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Abstract

We develop algorithmic tools to compute quickly the distribution of permu-
tation statistics over sets of pattern-avoiding permutations. More specfically, the
algorithms are based on enumeration schemes, the permutation statistics are based
on the number of occurrences of certain vincular patterns, and the permutations
avoid sets of vincular patterns. We prove that whenever a finite enumeration scheme
exists to count the number of pattern-avoiding permutations, then the distribution
of statistics like the number of descents can also be computed based on the same
scheme. Statistics such as the number of peaks, right-to-left maxima, and the major
index are also investigated, as well as multi-statistics.

Keywords: pattern avoidance; automated discovery; permutation statistics; con-
secutive pattern; vincular pattern

1 Introduction

Enumeration schemes are special recurrences to compute the number of permutations
avoiding a set of vincular patterns. In this paper, we discuss how to refine enumera-
tion schemes to compute the distributions of certain permutation statistics over a set of
pattern-avoiding permutations. This extends previous work in [6, 9] which considers the
distribution of only the inversion number.

Let [n] be shorthand for the set {1, . . . , n}. For a word w ∈ [n]k, we write w =
w1w2 · · ·wk and define the reduction red(w) to be the word obtained by replacing the ith

smallest letter(s) of w with i. For example red(839183) = 324132. If red(w) = red(w′),
we say that w and w′ are order-isomorphic and write w ∼ w′. We will commonly use the
notation |w| to denote the length of w.
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Vincular patterns resemble classical patterns, with the constraint that some of the
letters in a copy must be consecutive. Formally, a vincular pattern of length k is a pair
(σ,X) where σ is a permutation in Sk and X ⊆ {0, 1, 2, . . . , k} is a set of “adjacencies.”
A permutation π ∈ Sn contains the vincular pattern (σ,X) if there is a k-tuple 1 6 i1 <
i2 < · · · < ik 6 n such that the following three criteria are all satisfied:

• red(πi1πi2 · · · πik) = σ.

• ix+1 = ix + 1 for each x ∈ X \ {0, k}.

• i1 = 1 if 0 ∈ X and ik = n if k ∈ X.

In the present work we restrict our attention to patterns (σ,X) where σ ∈ Sk and
X ⊆ [k − 1], rendering the third containment criterion irrelevant.1 The subsequence
πi1πi2 · · · πik is called a copy of (σ,X). In the permutation π = 162534, the subsequence
1253 is a copy of (1243, {3}), but the subsequence 1254 is not a copy since the 5 and 4 are
not adjacent in π. The “classical pattern” σ is precisely the vincular pattern (σ, ∅) since
no adjacencies are required, while the “consecutive pattern” σ is the vincular pattern
(σ, {1, 2, . . . , k − 1}) since all internal adjacencies are required.

In practice we write (σ,X) as a permutation with a dash between σj and σj+1 if j 6∈ X.
For example, (1243, {3}) is written 1-2-43. We occasionally refer to “the vincular pattern
σ” or even “the pattern σ” without explicitly referring to X.

If the permutation π does not contain a copy of the pattern (σ,X), then π is said
to avoid σ. We will notation Sn(σ) or Sn((σ,X)) to denote the set of permutations
avoiding (σ,X), and Sn(B) denotes those permutations avoiding every vincular pattern
(σ,X) ∈ B.

Observe that a vincular pattern (σ,X) of length k exhibits similar symmetries to those
of permutations, except for taking inverses. The reverse is given by (σ,X)r = (σr, k−X)
where k − X = {k − x : x ∈ X}. For example, (1-3-42)r = 24-3-1. The complement is
(σ,X)c = (σc, X). For example, (1-3-42)c = 4-2-13. It follows that that π avoids (σ,X) if
and only if πr avoids (σ,X)r. Similarly, π avoids (σ,X) if and only if πc avoids (σ,X)c.

See Steingŕımsson’s survey for a fuller history of vincular patterns in [28]. From
their earliest days, vincular patterns been linked to many of the common combinatorial
structures such as set partitions and lattice paths in [14] as well as permutation statistics
in [2].

Enumeration schemes were introduced by Zeilberger in [31] as an automated method
to compute

∣∣Sn(B)
∣∣ for many different B. Vatter improved schemes in [29] with the

introduction of gap vectors, and Zeilberger provided an alternate implementation in [32].
The greatest feature of schemes is that they may be discovered by a computer: the user
need only input the set B (along with bounds to the computer search) and the computer
will return an enumeration scheme (if one exists within the bounds of the search), which

1We enact this restriction partly for simplicity. It is likely that the prefix-focused arguments in [9] and
below extend to patterns (σ,X) with 0 ∈ X with few modifications, but it is unlikely such an approach
could work for patterns with k ∈ X.
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computes
∣∣Sn(B)

∣∣ in polynomial time. Pudwell extended these methods to consider
pattern avoidance in permutations of a multiset in [26, 24], as well as barred-pattern
avoidance in [25]. The author and Pudwell extended schemes to sets of vincular patterns
in [9].

A permutation statistic is any function f :
⋃
n>0 Sn → Z. The most-studied permuta-

tion statistic is the inversion number inv(π) =
∣∣{(i, j) : i < j and πi > πj}

∣∣. In terms of
vincular patterns, inv(π) is the number of copies of 2-1 = (21, ∅). Similarly, the descent
number des(π) =

∣∣{i : πi > πi+1}
∣∣ is the number of copies of 21 = (21, {1}). In this

work we will primarily consider permutation statistics which count the number of copies
of a given vincular pattern, sometimes called pattern functions. It is shown in [2] that
many well-known permutation statistics can be framed as linear combinations of pattern
functions. For a permutation statistic f and set S ⊆

⋃
n>0 Sn, the distribution of f over

S is given by:

F (S, f, q) :=
∑
π∈S

qf(π) (1)

We also consider the simultaneous distribution of multiple statistics f = 〈f1, . . . , fm〉 over
the same set S with the indeterminates q = 〈q1 . . . , qm〉. The distribution of f over S is
given by:

F (S, 〈f1, . . . , fm〉, 〈q1, . . . , qm〉) :=
∑
π∈S

q1
f1(π) q2

f2(π) · · · qmfm(π). (2)

Distributions of statistics over sets of pattern-avoiding permutations have received
increased attention of late, focusing primarily on sets of permutations avoiding classical
patterns of length 3. Barcucci et al. use generating trees to study the inversion number
over Sn(B) for a few examples of sets B in [3]. Mansour counts copies of vincular patterns
over 1-3-2-avoiding permutations and over vincular-pattern-avoiding permutations in [21,
22]. Barnabei et al. study copies of consecutive patterns over Sn(1-2-3) and Sn(3-1-2) in
[4, 5]. Dokos et al. refine Wilf-equivalence in [16] by studying the inversion number and
major index over Sn(τ) for classical patterns τ ∈ S3. Bona and Homberger study the
total number of classical patterns σ ∈ S3 over Sn(τ) for another classical pattern τ ∈ S3

in [11, 12, 18]. Most recently, Burstein and Elizalde in [13] study the total number of
vincular patterns of length 3 over Sn(τ) for classical patterns τ ∈ S3.

Suppose that E is a finite enumeration scheme which gives a recurrence to compute∣∣Sn(B)
∣∣ for a given set of patterns B. The work in [6, 9] demonstrates how to use E

to compute F (Sn(B), inv, q). The present work demonstrates how to use E to compute
the distribution F (Sn(B), f ,q) where each statistic fi counts the number of copies of a
vincular pattern of the form σ1 . . . σt−1σt or σ1 . . . σt−1-σt or counts the number of right-
to-left minima or right-to-left maxima. The results are implemented in the Maple package
Statter, available for download from the author’s homepage.

The paper is organized as follows. Section 2 outlines the basics of enumeration schemes
and their structure. Section 3 defines the notion of an “enumeration-scheme-compatible,”
or “ES-compatible,” statistic. Subsection 3.2 presents three classes of ES-compatible
statistics. Section 4 presents a technical result proving that any given finite enumeration
scheme can be expanded to fit the additional requirements which ES-compatible statistics
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can impose. Section 5 presents three specific examples of how enumeration schemes can
be applied to explore statistics over sets Sn(B).

