q2)n

.

Using the penultimate equation in (1.11), we arrive at (2.1). This completes the proof of
Theorem (2.1).

Proof of Theorem 2.2.
We split the partitions enumerated by A2(m, ν) into three classes:
(i) those that contain 11 as a part,
(ii) those that contain kk (k > 1) as a part.

It is easy to see that there are A1(m− 1, ν − 2m+ 1) in class (i) and
1
2
(A1(m− 1, ν − 4m+ 2) + A1(m, ν − 2m+ 1)) in class (ii), so we get the identity

A2(m, ν) = A1(m−1, ν−2m+ 1) +
1

2
(A1(m−1, ν−4m+ 2) +A1(m, ν−2m+ 1)). (3.7)

Let

h2(z, q) =
∞∑
ν=1

∞∑
m=0

A2(m, ν)zmqν . (3.8)

Translating (3.7) into a q-functional equation, we get

h2(z, q) = zq h1(zq
2, q) +

1

2
(zq2 h1(zq

4, q) +
1

q
h1(zq

2, q)). (3.9)
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Setting

h2(z, q) =
∞∑
n=1

βn(q)zn, (3.10)

and using (3.4), we may easily check by coefficient comparison in (3.9) that

βn(q) = q2n−1αn−1(q) +
1

2
(q4n−2αn−1(q) + q2n−1αn(q)). (3.11)

Substituting for αn(q) from (3.5) into (3.11), we get

βn(q) =
qn

2
(−q; q2)n−1
(q; q2)n

. (3.12)

Thus

h2(z, q) =
∞∑
n=1

qn
2
(−q; q2)n−1zn

(q; q2)n
= f2(z, q). (3.13)

Hence

∞∑
ν=1

A2(ν)qν =
∞∑
ν=1

(
∞∑
m=0

A2(m, ν)

)
qν

= h2(1, q)

= f2(1, q)

=
∞∑
n=1

qn
2
(−q; q2)n−1
(q; q2)n

= V1(q).

This proves Theorem (2.2).

4 Conclusion

We hope that many more basic series can be interpreted combinatorially by using the
split (n + t)-color partitions. Here we have given only two examples to illustrate the
possibilities. It would be of interest if Rogers-Ramanujan type identities for split (n+ t)-
color partitions can be found as we have for n-color partitions in [2].
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