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Abstract

In this paper the number of rooted (near-) 4-regular maps on the projective plane
are investigated with respect to the root-valency, the number of edges, the number
of inner faces, the number of nonroot-vertex-loops, the number of nonroot-vertex-
blocks. As special cases, formulae for several types of rooted 4-regular maps such
as 2-connected 4-regular projective planar maps, rooted 2-connected (connected)
4-regular projective planar maps without loops are also presented. Several known
results on the number of 4-regular maps on the projective plane are also concluded.
Finally, by use of Darboux’s method, very nice asymptotic formulae for the numbers
of those types of maps are given.

1 Introduction

We follow [7, 18, 31] to define a graph (map). A graph (map) is connected and may
have loops or multi-edges (or parallel edges as some people called it). A graph (map)
is k-connected if it needs at least k vertices to separate the graph (map) [7]. One may
see that this definition is slightly different from that given by Tutte [30]. For instance, a
2-connected graph (map) may have loops which have been excluded by Tutte.

A planar map (projective planar map) is a graph G drawn on the sphere S0 (the
projective plane N1) such that edges intersect at vertices and each component of S0 −
G(N1) is a disc called face. Generally, we may define a map on higher surfaces. A circuit
C on a surface Σ is essential (or noncontractible as some people named it) if Σ−C has no
component homeomorphic to an open disc. Otherwise it is called planar (or trivial).
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A map M is rooted if an edge er(M), a vertex vr on the edge and a direction along one
side of the edge are all distinguished. All maps here are rooted unless special statements
are given. One may see from some pioneer’s works [3, 18, 31] that rooting a map may
trivialize the automorphism group and makes it possible to build rooted maps by recursive
relations. So the general way for one to count rooted maps of a given type in an exact
manner is to set up functional equation(s), usually the order of the equation(s) goes
higher with the increase of the genera of the surfaces or some other restrictions (as the
connectivity etc.) on the maps (graphs), and then crack the equation(s) in every way.
The most successful way of doing so is the so-called quadratic method (or double-root
method as some people named it) developed by Brown [8] which enables one to solve a
quadratic equation by solving a system of two or more equations. This method almost
fails in the maps on higher surfaces. In view of exact enumerating nonplanar maps, some
people such as T.W.S. Walsh et al. [35] did some works in a general way. Both D. Arqués
[1] and, independently, E.A. Bender et al. [4, 5] counted rooted maps on the torus as a
function of the number of edges. Moreover, Gao et al. [13] treated the exact enumeration
of rooted 3-connected triangular maps on the projective plane and obtained a simple
parametric expression for its generating function of the number of vertices. Since elegant
formulae were very difficult to obtain for maps on general surfaces, some people such as
E.A. Bender started systematically working on asymptotic formulae. Many scholars such
as E.A. Bender et al. [6], G. Chapuy et al. [10], Gao [11, 12], A. Mednykh et al. [22, 23]
and T.W.S. Walsh et al. [36] have investigated many types of maps on general surfaces
and gotten asymptotic evaluations of nonplanar maps up to now. For a survey one may
see [3] or [17].

A (rooted) near-4-regular map is such one having all the vertices 4-valent except pos-
sibly the rooted one. It is clear that a near-4-regular map is Eulerian. A map is called
near-simple if no loops or multi-edges are permitted except possibly only two parallel
edges containing the root-vertex.

4-regular maps are very important for applications in many fields such as rectilinear
embedding in VLSI, the Gaussian crossing problem in graph theory, the knot problem in
topology and the enumerations of some other types of maps [18–21]. Rooted (near-) 4-
regular maps (or their dual: quadrangulations) have been investigated by many scholars.
We list them (as far as we know) as follows:

(1) rooted bicubic maps [32];
(2) rooted trees [33];
(3) rooted quadrangulations [9];
(4) rooted c-nets via quadrangulations [24];
(5) rooted one-faced maps on surfaces [35, pp.212–213];
(6) rooted 2d−regular maps on all surfaces [15];
(7) rooted 4-regular planar maps [18, pp.159–166];
(8) rooted near-4-regular planar Eulerian trials [27];
(9) rooted loopless 4-regular maps on the projective plane, torus and the Klein bottle [25-28];
(10) rooted 2-connected 4-regular maps on the plane [29].
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We expect that several more classes of 4-regular maps could be added into this list.
This is main aim of this paper.