2 Overview of Enumeration Schemes

Enumeration schemes are succinct encodings for a family of recurrence relations enumer-
ating a family of sets. The enumerated sets are actually subsets of Sn(B) determined
by prefixes. This technique has some similarities with the scanning elements method
introduced in [17], but applies to a broader class of choices for B.

For permutation p ∈ Sk, let Sn(B)[p] be the set of permutations π ∈ Sn(B) such
that red(π1π2 . . . πk) = p. We call p the prefix pattern. To refine further, let w ∈ [n]k and
define Sn(B)[p;w] to be those permutations in π ∈ Sn(B)[p] such that π1π2 · · · πk = w.
For example,

S5(1-2-3)[21; 53] = {53142, 53214, 53241, 53412, 53421}.

Since we are interested in enumeration, it will be handy to have the notation sn(B)[p] =∣∣Sn(B)[p]
∣∣ and sn(B)[p;w] =

∣∣Sn(B)[p;w]
∣∣.

By looking at the prefix of a permutation, one can identify likely “trouble spots” where
forbidden patterns may appear. For example, suppose we wish to avoid the (classical)
pattern 1-2-3. Then the presence of the pattern 12 in the prefix indicates the potential
for the whole permutation to contain a 1-2-3 pattern.

Enumeration schemes take a divide-and-conquer approach to enumeration. We de-
fine the child of a permutation p ∈ Sk to be any permutation p′ ∈ Sk+1 such that
red(p′1p

′
2 · · · p′k) = p. Any Sn(B)[p] for p ∈ Sk may be partitioned into the family of sets

Sn(B)[p′] for each child p′ of p. The sets indexed by these children are then considered
as described below, and their sizes are totaled to obtain sn(B)[p]. In the end we have
computed

∣∣Sn(B)
∣∣, since Sn(B) = Sn(B)[1] for n > 1.

For p ∈ Sk a set Sn(B)[p] fits into one of three cases:

(1) If n = k, then Sn(B)[p] is either {p} or ∅, depending on whether p avoids B.

(2) For each w ∈ [n]k such that red(w) = p, one of the following happens:

(2a) Sn(B)[p;w] is empty, and so sn(B)[p;w] = 0.

(2b) Sn(B)[p;w] is in bijection with some other Sn̂(B)[p̂; ŵ] for n̂ < n, and so
sn(B)[p;w] = sn̂(B)[p̂; ŵ].

(3) Sn(B)[p] must be partitioned further, so

sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].
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Case (1) provides the base cases for our recurrence. If case (2) applies, then we will
use it preferentially over case (3). If case (2) does not apply, we must divide Sn(B)[p] as
in case (3). Determining whether case (2) applies makes use of gap vector criteria to test
(2a) and reversible deletions to form the bijection in (2b). These concepts are outlined in
the following subsections.

2.1 Gap Vectors

The differences between the values of letters in the prefix may be great that a forbidden
pattern must appear. To make this more precise, we follow our example above and
compute sn(1-2-3)[12]. Observe that w1 < w2 < n implies that Sn(1-2-3)[12;w1w2] is
empty, since otherwise if π ∈ Sn(1-2-3)[12;w1w2] then πi = n for some i > 3 and so
w1w2n forms a 1-2-3 pattern. Since the possibility of any πi > w2 for i > 3 prohibits the
formation of a 1-2-3-avoiding permutation, we must restrict the space above w2.

To formalize this, consider Sn(B)[p;w] and let ci be the ith smallest letter in w. Let
c0 = 0 and ck+1 = n + 1, and form the (k + 1)-vector ~g(n,w) so that the ith component
is gi = ci − ci−1 − 1. Note that gi counts the number of letters for any π ∈ Sn(B)[p;w]
which lie strictly between ci−1 and ci, i.e., the number of letters πj following the prefix
such that ci−1 6 πj 6 ci. We call ~g(n,w) the spacing vector for w.

In the example above, if ~g(n,w) > 〈0, 0, 1〉 in the product order of N3 (i.e., component-
wise), then Sn(1-2-3)[12;w] = ∅. We call 〈0, 0, 1〉 a gap vector for the prefix 12. More
generally we may make the following definition:

Definition 1. Given a set of forbidden patterns B and prefix p, then ~v is a gap vector for
prefix p with respect to B if, for all n, Sn(B)[p;w] = ∅ for any w such that ~g(n,w) > ~v.
In this case we say that w satisfies the gap vector criterion for ~v.

Hence ~v = 〈0, 0, 1〉 is a gap vector for p = 12 with respect to B = {1-2-3}, and any
prefix set w = w1w2 with w1 < w2 < n satisfies the gap vector condition for v.

Observe that gap vectors for a given prefix p ∈ Sk form an upper order ideal in Nk+1,
since if ~v is a gap vector so is any ~u > ~v. Hence it suffices to determine only the minimal
elements (which form a basis). For details on the discovery of gap vectors and automating
the process, see [29, 32, 9].

Note that if the prefix p contains a pattern in B, then Sn(B)[p;w] = ∅ for any
appropriate w, and so ~0 = 〈0, 0, . . . , 0〉 is a gap vector.

2.2 Reversible Deletability

When w fails the gap vector criterion for all gap vectors ~v, we must rely on bijec-
tions with previously-computed Sn̂(B)[p̂; ŵ]. To continue our example above, consider
Sn(1-2-3)[12;w1n]. Here w1n fails all gap vector criteria, because 〈0, 0, 1〉 forms the basis
for the ideal of gap vectors and ~g(n,w1n) = 〈w1 − 1, n − w1 − 1, 0〉 6> 〈0, 0, 1〉. How-
ever, any π ∈ Sn(1-2-3)[12;w1n] has π2 = n, so we may use the map d2 : π1π2 . . . πn 7→
red(π1π3 . . . πn) to form a bijection Sn(1-2-3)[12;w1n]→ Sn−1(1-2-3)[1;w1]. The deletion
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of a letter always preserves pattern-avoidance properties when considering classical pat-
terns, but inverting the map by inserting a letter has the potential for creating a forbidden
pattern. Here, however, inserting an n at the second index cannot possibly create a 1-2-3,
so we may safely reverse the deletion.

More generally define the deletion dr(π) := red(π1 . . . πr−1πr+1 . . . πn), that is, the
permutation obtained by omitting the rth letter of π and reducing. Furthermore for a set
R, define dR(π) to be the permutation obtained by deleting πr for each r ∈ R and then
reducing. For a word w with no repeated letters, define dr(w) to be the word obtained by
deleting the rth letter and then subtracting 1 from each remaining letter larger than wr.
Similarly, to construct dR(w) delete wr for each r ∈ R and subtract

∣∣{r ∈ R : wr < wi}
∣∣

from each remaining wi. For example d3(6348) = 537 and d{1,3}(6348) = 36. It can
be seen that this definition is equivalent to the one given above when w ∈ Sk, and it
allows for more succinct notation in the upcoming definition. In the unrestricted case,
dR : Sn(∅)[p;w]→ Sn−|R|(∅)[dR(p); dR(w)] is a bijection for any set R ⊆ [|p|]. Sometimes
we are lucky and the restriction to Sn(B)[p;w] is a bijection with Sn−|R|(B)[dR(p); dR(w)],
leading to the following definition:

Definition 2. The set of indices R is reversibly deletable for p with respect to B if the
map

dR : Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]

is a bijection for all words w failing the gap vector criterion for every gap vector of p with
respect to B (i.e., dR is a bijection for all w such that Sn(B)[p;w] 6= ∅).

Note that the empty set R = ∅ is reversibly deletable for any p and B, but is unin-
teresting. Additionally, if ~0 is a gap vector then any set R ⊆ [|p|] is vacuously reversibly
deletable since Sn(B)[p;w] = ∅ for any prefix w.

Proving that a set is reversibly deletable for prefix p with respect to B can be carried
out by a finite list of verifications, and thus can be done via computer. This is proven
in [29] for the case that B contains only classical patterns, and in [9] in the case that
B contains vincular patterns. The process of automated discovery is not relevant to the
present work and will be omitted.

