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Abstract

The degree Ramsey number of a graph G, denoted R∆(G; s), is min{∆(H) : H
s→

G}, where H
s→ G means that every s-edge-coloring of H contains a monochromatic

copy of G. The closed k-blowup of a graph is obtained by replacing every vertex with
a clique of size k and every edge with a complete bipartite graph where both partite
sets have size k. We prove that there is a function f such that R∆(G; s) 6 f(∆(G), s)
when G is a closed blowup of a tree.

1 Introduction

When G is a graph, we use V (G) to denote the vertex set of G and E(G) to denote the
edge set. The degree of a vertex u in G is denoted by d(u). Given graphs H and G, we
write H

s→ G if every s-edge-coloring of H contains a monochromatic copy of G. For
graphs, Ramsey’s Theorem implies that for every graph G and each positive integer s,
there is a graph H such that H

s→ G. When H
s→ G, we call G the target graph and H

a Ramsey host for G.
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The main goal of graph-based Ramsey theory is to understand the relation H
s→ G.

Typically, a target graph G is fixed and one seeks a Ramsey host for G that has a desired
property or is extremal with respect to a certain parameter. The Ramsey number of a
graph G, denoted R(G; s), is min{|V (H)| : H s→ G}. Chvátal, Rödl, Szemerédi, and
Trotter [4] proved that for each k, there is a constant ck such that R(G; 2) 6 ck|V (G)|
whenever G has maximum degree at most k. In other words, the Ramsey numbers
of bounded degree graphs grow only linearly with the number of vertices, in marked
contrast to the exponential growth that occurs when the bounded degree condition is
omitted. Several groups generalized this result to multicolored hypergraphs (see [5] and
[6]).

The size Ramsey number of G, denoted R′(G; s), is min{|E(H)| : H s→ G}. Beck [2]
proved that for each s, there exists a constant cs such that R′(Pn; s) 6 csn, where Pn

is the path on n vertices. Beck asked whether the size Ramsey numbers of bounded
degree graphs also grow linearly in the number of vertices. In addition to paths, Beck’s
question was answered in the affirmative for trees [9] and cycles [10]. However, Rödl
and Szemerédi [15] resolved Beck’s question in the negative by constructing a family of
3-regular graphs whose size Ramsey numbers grow superlinearly.

We consider a variant of Beck’s question where we no longer require our Ramsey hosts
to have few edges but we do insist they have bounded degree. The degree Ramsey number,
denoted R∆(G; s), is min{∆(H) : H

s→ G}, where ∆(H) denotes the maximum degree in
H. The degree Ramsey analogue of Beck’s question follows naturally.

Question 1. Is R∆(G; s) bounded by a function of ∆(G) and s?

A family of graphs G is R∆-bounded if there is a function f(d, s) such that R∆(G; s) 6
f(∆(G), s) for every G ∈ G. Question 1 is then whether or not the family of all graphs
is R∆-bounded. Paths [1] and cycles [10, 11] are R∆-bounded. Extending the Alon et
al. argument for paths, Jiang observed that R∆(T ; s) 6 2s(∆(T ) − 1) when T is a tree,
and this bound is nearly sharp when s and ∆(T ) are large [12]. While we are unable to
resolve Question 1, we believe that the family of all graphs is not R∆-bounded.

Our work was motivated by a concrete problem in the direction of Question 1. For
a graph G, let Gk denote the graph on V (G) where distinct vertices are adjacent if and
only if their distance in G is at most k. Is the family of powers of paths R∆-bounded?
Even the special case of determining whether R∆(P 2

n ; s) is bounded by a function of s is
not clear.

In this note, we resolve this problem. In fact, we prove more. The closed k-blowup of
G, denoted G[k], is the graph obtained from G by replacing each vertex in G with a clique
of size k and each edge in G with a complete bipartite graph whose partite sets each have
size k. We show that the family of closed blowups of trees is R∆-bounded. It follows
that the family of powers of paths is R∆-bounded since P k

n is a subgraph of Pdn/ke[k] and
∆(Pdn/ke[k]) < 3

2
∆(P k

n ) when n is large in terms of k.
One interesting test case for Question 1 is the family of grids Pn � Pn, where G � H

is the graph on V (G)×V (H) with (u1, v1)(u2, v2) ∈ E(G � H) if and only if u1 = u2 and
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v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). It is not known whether the family of grids is
R∆-bounded.

In addition to minimizing |V (H)|, |E(H)|, and ∆(H), several researchers have sought
Ramsey hosts H that are extremal with respect chromatic number [3] and clique num-
ber [8, 13, 14]. The former reference also provides exact results on the degree Ramsey
numbers of complete graphs and stars; in particular, R∆(Kn; s) = R(Kn; s)− 1.

2 Construction

A graph is d-regular if every vertex has degree d, and the girth of a graph is the minimum
number of vertices in a cycle. Erdős and Sachs [7] proved that for every d and g, there is
a d-regular graph with girth g. Alon, Ding, Oporowski, and Vertigan [1] observed that if
H has girth at least n and average degree at least 2s, then H

s→ Pn, where Pn is the path
on n vertices. Jiang [11] noted that their argument extends to the case that the target
graph is a tree. We include the short proof for completeness.