Remark. Here we regard planar trees or more generally: maps with one face on surfaces,
some people also called them monopoles, as a special kind of near-4-regular maps.

2 A general equation for maps on N1

In this section we shall set up a general equation with up to six more parameters for
rooted near-4-regular maps on the projective plane which will imply several new results
for some classes of maps unhandled before and conclude several known results cited in
the list above. But first we should give some more definitions on maps.

Let U and Up, respectively, denote the set of all rooted near-4-regular maps on the
plane and the projective plane. Let their enumerating functions be, respectively,

f(x, y, z, t, w, q) =
∑
M∈U

x2m(M)ys(M)zn(M)tα(M)wβ(M),

fp(x, y, z, t, w, q) =
∑
M∈Up

x2m(M)ys(M)zn(M)tα(M)wβ(M),

where the variables x, y, z, t, w and q mark, respectively, the root-valency, the number
of edges, the number of inner faces, the number of nonroot-vertex-loops, the number of
cut-vertices other than the rooted one.

The set Up may be partitioned into three parts as

Up = Up1 + Up2 + Up3,

where

Up1 = {M |er(M) is a planar loop},
Up2 = {M |er(M) is an essential loop},
Up3 = {M |er(M) is a link}.

Lemma 1. Let U<p1> = {M − er(M)|M ∈ Up1}. Then

U<p1> = U � Up + Up � U ,

where “�” is the 1v-production of the sets of maps defined in [18, pp.88–89].
Proof. For a map M ∈ Up, the root-edge er(M) is a planar loop. The inner and outer
regions determined by er(M) are, respectively, two elements of U and Up. Since this
procedure is reversible, the lemma follows. 2

By the above lemma, the enumerating function of U1 is

fp1 = 2x2yzffp. (1)
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Since maps in Up2 are in fact obtained from planar ones by making a twist at the root-
vertex and then introducing a loop with only one side and the operation is reversible,
after a similar procedure as [25] we have the enumerating function of Up2 as

fp2 = x2y
∂(xf)

∂x
. (2)

The following result is easy to obtain from the definition.

Lemma 2. Let U(p3) = {M • er(M)|M ∈ Up3}. Then U(p3) = Up−Up(2), where Up(2) is
the set of maps in Up whose root-valencies are all 2, where M • er(M) denotes the rooted
map after contracting the root-edge er(M) of a map M .

By Lemma 2, the enumerating function of U(p3) is f(p3) = fp− x2Fp(2), where Fp(2) is
the enumerating function of Up(2).

Since splitting the root-vertex may create nonroot-vertex loops, the set U(p3) has to
be divided into several more parts as

U(p3) =
6∑
i=1

U i(p3),

where maps in U i(p3)(1 6 i 6 5) have the structures as depicted in Figure 1, where the
shadowed regions represent a map on N1 or S0.

v v
v

v v

�
��)

6

6
*

M ∈ U1
(p3) M ∈ U2

(p3) M ∈ U3
(p3)

M ∈ U4
(p3) M ∈ U5

(p3)

Figure 1: Five types of maps which will induce a nonroot-vertex loop after splitting the
root-vertex.

Remark. (1) Maps of type 1 (or 2) have their edge er(M) (or ePr(M)) the planar loop,
here P is the rotation of M at the root-vertex; (2) Maps of the above types will not create
nonroot-vertex after splitting the root-vertex.
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There are 5 cases corresponding to the dividing of U(p3) which must be handled.

Case 1. The maps of U1
(p3).

Notice that for a map of U1
(p3), two things will definitely happen: the number of

nonroot-vertex loops will increase and the number of nonroot-cut-vertices will not change
after splitting the root-vertex. It is easy to see that the contributions of U1

p3 to Up is

f 1
p3 = ty2zfp. (3)

Case 2. The maps of U2
(p3).

Under this condition, the edge ePr(M) is always a planar loop while the root-edge
er(M) is a loop which will create a nonroot-vertex loop. This situation is very similar to
the previous case except that er(M) may be an essential loop. Thus, we find that the
enumerating function of U2

p3 is exactly equal to f 1
p3, i.e.,

f 2
p3 = ty2fp. (4)

Case 3. The maps of U3
(p3).