2.3 Formal Definition of Enumeration Schemes

We will now formally define an enumeration scheme.

Definition 3. Let B be a set of vincular patterns. An enumeration scheme for B is a set
E of triples (p,G,R), where p is a permutation (i.e., the prefix pattern), G is a basis of
gap vectors for p with respect to B, and R is a reversibly deletable set for p with respect
to B. Furthermore, E must satisfy the following criteria:

1. (ε, ∅, ∅) ∈ E, where ε is the empty (length-0) word.

2. For each (p,G,R) ∈ E,
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(a) If R = ∅ and ~0 /∈ G, then there exists a triple (p′, G′, R′) ∈ E for each child p′

of p.

(b) If R 6= ∅, then there exists a triple (p̂, Ĝ, R̂) ∈ E for p̂ = dR(p).

To compute sn(B)[p;w] for a fixed n, p, and w, the enumeration scheme E is “read”
by finding the appropriate triple (p,G,R) ∈ E and concluding:

1. If w satisfies the gap vector criteria for some ~v ∈ G, then sn(B)[p;w] = 0.

2. If w fails the gap criteria for all ~v ∈ G and R 6= ∅, then

sn(B)[p;w] = sn−|R|(B)[dR(p); dR(w)].

3. If w fails the gap criteria for all ~v ∈ G and R = ∅, then

sn(B)[p] =
∑

p′∈Sk+1(B)[p]

sn(B)[p′].

When combined with the initial conditions that sn(B)[p;w] = 1 whenever p has length
n and avoids B, the scheme provides a system of recurrences to compute sn(B)[p;w] and
ultimately

∣∣Sn(B)
∣∣.

To illustrate, consider the enumeration scheme for Sn(1-2-3):

{(ε, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, {2}), (21, ∅, {1})} (3)

Since Rε = ∅, the first condition above requires the presence of (1, G1, R1). Starting
with the pattern 1 yields no additional information, so R1 = ∅ and thus explaining the
presence of (12, G12, R12) and (21, G21, R21). As discussed above, {〈0, 0, 1〉} forms a basis
for the gap vectors for 12, and whenever w fails this gap vector criteria the second letter
is reversibly deletable. For the fourth entry in the scheme, suppose that π ∈ Sn(∅)[21]
contains a 1-2-3 pattern involving the first letter, say π1 < πi < πj for i < j. Then since
π2 < π1, we see that π2 < πi < πj is another 1-2-3 pattern. Therefore π1 cannot be the
deciding factor for whether π contains 1-2-3. Hence the index 1 is reversibly deletable, so
R21 = {1}.

Enumeration schemes exhibit a tree-like structure. The empty prefix ε serves as the
root, and the children of each prefix are drawn as children in a rooted tree. When a prefix
has nontrivial gap vector criteria, we list those basis vectors below it. When prefix p has
a non-empty reversibly deletable set R, we draw an arrow from p to dR(p) labeled with
“dR”. See Figure 1 for an example.

If |E| is finite, we say that B admits a finite enumeration scheme. A finite enumeration
scheme gives us a polynomial-time algorithm to compute sn(B)[p;w]. We construct the
system of recurrences based on the partitions and bijections above, along with base cases
as given by the gap vector criteria and the trivial cases when Sn(B)[p] = {p} or ∅. For
example, the above enumeration scheme in (3) translates into the following system of
recurrences:
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Figure 1: Tree representation of the enumeration scheme for Sn(1−2−3)

∣∣Sn(1-2-3)
∣∣ = sn(1-2-3)[ε]

= sn(1-2-3)[1]when n > 0

=
n∑
i=1

sn(1-2-3)[1; i]

sn(1-2-3)[1; i] =
i−1∑
j=1

sn(1-2-3)[21; ij] +
n∑

j=i+1

sn(1-2-3)[12; ij]

sn(1-2-3)[12; ij] =

{
0 if n− j > 1

sn−1(1-2-3)[1; i] otherwise

sn−1(1-2-3)[21; ij] = sn(1-2-3)[1; j]

(4)

The recurrences in (4) simplify to create the following recurrence:

sn(1-2-3)[1; i] =
i∑

j=1

sn−1(1-2-3)[1; j] (5)

Among other things, one can then evaluate this recurrence by hand to identify the
closed form

∣∣Sn(1-2-3)
∣∣ = 1

n+1

(
2n
n

)
, the Catalan numbers.

The length of the longest prefix p appearing in finite scheme E is the called the depth
of E. Not every set B admits a finite enumeration scheme, the simplest counterexample
being the classical pattern 2-3-1. Let E be the scheme for Sn(2-3-1), and let Jt =
t(t − 1) · · · 21 be the decreasing permutation of length t. It can be shown that for any t
there are no gap vectors for Jt and no non-empty reversibly deletable sets. Hence E must
contain the triple (Jt, ∅, ∅) for each t > 1 and hence E is infinite.

It should be noted that the enumeration scheme for Sn(1-3-2) is finite (of depth 2) and∣∣Sn(2-3-1)
∣∣ =

∣∣Sn(1-3-2)
∣∣ by symmetry. More generally, it can be seen that if B admits

an enumeration scheme EB of depth K then its set of complements Bc = {σc : σ ∈ B}
also admits an enumeration scheme EBc of depth K. The analogous statements regarding
Br = {σr : σ ∈ B} do not hold and so B may not have a finite scheme while Br does, as
exhibited by B = {2-3-1}.
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3 Enumeration-scheme-compatible statistics

3.1 General theory

The author proves in [6] that ifB admits a finite enumeration scheme, then the distribution
of the statistic inv(π) over Sn(B) can be computed via the same enumeration scheme.
This is the consequence of comparing the inversion numbers of a permutation and its image
under the deletion map dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p); dR(w)]. In particular, for
π ∈ Sn the change in the inversion number after deleting the rth letter is given by

δinv
r (π) := inv(π)− inv(dr(π)) = (πr − 1) +

∑
i<r

sgn(πi − πr), (6)

where sgn(x) is the signum function:

sgn(x) :=


−1, x < 0

0, x = 0

1, x > 0.

For the more general case, let R = {r1, . . . , rt} where rj < rj+1. Then the deletion dR has
the following effect on inversion number:

δinv
R (π) := inv(π)− inv(dR(π)) =

∑
r∈R

δr(π)− inv(πr1 · · · πrt) (7)

Observe that equation (7) shows δinv
R (π) can be written purely in terms of the letters

π1, . . . , πrt . Therefore if E is an enumeration scheme for pattern set B, and (p,G,R) ∈
E, then δinv

R is constant over the set Sn(B)[p;w] for any fixed w. Thus we define a
new function ∆inv

R (w, n) on prefix words w, which takes on the value δinv
R (π) given by

a π ∈ Sn(B)[p;w]. Therefore we may recursively compute the distribution of inv over
Sn(B)[p;w] via

F (Sn(B)[p;w], inv, q) = q∆inv
R (w,n)F (Sn−|R|(B)[dR(p); dR(w)], inv, q) (8)

The above results motivate the following definitions:

Definition 4. Let f :
⋃
n>0 Sn → Z be a permutation statistic. For a permutation π let

the R-deletion difference, denoted δfR(π), be f(π)− f(dR(π)).
For nonnegative integer m, a permutation statistic f is enumeration-scheme-compatible

(or “ES-compatible”) with margin m if for any positive integer t and any R ⊆ [t], the
R-deletion differences δfR(π) = δfR(π′) whenever π and π′ are two permutations of length
n > t + m such that π1 · · · πt+m = π′1 · · · π′t+m. We denote this constant value ∆f

R(w, n)
where w = π1 · · · πt+m.

In other words, permutation statistic f is ES-compatible with margin m if δfR(π) may
be determined from only the length of π and its first maxR + m letters. Note that if f
is ES-compatible with margin m, then f is also ES-compatible with margin m′ for any
m′ > m.

The results from [6] cited above may be rephrased as follows:
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Theorem 5. The inversion number is ES-compatible with margin 0.