Lemma 2. If T is a tree with |V (T )| > 3 and H is a graph with average degree at least
2s(∆(T )− 1) and girth at least |V (T )|, then H

s→ T .

Proof. Consider an s-edge-coloring of H and let n = |V (H)|. Since H has average degree
at least 2s(∆(T )− 1), we have |E(H)| > ns(∆(T )− 1) and hence some color is used on
at least n(∆(T ) − 1) edges. Let H0 be a monochromatic subgraph of H with at least
ns(∆(T ) − 1) edges. It follows that H0 contains a subgraph H1 with δ(H1) > ∆(T ).
Indeed, if every subgraph of H0 had a vertex u with d(u) 6 ∆(T ) − 1, then iteratively
deleting vertices of minimum degree would yield |E(H0)| 6 (n−1)(∆(T )−1) < n(∆(T )−
1), a contradiction. Let H1 be a subgraph of H0 with δ(H1) > ∆(T ). Since H1 has
minimum degree at least ∆(T ) and girth at least |V (T )|, a well known greedy embedding
strategy finds T as a subgraph of H1. Hence H

s→ T .

Hence, for each tree T with at least 3 vertices, Lemma 2 implies that R∆(T ; s) 6
2s(∆(T ) − 1). Our main theorem generalizes this bound to the case where the target
graph is a closed blowup of a tree. Let [n] = {1, . . . , n}, and, when S is a set, let

(
S
k

)
be

the set of subsets of S of size k. We will need the well known strengthening of the Erdős
and Sachs result that for every d and g, there is a bipartite d-regular graph with girth at
least g.

Theorem 3. Let k and s be integers with k > 2 and s > 1, and let r = R(K2k; s). If T

is a tree with |V (T )| > 3, then R∆(T [k]; s) 6 (r − 1)
(
2
(
r

2k

)
(∆(T )− 1)

)( r−1
2k−1).

Proof. Let t =
(
r

2k

)
, t′ =

(
r−1

2k−1

)
, d = 2t(∆(T ) − 1), and let B be a d-regular (X, Y )-

bigraph with girth at least |V (T )|. To construct a Ramsey host for T [k], we first use B
to construct an r-uniform, r-partite hypergraph F . The partite sets of F are Z1, . . . , Zr.
The vertices in Zj are certain t-tuples of elements in V (B)∪E(B), indexed by

(
[r]
2k

)
. When

w is such a tuple and A ∈
(

[r]
2k

)
, we use wA to denote the A-value of w. For each A ∈

(
[r]
2k

)
,

the electronic journal of combinatorics 21(2) (2014), #P2.5 3



let A− be the k smallest integers in A and A+ be the k largest integers in A. The partite
set Zj consists of all tuples w such that for each coordinate A, the A-value of w belongs to
X, Y , or E(B) according to whether j ∈ A−, j ∈ A+, or j 6∈ A, respectively. It remains
to specify the edges of F .

In the following, we use wj,A to denote the A-value of a vertex wj ∈ Zj. When u ∈ X,
v ∈ Y , and uv ∈ E(B), we say that the edge uv satisfies the A-coordinate of wj ∈ Zj if

wj,A =


u if j ∈ A−

v if j ∈ A+

uv if j 6∈ A.

Consider w1, . . . , wr with wj ∈ Zj for each j. We let w1 . . . wr ∈ E(F ) if and only if

for each coordinate A ∈
(

[r]
2k

)
, there is some edge in B that simultaneously satisfies the

A-coordinate of each vertex in {w1, . . . , wr}. We obtain our host graph H from F by
replacing each edge in F with an r-clique in H. Consequently, wi ∈ Zi and wj ∈ Zj are

adjacent in H if and only if for each A ∈
(

[r]
2k

)
, there is an edge in B that satisfies the

A-coordinates of wi and wj.
To motivate our construction, we note that H contains many copies of B[k], the closed

k-blowup of B. For each coordinate A ∈
(

[r]
2k

)
and each function h :

(
[r]
2k

)
− {A} → E(B),

we obtain a copy of B[k] in H. The copy of B[k] in H is specified by the function
gA,h : V (B)→

(
V (H)

k

)
, defined as follows:

gA,h(u) = {w : wA = u and

∀A′ ∈
(

[r]
2k

)
if A′ 6= A, then h(A′) satisfies the A′-coordinate of w}.

Note that at most one vertex in each partite set is a candidate for inclusion in gA,h(u).
Moreover, the condition wA = u requires that u ∈ X and j ∈ A− or that u ∈ Y and
j ∈ A+. Since |A−| = |A+| = k, always |gA,h(u)| = k. Finally, if uv ∈ E(B) with u ∈ X
and v ∈ Y , it follows from the definition of F that gA,h(u) ∪ gA,h(v) is contained in the
edge in F where uv satisfies the A-coordinate and the other coordinates are satisfied by
the corresponding images of h.