Similar to what we have done in Cases 1 and 2, one may partition the set U3
(p3) into

two parts as

U3
(p3) = U31

(p3) + U32
(p3),

where U31
(p3) = {M |both er(M) and eP2r(M) are loops}.

Hence maps in U31
(p3) have the following structure in the left side of Figure 2.

v v v6
6 ���

Figure 2: Three types of maps which will create a pair of multi-edges after splitting the
root-vertex, where the shadowed regions represent planar maps.

Thus, the enumerating function of U3
p3 is

f 3
p3 = ty2(f − 1). (5)

Case 4. The maps of U4
(p3).

As we have reasoned previously, we partition the set U4
(p3) into two parts as

U4
(p3) = U41

(p3) + U42
(p3),
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where U41
(p3) = {M |both er(M) and ePr(M) are crossing essential loops} and maps of U41

(p3)

have a configuration as shown in the center of Figure 2. Therefore the contribution of
U41
(p3) is f 41

(p3) = x4y2zf 2 which implies

f 4
p3 = ty2(f − 1). (6)

Case 5. The maps of U5
(p3).

Also the set U5
(p3) should be divided in a way of

U5
(p3) = U51

(p3) + U52
(p3),

where U51
(p3) = {M |er(M) and ePr(M) are two types of loops}.

It is clear that the two edges er(M) and ePr(M) are in a position as in the right side
of Figure 2. Now one may readily see that the enumerating function of U5

p3 is

f 5
p3 = ty2(f − 1). (7)

Case 6. The maps of U6
(p3).

Before investigating the contribution of U6
(p3), we have to state some basic facts.

Fact 1. For a map M of U6
(p3), splitting the root-vertex will not create nonroot-vertex

loops but may increase the number of nonroot-cut-vertices.
Consequently, we have to divide the set U6

(p3) into two parts as

U6
(p3) = U61

(p3) + U62
(p3),

where M ∈ U61
(p3) ⇐⇒ splitting the root-vertex will create a nonroot-cut-vertex.

Next we study the structures of the maps in U61
(p3). Since the splitting-procedure defined

previously will create a nonroot-cut-vertex, say v
′′
r , we conclude that v

′′
r will connect a map

other than the vertex-map (i.e., the map consists of a single vertex) whose root-valency
is 2. Since there are two types of such 2-valent maps attached to the vertex v

′′
r , the set

U61
(p3) should be partitioned into three parts as

U61
(p3) = U(A) + U(B) + U(C),

where maps of those types are depicted in Figure 3.

Lemma 3. The set U(A) is a composition of two types of maps, one is planar while the
other a nonplanar map, i.e.,

U(A) = (Up(2)− Lp)� (U − ϑ) + (U(2)− L)� Up,

where Up(2) and U(2) are, respectively, the set of maps of Up and U whose root-valencies
are all 2. Meanwhile, Lp and L are, respectively, the loop map on the projective plane and
the sphere.
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M ∈ U(A) M ∈ U(B) M ∈ U(C)

Figure 3: Three types of maps in U61
(p3) which will create a nonroot-cut-vertex after splitting

the root-vertex.

Furthermore, by considering the embedding ways of the 2-valent maps attached to the
nonroot-cut-vertices, the maps of U(A) are classified into two types of maps as defined in
Figure 4, where the shadowed regions are either in Up(2) ∪ U(2) or U ∪ Up.

Hence, the enumerating function of U(A) is

f(A) = x2(Fp(2)− y)(f − 1) + x2(F (2)− yz)fp, (8)

where Fp(2) and F (2) are, respectively, the enumerating function of Up(2) and U(2).
It is clear that the three shadowed regions in the maps in the left side of Figure 5 are,

respectively, two planar maps and a nonplanar one. Thus, the contribution of such types
of maps is x4yz(Fp(2)− y)f 2 and hence the other types of maps of (Up(2)−Lp)� (U −ϑ)
will contribute

x2(Fp(2)− y)(f − 1)− x4yz(Fp(2)− y)f 2.

So we have

Lemma 4. The contribution of (Up(2)− Lp)� (U − ϑ) to Up is wy(Fp(2)− y)(f − 1).

v v6 o

Figure 4: Two types of maps which will create a nonroot-cut-vertex after splitting the
root-vertex.