The definition of ES-compatible implies that enumeration schemes are amenable to
computing the distribution for any ES-compatible statistic:

Theorem 6. Let f be a ES-compatible permutation statistic with margin m. If R is
reversibly deletable for prefix p ∈ Sk with respect to B and maxR +m 6 k, then

F (Sn(B)[p;w], f, q) = q∆f
R(w,n) F (Sn−|R|(B)[dR(p); dR(w)], f, q), (9)

where ∆f
R(w, n) has the value δfR(π) for any π ∈ Sn(B)[p;w].

Proof. Since maxR + m 6 |p| and f is ES-compatible with margin m, we see from the
definition of ES-compatible that δfR(π) is constant for all permutations π ∈ Sn(B)[p;w].
Therefore ∆f

R(w, n) is well-defined. Furthermore, f(π) = ∆f
R(w, n) + f(dR(π)) for any

π ∈ Sn(B)[p;w].
From the definition of reversibly-deletable, we have the bijection

dR : Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)].

Shifting focus to the weight enumerators, we see that

F (Sn(B)[p;w], f, q) : =
∑

π∈Sn(B)[p;w]

qf(π)

=
∑

π∈Sn(B)[p;w]

q∆f
R(w,n)qf(dR(π))

= q∆f
R(w,n)

∑
π∈dR(Sn(B)[p;w])

qf(π)

= q∆f
R(w,n)

∑
π∈Sn−|R|(B)[dR(p);dR(w)]

qf(π)

= q∆f
R(w,n)F (Sn−|R|(B)[dR(p); dR(w)], f, q)

(10)

Thus we have proven equation (9).

By a similar proof we get the following multivariate generalization of Theorem 6:

Theorem 7. Let f1, . . . , fs be ES-compatible permutation statistics, each with margin at
most m, and let f = 〈f1, . . . , fs〉 and q = 〈q1, . . . , qs〉. If R is reversibly deletable for prefix
p ∈ Sk with respect to B and maxR +m 6 k, then

F (Sn(B)[p;w], f ,q) =

(
s∏
i=1

q
∆

fi
R (w,n)

i

)
F (Sn−|R|(B)[dR(p); dR(w)], f ,q), (11)

where each ∆fi
R(w, n) has the value δfiR (π) for any π ∈ Sn(B)[p;w].
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To more clearly tie Theorems 6 and 7 to enumeration schemes, we introduce the
following terminology:

Definition 8. For nonnegative integer c, an enumeration scheme E has clearance c if
for each (p,G,R) ∈ E, either R = ∅, ~0 ∈ G, or |p| −maxR > c.

For example, the scheme for 1-2-3-avoiding permutations given in (3) has clearance
0 because of the triple (12, {〈0, 0, 1〉}, {2}). The clearance of an enumeration scheme
describes the largest margin that the scheme could accommodate, as detailed in the
following corollaries.

Corollary 9. If f is an ES-compatible permutation statistic of margin m and E is an
enumeration scheme for pattern set B with clearance at least m, then F (Sn(B), f, q) may
be computed in polynomial time (via enumeration scheme E).

Corollary 10. Let f1, . . . , fs be ES-compatible permutation statistics, each with margin
at most m, and let f = 〈f1, . . . , fs〉 and q = 〈q1, . . . , qs〉. Let E be a finite enumeration
scheme for pattern set B with clearance at least m. Then the polynomial F (Sn(B), f ,q)
may be computed in polynomial time (via enumeration scheme E).

Clearly corollaries 9 and 10 are impractical if there is no scheme E satisfying the
conditions stated. It will be shown in Theorem 15 of Section 4 that a finite scheme
of any clearance is sufficient for a polynomial time computation since a scheme can be
“deepened” to create a scheme for the same pattern set with any desired clearance.

3.2 Examples of ES-compatible statistics

We now take some time to prove some well-known permutaiton statistics are indeed ES-
compatible.

3.2.1 Copies of consecutive patterns

We first consider statistics based on the number of copies of a given consecutive pattern.
Several well-studied statistics can be phrased in terms of the number of copies of certain
consecutive patterns. The descent number, des(π), is the number of copies of the consec-
utive pattern 21. The number of double-descents, i.e., indices i so that πi > πi+1 > πi+2,
is the number of copies of the consecutive pattern 321. In Subsection 5.2 we discuss the
distribution for the number of peaks, i.e., indices i so that πi−1 < πi and πi > πi+1, which
is the total of the number of copies of 132 and the number of copies of 231.

Theorem 11. Let σ ∈ St and f(π) be the number of copies of the (consecutive) pattern
(σ, [t− 1]) in π. Then f is a ES-compatible statistic with margin t− 1.

Note that f(π) is defined for any word π, not just permutations. Furthermore, if
π ∼ π′, then f(π) = f(π′).
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Proof. Fix pattern σ ∈ St and let k > 1. We will prove that f(π) − f(π1 · · · πk) =
f(dR(π)) − f(dR(π1 · · · πk)) for any R ⊆ [k − t + 1]. From this it is clear that δfR(π) =
f(π1 · · · πk)− f(dR(π1 · · · πk)) for any k > maxR+ t− 1, and so f is ES-compatible with
margin t− 1.

Let fi(π) be the number of copies of (σ, [t − 1]) starting at πi. Since (σ, [t − 1]) is
consecutive, we see that

fi(π) = χ[πi · · · πi+t−1 ∼ σ],

where χ[P ] is the characteristic function for statement P , i.e., χ[P ] equals 1 if P is true

and 0 otherwise. Therefore f(π) =
n−t+1∑
i=1

fi(π) for π ∈ Sn, and splitting this sum implies

that:

f(π) =
n−t+1∑
i=1

fi(π)

=
k−t+1∑
i=1

fi(π) +
n−t+1∑
i=k−t+2

fi(π)

=
k−t+1∑
i=1

fi(π1 · · · πk) +
n−t+1∑
i=k−t+2

fi(πk−t+2 · · · πn)

= f(π1 · · · πk) + f(πk−t+2 · · · πn)

Thus f(π) = f(π1 · · · πk) + f(πk−t+2 · · · πn). Similarly, let π′ = dR(π) for R ⊆ [k −
t + 1], and by the appropriate sum-splitting we see that f(π′) = f(π′1 · · · π′k−|R|) +

f(π′k−t+2−|R| · · · π′n−|R|). By the definition of dR the relative sizes of letters following the
prefix remains unchanged. Hence it follows that

f(π)− f(π1 · · · πk) = f(πk−t+2 · · · πn)

= f(π′k−t+2−|R| · · · π′n−|R|)
= f(π′)− f(π′1 · · · π′k−|R|).

Thus we have confirmed f(π)− f(π1 · · · πk) = f(dR(π))− f(dR(π1 · · · πk)) and our result
follows.

Remark. In terms relevant to enumeration schemes, for any permutation π ∈ Sn(B)[p;w]
for a prefix of length k,

∆f
R(w, n) = f(w)− f(dR(w)) = f(p)− f(dR(p)), (12)

where f counts the number of copies of a consecutive pattern.

3.2.2 Copies of vincular patterns

We next consider the number of copies of a vincular pattern σ1 · · ·σt−1-σt. Patterns of
such a type, sometimes called (t− 1, 1), were first considered in [15] for t = 3.
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The proof will proceed similarly to that of Theorem 11. Note that the inversion number
inv(π) is the number of copies of 2-1, and so is a special case of this result. Subsection
5.3 extends the results in this section to apply the major index statistic.

Theorem 12. Let σ ∈ St and let g(π) be the number of copies of the pattern (σ, [t− 2])
in π. Then g is a ES-compatible statistic with margin t− 2.

Proof. Fix σ ∈ St and let k > 1. We will prove that δgR(π) := g(π) − g(dR(π)) is
determined by the length of π together with the prefix π1 · · · πk for any R ⊆ [k − t + 2].
From this it follows that g is ES-compatible with margin t− 2.

For a permutation π ∈ Sn, define gi(π) to be the number of copies of (σ, [t − 2])
starting at πi. Clearly g(π) =

∑n
i=1 gi(π), and if π and π′ are order-isomorphic words

then gi(π) = gi(π
′). In particular we see that gi(π) can be computed in the following way,

based on which πj can be the last letter of a copy of (σ, [t− 2]) starting at πi:

gi(π) :=
∣∣{j : j > i+ t− 2, and πi · · · πi+t−2 πj ∼ σ}

∣∣
=
∣∣{j : j > 1 and πi · · · πi+t−2 πj ∼ σ}

∣∣
−
∣∣{j : j < i and πi · · · πi+t−2 πj ∼ σ}

∣∣ (13)

We now will show that gi(π) can be determined entirely from |π| and π1 · · · πi+t−2 by
showing such limited information is sufficient for each of the addends in (13).