Let m = |E(B)|. Since each edge in F is determined by selecting for each A ∈
(

[r]
2k

)
an

edge in B to satisfy the A-coordinate, we have that |E(F )| = mt. It remains to show that
∆(H) 6 (r− 1)dt

′
and that H

s→ T [k]. We claim that F is dt
′
-regular. Consider a vertex

wj ∈ Zj. Indeed, if wj belongs to an edge e ∈ E(F ), then each coordinate is satisfied by
some edge in B. If j 6∈ A, then wj,A ∈ E(B) and the A-value of all other vertices is forced.
If j ∈ A and wj,A = u, then the A-value of all other vertices is determined by selecting an
edge in B to satisfy the A-coordinate, which must be incident to u. Since u is incident
to d edges in B and t′ of the coordinates in

(
[r]
2k

)
contain j, the claim follows. Moreover,

since F is r-uniform, replacing each edge in F with a clique increases the degree at each
vertex by at most a factor of r − 1, and therefore ∆(H) 6 (r − 1)dt

′
.

Finally, we show that H
s→ T [k]. Consider an s-edge-coloring of H and let e be an

edge in F . Since e becomes an r-clique in H and r = R(K2k; s), there is a monochro-
matic 2k-clique contained in e. For each e ∈ E(F ), choose Se ∈

(
[r]
2k

)
so that {w ∈
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e : w ∈ Zj for some j ∈ Se} is a monochromatic 2k-clique in H. Hence, there exists a

coordinate A ∈
(

[r]
2k

)
such that at least mt/t edges e ∈ E(F ) have Se = A; in the following,

fix such a coordinate A. The signature of an edge e ∈ E(F ) with Se = A is the function
h :
(

[r]
2k

)
−A→ E(B) that records, for every other coordinate A′ besides A, the edge in B

that satisfies A′. Since there are mt−1 signatures, some signature is common to at least
mt

t
· 1
mt−1 edges in F . Fix such a signature h. Let F ′ be the subhypergraph of F consisting

of all edges e ∈ E(F ) such that Se = A and the signature of e is h. Note that F ′ has at
least m/t edges.

We use F ′ to obtain a subgraph B? of B. For each edge e in F ′, let e? be the edge in B
that satisfies the A-coordinate. Note that the map e 7→ e? is injective since the signature
of each edge in F ′ is h. Let B? be the subgraph of B with edge set {e? : e ∈ E(F ′)}. We
associate each vertex u in B with the k-clique gA,h(u) in H. Note that each edge in B?

corresponds to a monochromatic 2k-clique in H. Since B is d-regular with m edges and
B? has at least m/t edges, it follows that the average degree of B? is at least d/t. Since
d/t = 2(∆(T ) − 1), an application of Lemma 2 with s = 1 implies that T is a subgraph
of B?. The copy of T in B? maps via gA,h to a copy of T [k] in H in which each 2k-clique
corresponding to an edge in T is monochromatic. Since k > 2 and T is connected, it
follows that the copy of T [k] is monochromatic.

We make no attempt to optimize the bound in Theorem 3. Note that the argument
of Theorem 3 also applies in the hypergraph setting. The complete q-uniform n-vertex
hypergraph is denoted by K

(q)
n . Let k and q be integers with k > q, let s be a positive

integer, and let r = R(K
(q)
2k ; s). Let G be the q-uniform k-blowup of a tree T on at

least 3 vertices obtained by replacing each vertex u in T with a set Su of k vertices and
replacing each edge uv in T with a copy of K

(q)
2k on Su ∪ Sv. Repeating the construction

above (except that each edge of F is replaced with a copy of K
(q)
r ) yields a q-uniform

hypergraph H with H
s→ G and ∆(H) 6

(
r−1
q−1

) (
2
(
r

2k

)
(∆(T )− 1)

)( r−1
2k−1).

Theorem 3 constructs a Ramsey host for the closed k-blowup of a tree T using a
Ramsey host for T . It is natural to ask whether such a construction is possible in general.
Is it true that the family of closed blowups of F is R∆-bounded whenever F is R∆-
bounded? The analogous statement for open blowups, where vertices are replaced with
independent sets and edges are replaced with complete bipartite graphs, holds [11].

It is also of interest to find larger R∆-bounded graph families. For example, is the
family of planar graphs R∆-bounded? Since the grids Pn � Pn are planar, this question
seems challenging. However, Theorem 3 implies that the family of outerplanar graphs is
R∆-bounded. Indeed, if G is a 2-connected outerplanar graph with maximum degree d,
then for every edge uv on the outer cycle of G, we have that G is a subgraph of a closed
(2d)-blowup of a rooted tree T in which each vertex has at most 2d − 3 children and
the root of T expands to contain the image of u, v, and their neighbors. This is proved
by induction on |V (G)|; the neighbors of u and v divide G − u − v into at most 2d − 3
pieces which may be treated inductively. The claim then follows from the fact that every
outerplanar graph with maximum degree d is a subgraph of a 2-connected outerplanar
graph with maximum degree at most d+ 2.
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