We now turn to the second types of maps in Lemma 3. Unlike its counterpart, the set
(U(2)−L)�Up consists of three types of maps among which two are defined, respectively,
in the center and right parts of Figure 5.

It is easy to see that those two types of maps stated above will, respectively, contribute

x4y(F (2)− yz)
∂(xf)

∂x
and x4yz(F (2)− yz)fp
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Figure 5: Three types of maps which will create a nonroot-cut-vertex after splitting the
root-vertex.

to U(B). Thus, we may obtain the following

Lemma 5. The contribution of (U(2)− L)� Up to Up is yw
x2

(x2(F (2)− yz)fp).
Now we begin to handle the set U(B). Similar to Lemma 3, we may have

Lemma 6. The set U(B) is the composition of two types of maps, one is a planar map
while the other is nonplanar, i.e.,

U(B) = (Up(2)− Lp)⊗ (U − ϑ) + (U(2)− L)⊗ Up,

where the operation “⊗” of maps is defined in Figure 6.

v��
��
3 v6

Figure 6: Two types of maps of U(B) which will create a nonroot-cut-vertex after splitting
the root-vertex.

After an analogous procedure in our proofs of Lemmas 4 and 6, we obtain the following

Lemma 7. The contribution of (Up(2)−Lp)⊗ (U −ϑ) to Up is yw
x2

(x2(Fp(2)−y)(f −1)).

Lemma 8. The contribution of (U(2)− L)⊗ Up to Up is yw
x2

(x2(F (2)− yz)fp).
Similar to what we have reasoned in Lemmas 4, 5, 7 and 8, the set U(C) should be par-

titioned into two types of maps according to whether the root-vertex splitting-procedure
will create a pair of multi-edges or not. The first kind of maps has a configuration in
Figure 7, where the shadowed region represented by a perpendicular essential circuit is
a map of U(2) − L embedded in N1, the projective plane, while the other two indicate
planar maps.

Lemma 9. The contribution of U(C) to Up is yw
x2

{
x2

z
(F (2)− yz)(f − 1)

}
.
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Figure 7: A type of maps of U(C) which will create a nonroot-cut-vertex after splitting
the root-vertex.

Now, we begin to establish the main result of this section. By (1) and (2), we have

fp = 2x2yzffp + x2y
∂(xf)

∂x
+ fp3, (9)

where

fp3 =
y

x2
{fp − x2Fp(2)}+

5∑
i=1

(
f ip3 −

y

x2
f i(p3)

)
+
(
f 61
p3 −

y

x2
f 61
(p3)

)
+
(
f 62
p3 −

y

x2
f 62
(p3)

)
.

(10)

By equations (3)-(8),

f 1
p3 −

y

x2
f 1
(p3) = y2z(t− 1)fp,

f 2
p3 −

y

x2
f 2
(p3) = y2z(t− 1)fp,

f 3
p3 −

y

x2
f 3
(p3) = (t− 1)y2(f − 1),

f 4
p3 −

y

x2
f 4
(p3) = (t− 1)y2(f − 1),

f 5
p3 −

y

x2
f 5
(p3) = (t− 1)y2(f − 1),

f 61
p3 −

y

x2
f 61
(p3) =

{
fA −

y

x2
f(A)

}
+
{
fB −

y

x2
f(B)

}
+
{
fC −

y

x2
f(C)

}
,

fA −
y

x2
f(A) = (w − 1)y(Fp(2)− y)(f − 1) + (w − 1)y(F (2)− yz)fp,

fB −
y

x2
f(B) = (w − 1)y(Fp(2)− y)(f − 1) + (w − 1)y(F (2)− yz)fp,

fC −
y

x2
f(C) =

(w − 1)y

z
(F (2)− yz)(f − 1).

By the principle of Inclusion-Exclusion, the contribution of f 62
(p3) is

f 62
(p3) =

3∑
i=1

| Ri | −
∑

16i<j63

| Ri ∩Rj | + | R1 ∩R2 ∩R3 |,
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where | A | is used to denote the contribution of A and

R1 = {M |er(M) is a loop},
R2 = {M |ePr(M) is a loop},
R3 = {M |eP 2r(M) is a loop}.

One may foresee from the possible embedding ways of loops on N1 that the calculations
of f 62

(p3) is very complicated. But its value is irrelevant for our further calculations since

f 62
p3 =

y

x2
f 62
(p3).