We consider the first term,
∣∣{j : j > 1 and πi · · · πi+t−2 πj ∼ σ}

∣∣. Given the fixed
σ ∈ St, we can define hi(w, n) for words w ∈ [n]k as follows:

hi(w, n) :=


min(wi, . . . , wi+t−2)− 1, if σt = 1

n−max(wi, . . . , wi+t−2), if σt = t

wb − wa − 1, if 1 < σt < t, σa = σt − 1, σb = σt + 1.

(14)

If σt = 1, then hi(π, n) yields the number of letters πj which are less than each of
πi, . . . , πi+t−2, in which case πi · · · πi+t−2 πj ∼ σ. Similarly σt = t, then hi(π, n) yields
the number of letters πj which are greater than each of πi, . . . , πi+t−2. Last, if a and b
are defined by σa = σt − 1 and σb = σt + 1, then hi(π, n) yields the number of letters πj
so that πi+a−1 < πj < πi+b−1 since every number between the values πi+a−1 and πi+b−1

appears somewhere in π. In each case, we see that

hi(π, n) =
∣∣{j : j > 1 and πi · · · πi+t−2 πj ∼ σ}

∣∣.
Observe that hi(π, n) = hi(π1 · · · πs, n) for any s > i + t− 2, and so the first term of the
sum in (13) is determined solely by |π| and πi · · · πi+t−2.

Similarly, the term
∣∣{j : j < i and πi · · · πi+t−2 πj ∼ σ}

∣∣ can be determined entirely
by π1 · · · πi+t−2. Define h′i(w) for word w to be

h′i(w) :=
i−1∑
j=1

χ[wi · · ·wi+t−2 wj ∼ σ],
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and so it is clear that h′i(π) =
∣∣{j : j < i and πi · · · πi+t−2 πj ∼ σ}

∣∣. Note that h′i(π) =
h′i(π1 · · · πs) for any s > i+ t− 2.

Combining the above observations, we can decompose the following sum:

g(π) =
n∑
i=1

gi(π)

=
k−t+2∑
i=1

gi(π) +
n∑

i=k−t+3

gi(π)

=
k−t+2∑
i=1

(
hi(π1 · · · πk, n)− h′i(π1 · · · πk)

)
+

n∑
i=k−t+3

gi(π)

(15)

Fix R ⊆ [k− t+ 2] and let π′ = dR(π). The above observations also apply to π′ to imply:

g(π′) =

k−t−|R|+2∑
i=1

(
hi(π

′
1 · · · π′k−|R|, n− |R|)− h′i(π′1 · · · π′k−|R|)

)
+

n−|R|∑
i=k−t−|R|+3

gi(π
′)

(16)

We now focus on the last terms of the equations (15) and (16). By the definition of
dR, πk−t+3 · · · πn ∼ π′k−t+3−|R| · · · π′n−|R|. Therefore gi(π) = gi−|R|(π

′) for i > k − t + 3,

and so
n∑

i=k−t+3

gi(π) =
n−|R|∑

i=k−t−|R|+3

gi(π
′). Thus subtracting equation (16) from (15) we see

that:

δgR(π) = g(π)− g(π′)

=
k−t+2∑
i=1

(
hi(π1 · · · πk, n)− h′i(π1 · · · πk)

)
−

k−t−|R|+2∑
i=1

(
hi(π

′
1 · · · π′k−|R|, n− |R|)− h′i(π′1 · · · π′k−|R|)

) (17)

Thus we have proven that g is ES-compatible with margin t− 2.

Remark. In terms relevant to enumeration schemes, for any permutation π ∈ Sn(B)[p;w]
for a prefix of length k,

∆g
R(w, n) =

k−t+2∑
i=1

(
hi(w, n)− h′i(w)

)
−

k−t−|R|+2∑
i=1

(
hi(dR(w), n− |R|)− h′i(dR(w))

)
.

(18)
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As an example of hi and h′i in practice, consider σ = 4123. Here g(π) counts the
number of copies of the vincular pattern 412-3. Then a = 1 and b = 3. Let π be
any one of the 4! permutations of length 9 such that w = π1 · · · π5 = 86913. Since
π3π4π5 = 913 ∼ 413 = σ1σ2σ3, we see that h3(π, 9) = π3−π5−1 = 5. Also h′3(π) = 2, since
both 6 and 8 appear before π3π4π5 and have values which lie between π5 = 3 and π3 = 9.
Therefore g3(π) = h3(π) − h′3(π) = 3, and indeed there are 3 copies of 412-3 starting at
π3 (specifically, these copies are 9134, 9135, and 9137, since {4, 5, 7} ⊆ {π6, . . . , π9}). In
this example g1(π) = g2(π) = 0. If R = {2, 3}, which respects the needed margin of 2 for
a length-5 prefix, we get that π′ = dR(π) has prefix dR(86913) = 713. Deleting the 6 and
9 from π deletes the three copies of 412-3 described above, but creates three new copies
since g1(π′) = h1(713, 7)− h′1(713) = 3− 0 = 3 (specifically, the new copies are witnessed
by 7134, 7135, and 7136). Hence in this case δgR(π) = 0.

Comparing Theorems 11 and 12, one might guess the trend continues, i.e., that pat-
terns of the form (σ, [t−3]) for σ ∈ St are ES-compatible with margin t−3. An extension
involving partially-ordered generalized patterns, as introduced by Kitaev in [19], provides
the proper generalization. For example, a copy of the pattern 124-3′-3′′ would be witnessed
by a copy of either 125-3-4 or 125-4-3. Such a statistic of the form

σ1 . . . σt−1 - σ′t - σ′′t - . . . - σ′′′t

can be seen to be ES-compatible with margin t − 2 (one less than the length of the
consecutive portion).

3.2.3 Right-to-left statistics

A letter wi of word w is a right-to-left maximum [resp., minimum] if wi > wj [resp.,
wi < wj] for all j > i. Let rtlmax(w) be the number of right-to-left maxima in w and
rtlmin(w) be the number of right-to-left minima in word w. For example, if π = 28674153,
we see rtlmax(π) = 4 (for π2, π4, π7 and π8) and rtlmin(π) = 2 (for π6 and π8).

In this subsection we prove the following theorem:

Theorem 13. The statistics rtlmin and rtlmax are ES-compatible with margin 0.

It will be useful to have the following characterization of the right-to-left minima and
maxima for a permutation, which are based solely on prefixes. The proof follows directly
from the definition above and is omitted.

Lemma 14. Let π = π1 · · · πn be a permutation. Then,

1. πi is a right-to-left minimum of π if and only if all numbers less than πi lie to the
left of πi, i.e., {1, 2, . . . , πi − 1} ⊆ {π1, π2, . . . , πi−1}.

2. πi is a right-to-left maximum of π if and only if all numbers greater than πi lie to
the left of πi, i.e., {πi + 1, πi + 2, . . . , n} ⊆ {π1, π2, . . . , πi−1}.
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For the remainder of the section, we will restrict ourselves to the proof that rtlmax is
ES-compatible. The proof that rtlmin is ES-compatible is analogous.

For integers a and b let rtlmax[a,b](π) be the number of right-to-left maxima πi of π
such that i is in the closed interval [a, b]. For example, rtlmax[1,5](2867153) = 2 (for π2

and π4). Note that while π5 is a right-to-left maximum of π1 · · · π5 = 28671, it is not
counted since this function only counts those letters which are right-to-left maxima in
the overall permutation. We may decompose rtlmax(π) for any π ∈ Sn and 1 6 t 6 n,
by rtlmax(π) = rtlmax[1,t](π) + rtlmax[t+1,n](π). Thus it follows from the first half of
Definition 4 that if π ∈ Sn, R ⊆ [t] and π′ := dR(π) ∈ Sn−|R|,

δrtlmax
R (π) = rtlmax(π)− rtlmax(π′)

=
(
rtlmax[1,t](π) + rtlmax[t+1,n](π)

)
−(

rtlmax[1,t−|R|](π
′) + rtlmax[t−|R|+1,n−|R|](π

′)
) (19)

Rearranging terms leaves us with

δrtlmax
R (π) =

(
rtlmax[1,t](π)− rtlmax[1,t−|R|](π

′)
)
+(

rtlmax[t+1,n](π)− rtlmax[t−|R|+1,n−|R|](π
′)
)

By the original definition of rtlmax, it is clear that

rtlmax[a,n](π) = rtlmax(πaπa+1 · · · πn)

for any a. Since π′t−|R|+1π
′
t−|R|+2 · · · π′n−|R| is order-isomorphic to πt+1πt+2 · · · πn, it follows

that
rtlmax[t+1,n](π)− rtlmax[t−|R|+1,n−|R|](π

′) = 0.

Thus we see that
δrtlmax
R (π) = rtlmax[1,t](π)− rtlmax[1,t−|R|](π

′) (20)

Let w be a word in [n]k without repeated letters, and define

rtlmax∗(w, n) :=
∣∣{wi : {wi + 1, wi + 2, . . . , n} ⊆ {w1, w2, . . . , wi−1}

}∣∣. (21)

By Lemma 14 above immediately see for any π ∈ Sn

rtlmax[1,t](π) = rtlmax∗(π1π2 · · · πt, n).

Hence equation (20) becomes

δrtlmax
R (π) = rtlmax∗(π1π2 · · · πt, n)− rtlmax∗(π′1π

′
2 · · · π′t−|R|, n− |R|). (22)

Therefore if R ⊆ [t], then δrtlmax
R (π) depends only the values of π1 · · · πt. Thus by

Definition 4 we see that rtlmax is ES-compatible with margin 0, and the proof is com-
plete. As mentioned previously, the proof that rtlmin is ES-compatible with 0 proceeds
analogously, where

rtlmin∗(w, n) :=
∣∣{wi : {1, 2, . . . , wi − 1} ⊆ {w1, w2, . . . , wi−1}

}∣∣.
In [8] the author generalizes right-to-left maxima with the right-to-left maximal copy

of a consecutive pattern σ. For a permutation π and consecutive pattern σ, the subfactor
πiπi+1 · · · πi+k−1 is a right-to-left maximal copy of σ if the following criteria are satisfied:
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1. πiπi+1 · · · πi+k−1 ∼ σ, and

2. if j > i and πjπj+1 · · · πj+k−1 ∼ σ and σm = min(σ1, . . . , σk), then πj+m−1 < πi+m−1.
In other words, the minimal letter of πiπi+1 · · · πi+k−1 is greater than the minimal
letter of any other copy of σ to starting the right of πi.

For example, the permutation 31856742 has four copies of the consecutive pattern 21
(namely, 31, 85, 74, and 42), but only three of these copies (all but 31) are right-to-left
maximal. The classical right-to-left maxima can be viewed as right-to-left maximal copies
of the pattern 1. A straightforward generalization of the above argument proves that the
statistic counting the number of right-to-left maximal copies of a consecutive pattern σ
of length t is ES-compatible with margin t− 1.

Before closing this section, it should be noted that the number of left-to-right maxima
and left-to-right minima are not ES-compatible. For example, if n = 4, w = 12, and
R = {1, 2} then δltrmin

R (1234) = 0 while δltrmin
R (1243) = −1.

4 Deepening Schemes

Suppose that pattern set B admits a finite enumeration scheme. The question remains
when given ES-compatible statistic with margin m whether one can find a finite enumera-
tion scheme for B with sufficient clearance c > m. The algorithms from [9] can be altered
to ensure that any constructed scheme has a prescribed clearance if such a scheme exists.
The existence of such a scheme is guaranteed in the following theorem.

Theorem 15. Suppose the pattern set B has a finite enumeration scheme E. Then for
any c > 0 there is a finite enumeration scheme E ′ with clearance c.

To prove Theorem 15, we will first prove a lemma regarding reversibly deletable sets.

Lemma 16. Suppose that R is a reversibly deletable set for prefix p ∈ Sk with respect to
B. Then R is also reversibly deletable for any permutation p′ ∈ Sk′ such that p′1 · · · p′k ∼ p,
where k′ > k.

Proof. If R ⊆ [k] is reversibly deletable for p ∈ Sk, then

dR : Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]

is a bijection whenever Sn(B)[p;w] 6= ∅. Let k′ > k and let p′ ∈ Sk′ such that
red(p′1 · · · p′k) = p. Let w′ ∈ [n]k

′
so that Sn(B)[p′;w′] 6= ∅. We must show that

dR : Sn(B)[p′;w′]→ Sn−|R|(B)[dR(p′); dR(w′)] is a bijection.
We begin with the bijection dR and its restrictions to the domains Sn(B)[p;w] and

Sn(∅)[p′;w′]:

dR : Sn(∅)[p;w]→ Sn−|R|(∅)[dR(p); dR(w)]

dR : Sn(B)[p;w]→ Sn−|R|(B)[dR(p); dR(w)]

dR : Sn(∅)[p′;w′]→ Sn−|R|(∅)[dR(p′); dR(w′)]

(23)
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Each of these is a bijection, thererefore we also have a bijection dR from the intersection

Sn(B)[p;w] ∩Sn(∅)[p′;w′]

to its image
Sn−|R|(B)[dR(p); dR(w)] ∩Sn−|R|(∅)[dR(p′); dR(w′)].

Hence dR acts as a bijection Sn(B)[p′;w′]→ Sn−|R|(B)[dR(p′); dR(w′)].

Note that the resulting set R in Lemma 16 is not necessarily a maximal reversibly
deletable set for p. For example, recall from Equation (3) that {2} is reversibly deletable
for the prefix 12 with respect to B = {1-2-3}. Lemma 16 implies that {2} is reversibly
deletable for the prefix 231, although the larger set {1, 2} is also reversibly deletable for
231.

We are now ready to prove Theorem 15.

Proof of Theorem 15. Let E be a finite enumeration scheme for B, with depth K. We
will construct a scheme E ′ with clearance c > 1. If c = 0, then E will suffice since any
enumeration scheme has clearance 0.

We will construct a (finite) set E ′ by creating a triple (p,G(p), R(p)) ∈ E ′ for each
p ∈

⋃K+c
k=0 Sk. For p = ε, let G(ε) = ∅ and R(ε) = ∅, so we see E ′ satisfies criterion 1 in

Definition 3. For p 6= ε, let G(p) be a basis of gap vectors for p with respect to B, which
may be constructed according to the algorithm described in [9].

We now construct R(p). If |p| < K+c, then let R(p) = ∅. If |p| = K+c, then let p′ be
the longest prefix p′ = red(p1 · · · ps) such that there is a triple (p′, G′, R′) in the original
scheme E. Then |p′| 6 K, and since no child of p′ has a triple in E (by maximality of p′)
we know R′ is nonempty. By Lemma 16, R′ is also a reversibly deletable set for p, so we
let R(p) = R′. Furthermore, R(p) = R′ ⊆ [K], so |p| −maxR(p) > c and so we see that
E ′ has clearance c.

We now verify that E ′ satisfies the criteria to be an enumeration scheme for B, as
outlined in Definition 3. Each triple (p,G(p), R(p)) ∈ E ′ is constructed so that G(p) is a
basis of gap vectors for p with respect to B and so that R(p) is a reversibly deletable set for
p with respect to B. As previously mentioned, E ′ satisfies criterion 1 since (ε, ∅, ∅) ∈ E ′.
If R(p) = ∅, then |p| < K + c and so E ′ contains a triple (p′, G(p′), R(p′)) for each child
p′ since E ′ contains a triple for every permutation of length |p|+ 1. Therefore E ′ satisfies
criterion 2a. If R(p) 6= ∅, then |p| = K + c and E ′ contains a triple (p̂, G(p̂), R(p̂)) for
p̂ = dR(p)(p) since E ′ contains a triple for every permutation with length less than K + c.
Therefore E ′ satisfies criterion 2b.

It perhaps goes without saying that E ′ from the proof of Theorem 15 is not usually
minimal, neither in terms of number of triples nor the runtime of the encoded recurrence.
For example, the proof constructs the following scheme E ′ with clearance 1 forB = {1-2-3}
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based on the scheme E in (3):

E ′ =
{

(ε, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, ∅), (21, ∅, ∅), (123, {〈0, 0, 0, 0〉}, {2}),
(132, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {2}), (231, {〈0, 0, 0, 1〉}, {2}),
(213, {〈0, 0, 0, 1〉}, {1}), (312, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {1}), (321, ∅, {1})

}
.

(24)

In practice, therefore, it is better to alter the automated-discovery algorithms from [9]
to construct from the start a reversibly deletable set for each prefix p so that only sets
R ⊆ [|p| − c] are considered. This change guarantees the clearance criterion holds, and
Theorem 15 guarantees that the algorithm will succeed in finding a finite scheme whenever
the algorithms would succeed without the clearance conditions. Such an approach yields
the following scheme with clearance 1 for B = {1-2-3}.

E ′ =
{

(ε, ∅, ∅), (1, ∅, ∅), (12, {〈0, 0, 1〉}, ∅), (21, ∅, {1}),
(123, {〈0, 0, 0, 0〉}, {1, 2}), (132, {〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}, {2}),
(231, {〈0, 0, 0, 1〉}, {1, 2})

}
.

(25)

Note in particular that the children of 21 do not need to appear in a scheme with clear-
ance 1, since 21 has a nonempty reversibly deletable set which respects the clearance
requirement.

We close this section with a corollary combining Theorem 15 and Corollary 9.

Corollary 17. If f is an ES-compatible permutation statistic of margin m and E is an
enumeration scheme for pattern set B, then F (Sn(B), f, q) may be computed in polyno-
mial time.

5 Applications

We wish to take some time in this section to highlight some of the less obvious applications
of the results above. Studying statistics over sets Sn(B) is relatively new, so much of
what follows only scratches the surface.

5.1 Implementation

The above algorithms have been implemented in a Maple package Statter. This package
supercedes the package gVatter accompanying [9] and can perform the following tasks.

1. Build an enumeration scheme for a given pattern set B with given clearance c. (This
also requires search parameters for the maximum size of gap vectors and maximum
depth of prefixes.)

2. Read a given enumeration scheme to get the distribution over Sn(B) for given n of
a statistic based on the number of copies of a consecutive pattern, a pattern of type
σ1 . . . σt−1-σt, right-to-left maxima, or right-to-left minima.
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3. Read a given enumeration scheme to get the distribution of multistatistics given
above.

For example, Statter gave the the enumeration scheme for pattern set B = {1-2-3}
with clearance 1 shown above in (25). From that, Statter can quickly give the distribu-
tion of the descent statistic over, say, S10(1-2-3):

F (S10(1-2-3), des, q) = 42 q4 + 1770 q5 + 7515 q6 + 6455 q7 + 1013 q8 + q9.

A fuller investigation of the descent statistic over Sn(1-2-3), particularly its connection
to Dyck paths, is given in [5].

The package Statter is available for download from the author’s homepage.

5.2 Peaks and Valleys

A peak of a permutation π is a letter πi such that πi−1 < πi > πi+1. Let peak(π) be the
number of peaks of π. Therefore peak(π) is the total number of copies of the consecutive
patterns 132 and 231 in π. Likewise a valley is a letter πi such that πi−1 > πi < πi+1. If
vall(π) is the number of valleys of π, then again we see that vall(π) is the total number of
copies of the consecutive patterns 213 and 312 in π. Therefore we see that peak(π) and
vall(π) are ES-compatible statistics.

While exploring the distributions of the peak and vall statistics over sets Sn(B), a
few interesting confluences appeared:

Theorem 18. The following three distributions are equivalent:

• the distribution of peaks over 1-2-3-avoiding permutations,

• the distribution of valleys over 1-2-3-avoiding permutations, and

• the distribution of valleys over 1-3-2-avoiding permutations.

In the notation above,

F (Sn(1-2-3), peak, q) = F (Sn(1-2-3), vall, q) = F (Sn(1-3-2), vall, q).

Remark. Dokos et al. started investigating statistic-Wilf-equivalence in [16], where two
pattern sets B and B′ are f -Wilf-equivalent for permutation statistic f if

F (Sn(B), f, q) = F (Sn(B′), f, q)

for all n. This equivalence is denoted B
f
≡ B′. In this notation, the second equivalence of

Theorem 18 can be written as

1-2-3
vall≡ 1-3-2.
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Proof. The equivlence F (Sn(1-2-3), peak, q) = F (Sn(1-2-3), vall, q) follows directly from
symmetry. Permutation π avoids 1-2-3 if and only if its reverse-complement πrc avoids
1-2-3. Next, the peaks in π correspond to valleys in πrc and vice versa. Thus it follows
that F (Sn(1-2-3), peak, q) = F (Sn(1-2-3), vall, q).

We next prove F (Sn(1-2-3), vall, q) = F (Sn(1-3-2), vall, q). We will begin by proving
the following claim: For any π ∈ Sn(1-2-3) ∪Sn(1-3-2), πi is a valley of π if and only if
i > 1, πi is a left-to-right minimum of π and πi+1 is not an left-to-right minimum of π.
Suppose that πi is a valley but that there is some πj such that πj < πi and j < i. Then
we see πjπi−1πi ∼ 132 and πjπiπi+1 ∼ 123 and so π would contain 1-3-2 and 1-2-3. Thus
if π avoids 1-3-2 or 1-2-3 then πi must be a left-to-right minimum. Since πi+1 > πi we
see that πi+1 is not a left-to-right minimum. Conversely, suppose that πi is a left-to-right
minimum of π for i > 1 but πi+1 is not. Then πi+1 > πi, since otherwise πi+1 would be a
left-to-right minimum, and also πi−1 > πi, since otherwise πi would not be an left-to-right
minimum. Therefore πi must be a valley of π. Hence the claim is proven.

The Simion-Schmidt bijection in [27] provides a map Sn(1-3-2) → Sn(1-2-3) which
preserves the left-to-right minima. Therefore by the claim above, the same bijection also
preserves the valleys of the permutations. The result follows.

Remark. The proof above implies that vall is equally distributed over Sn(1-2-3) and
Sn(1-3-2) even when restricting further to those permutations with a given set of left-to-
right minima. Letting LRmin(π) be the set of indices which are left-to-right minima for
π, then for any S ⊆ [n]. ∑

π∈Sn(1-2-3)
LRmin(π)=S

qvall(π) =
∑

π∈Sn(1-3-2)
LRmin(π)=S

qvall(π) (26)

For completeness we will comment that F (Sn(1-3-2), peak, q) appears in OEIS as
A091894, suggesting the following correspondence. A Dyck path of semilength n is a
lattice path from (0, 0) to (n, 0) composed of steps U = (1, 1) and D = (1,−1) which never
goes below the x-axis. We will write Dyck paths as words Ua1 Db1 Ua2 Db2 · · ·Uak Dbk .

Theorem 19. The number of permutations in Sn(1-3-2) with k peaks equals the number
of Dyck paths of semilength n with k occurrences of the subfactor DDU .

Proof. Krattenthaler provides a bijection, Φ, in [20] from Sn(1-3-2) to the set of Dyck
paths of semilength n. In that bijection, a permutation with k left-to-right minima maps
to a Dyck path with k copies of the subfactor DU . The remainder of this proof outlines
this bijection and how it refines to our result.

Suppose that π ∈ Sn(1-3-2) with ltrmin(π) = k. Then let j1, j2, . . . , jk be the indices
of the left-to-right minima and let mi = πji be the values of the left-to-right minima
for 1 6 i 6 k. Further, let m0 = n + 1 and jk+1 = n + 1. Then Φ(π) is the Dyck
path Ua1 Db1 Ua2 Db2 · · ·Uak Dbk where ai = mi−1 − mi and bi = ji+1 − ji. For Φ−1,
observe that the left-to-right minima of Φ−1(Ua1 Db1 Ua2 Db2 · · ·Uak Dbk) occur at indices
1, 1 + b1, 1 + b1 + b2, . . . , 1 + b1 + b2 + · · · bk−1 and have values n+ 1−m1, n+ 1− (m1 +
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m2), . . . , n+ 1− (m1 +m2 + · · ·mk). It is well-known that a 1-3-2-avoiding permutation
is uniquely determined by the indices and values of its left-to-right minima, and thus Φ
is bijective.

Observe that if ltrmin(π) = k, then Φ(π) = Ua1 Db1 Ua2 Db2 · · ·Uak Dbk for ai > 0 and
bi > 0. Therefore each left-to-right minimum beyond π1 corresponds to a DU subfactor in
Φ(π). Furthermore if adjacent letters πi and πi+1 are both left-to-right minima, then the
corresponding string of D’s in the image is only a single D. Therefore DDU subfactors
correspond to non-adjacent left-to-right minima, which must have a single peak between
them (specifically, immediately preceding the second left-to-right minimum) due to 1-3-2-
avoidance.

The distributions from Theorems 18 and 19 are given in Tables 1 and 2. This data
was generated by Statter.

n F (Sn(1-2-3), peak, q)
1 1
2 2
3 3 + 2 q
4 4 + 10 q
5 5 + 32 q + 5 q2

6 6 + 84 q + 42 q2

7 7 + 198 q + 210 q2 + 14 q3

8 8 + 438 q + 816 q2 + 168 q3

9 9 + 932 q + 2727 q2 + 1152 q3 + 42 q4

10 10 + 1936 q + 8250 q2 + 5940 q3 + 660 q4

Table 1: The distributions from Theorem 18 for 1 6 n 6 10. OEIS sequence A236406
[23].

n F (Sn(1-3-2), peak, q)
1 1
2 2
3 4 + q
4 8 + 6 q
5 16 + 24 q + 2 q2

6 32 + 80 q + 20 q2

7 64 + 240 q + 120 q2 + 5 q3

8 128 + 672 q + 560 q2 + 70 q3

9 256 + 1792 q + 2240 q2 + 560 q3 + 14 q4

10 512 + 4608 q + 8064 q2 + 3360 q3 + 252 q4

Table 2: The distributions of peaks over 1-3-2-avoiding permutations. OEIS sequence
A091894 [23].
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A complete classification of sets of classical patterns of length 3 according to peak-
Wilf-equivalence is forthcoming in [10].

5.3 The major index

The major index is defined by maj(π) :=
∑

i:πi>πi+1
i. As shown in [2], the major index

can be decomposed into the sum of four vincular pattern functions:

maj(π) = (3-21)(π) + (2-31)(π) + (1-32)(π) + (21)(π). (27)

where (σ)(π) is the number of copies of pattern σ in permutation π. While these patterns
do not conform to the structure of those in Theorem 12, their reverses do. Thus we define

rmaj(π) := maj(πr) = (12-3)(π) + (13-2)(π) + (23-1)(π) + (12)(π).

Therefore Corollary 10 and Theorem 12 imply the following special case:

Corollary 20. If B is a set of patterns such that Br := {τ r : τ ∈ B} admits a finite
enumeration scheme, then F (Sn(B),maj, q) can be computed via enumeration scheme.

Distributions of the major index over avoidance sets Sn(τ) for classical patterns τ ∈ S3

are studied by Dokos et al. in [16].
To illustrate the method with a new example, consider the set of classical patterns

Bk = {2-1-3, 1-2- · · · -(k − 1)-k}

for any k > 2. A discussion of Bc
3 = {2-3-1, 3-2-1} appears in [16], but we will consider

the more general family. It was shown in [29] that Br
k = {3-1-2, k-(k− 1)- · · · -2-1} admits

a finite enumeration scheme of depth 2:{
(ε, ∅, ∅), (1, ∅, ∅), (12, ∅, {1}), (21, {〈0, 1, 0〉, 〈k − 2, 0, 0〉}, {1})

}
(28)

The scheme in (28) derives from general-purpose algorithms of [29], and so is not
necessarily optimal for a special case. There are a few missed gap vector criteria which
will simplify the resulting recurrence. Observe that if π is a permutation with π1 > k, then
2, 3, . . . , k − 1 lie among the remaining letters. Either these letters appear in decreasing
order, in which case π contains a k-(k − 1)- · · · -2-1, or at least two of the letters appear
in increasing order, in which case π contains 3-1-2. Therefore 〈k − 1, 0〉 is a gap vector
for prefix pattern 1, and in turn this implies that {〈i, j, 0〉 : i+ j = k− 1} are gap vectors
for prefix 12. Thus we arrive at the following enumeration scheme for Br

k:

{
(ε, ∅, ∅),(1, {〈k − 1, 0〉}, ∅), (21, {〈0, 1, 0〉, 〈k − 2, 0, 0〉}, {1})

(12, {〈k − 1, 0, 0〉, 〈k − 2, 1, 0〉, . . . , 〈0, k − 1, 0〉}, {1})
} (29)

the electronic journal of combinatorics 21(2) (2014), #P2.50 23



We will consider the following analogue of the classic Euler-Mahonian distribution,
restricted to the Bk-avoiding permutations:

Gn(p;w) := F (Sn(Bk)[p;w], 〈maj, des〉, 〈q, t〉)
= F (Sn(Br

k)[p;w], 〈rmaj, (12)〉, 〈q, t〉)

This scheme in (29) translates into the following recurrences for n > 2:

∑
π∈Sn(Bk)

qmaj(π) tdes(π) =
∑

π∈Sn(Br
k)

qrmaj(π) t(12)(π)

= Gn(ε; ε) =
n∑
a=1

Gn(1, a)

=
k−1∑
a=1

Gn(1, a) (by gap vector criteria)

Gn(1, a) =
a−1∑
b=1

Gn(21; ab) +
n∑

b=a+1

Gn(12; ab)

= Gn(21; a(a− 1)) +
k∑

b=a+1

Gn(12; ab) (by gap vector criteria)

Gn(21; a(a− 1)) = t0 q0Gn−1(1; a− 1)

Gn(12; ab) = t1 qn−1Gn−1(1; b− 1)

(30)

The reader is left to verify the following values:

• ∆
(12)
{1} (a(a− 1), n) = 0

• ∆rmaj
{1} (a(a− 1), n) = 0

• ∆
(12)
{1} (ab, n) = 1 for ab ∼ 12

• ∆rmaj
{1} (ab, n) = n− 1 for ab ∼ 12

Combining the recurrence relations above yields the following recurrence for Gn(1; a),
the distribution of (maj, des) over Bk-avoiding permutations:

Gn(1; a) =


t qn−1

k−1∑
b=1

Gn−1(1; b), a = 1

Gn−1(1; a− 1) + t qn−1
k−1∑
b=a

Gn−1(1; b), 2 6 a 6 k − 1

0, a > k.

(31)
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6 Conclusion and Future Work

The techniques above face the same limitations as enumeration schemes. In short, the
recurrences produced are often complicated as in equation (31) and do not translate nicely
into generating functions. The methods discussed in Chapter 5 of [7] make some progress
toward converting schemes to generating functions, but cannot account for the full range
of recurrences that schemes can produce.

Further, not all sets of vincular patterns B admit a finite enumeration scheme, and
there is no full characterization predicting whether a given B will admit a finite scheme.
Data on how many sets B do admit a small scheme are available in [9].

We note that it should be possible to adapt the insertion encodings from [1, 30]
toward the purpose of computing F (Sn(B), f, q) for permutation statistics f based on
counting copies of consecutive patterns. The insertion encoding offers two advantages over
enumeration schemes: (1) the recurrences developed lead directly to generating functions,
and (2) there are more [sets of] classical patterns which admit regular insertion encodings
than finite enumeration schemes. The current state of insertion encodings, however,
cannot handle vincular patterns. Such tools could prove very helpful in classification of
patterns under statistic-Wilf-equivalence for various statistics.
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[11] Miklós Bóna. The absence of a pattern and the occurrences of another. Discrete
Math. Theor. Comput. Sci., 12(2):89–102, 2010.
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