By substituting (10) and the above expressions into (9), we get our first main result:

Theorem A. The enumerating function of rooted (2-connected) near-4-regular maps on
the projective plane satisfies the following equation:

fp = 2x2yzffp + x2y
∂(xf)

∂x
+ 2y2z(t− 1)fp + 3(t− 1)y2(f − 1)

+ 2(w − 1)y(Fp(2)− y)(f − 1) + 2(w − 1)y(F (2)− yz)fp

+
(w − 1)y

z
(F (2)− yz)(f − 1).

Remark. We have shown in [29] that the function f defined in Theorem A is also
algebraic, i.e., satisfying a polynomial equation, i.e.,

af 2 + bf + c = 0, (11)

in which the coefficients of f 0, f and f 2 can be expressed as

a = x4yz,

b = y − x2 + 2(t− 1)y2zx2 + 2x2y(w − 1)(F2 − yz),

c = x2 − y − x2yF2 − 2(t− 1)x2y2z − 2x2y(w − 1)(F2 − yz).

If we rearrange the items of the equation in Theorem A, then the function fp can be
expressed as the functions of f, F (2) and Fp(2), i.e.,

−
√
4fp = x4y

∂(xf)

∂x
+ 3(t− 1)x2y2(f − 1) + 2(w − 1)x2y(Fp(2)− y)(f − 1)

+
(w − 1)yx2

z
(F (2)− yz)(f − 1)− x2yFp(2),

where 4 is the discriminant of (11), i.e.,

−
√
4 = x2 − 2x4yzf − y − 4x4y3zt(q − 1)f − 2yt(t− 1)x2yz

− 2(w − 1)x2y(F (2)− yz).
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3 Calculations

In this section we shall deal with various types of rooted (near-) 4-regular on the projective
plane. Now the equation in Theorem A becomes

−
√
4fp = x4y

∂(xf)

∂x
+ 3(t− 1)x2y2(f − 1) + 2(w − 1)x2y(Fp(2)− y)(f − 1)

+
(w − 1)yx2

z
(F (2)− yz)(f − 1)− x2yFp(2),

where

−
√
4 = x2 − 2x4yzf − y − 2(t− 1)x2y2z − 2(w − 1)x2yz(F (2)− yz).

Now, we are in a position of implying the famous double-root method developed by
Brown [8] since the most important part of fp, the discriminant of (11), has become a
quadratic polynomial of x2. Let x2 = η denote a double root of 4. Then we may obtain
a system of equations:

η − 2η2yzf − y − 2(t− 1)ηy2z − 2(w − 1)ηy(F (2)− yz) = 0,

x2
∂(xf)

∂x
+ 3(t− 1)y(f − 1) + 2(w − 1)(Fp(2)− y)(f − 1)

+
(w − 1)

z
(F (2)− yz)(f − 1)− Fp(2) = 0. (12)

Let t = w = 1. Then we get general rooted maps on N1 and a very simple expression
for Fp(2):

Fp(2) =

{
x2
∂(xf)

∂x

} ∣∣∣
x2=η

,

which will imply the following known result:

Corollary 1 ([25]). The number of rooted 4-regular maps (which may have loops) on
the projective plane with 2p− 2 edges is∑

m>2
n>0

m+n6p

2n+13p−m−n(m+ n)

mp

(
2m− 2

m− 1

)(
m+ n− 2

m− 2

)(
2p−m− n− 1

p− 1

)
+

3p−1

p

(
2p− 2

p− 1

)
.

Corollary 2 ([14, 26]). The enumerating function of rooted one-faced maps on the pro-
jective plane is

1√
1− 4x2

∑
m>1

(
2m− 1

m

)
x2m.

If we consider the case of loopless maps (i.e., t = 0), then we have the following
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Corollary 3 ([26]). The enumerating function of rooted loopless 4-regular maps on the
projective plane is∑

m>2

(Am +
3

2
Ym−1 − 3Xm−1 −Xm)(1− 2y2)y2m −

∑
m>2

3Bm−1y
2m,

in which

Am =
∑
l,p>0
k>2

∑
s+p=m+1

s>k+2

(−1)p2l+p+13s−k−l(k + l)

k × s

(
2k − 2

k − 1

)

×
(
k + l − 2

l

)(
2s− k − l − 1

s− 1

)(
2s+ p− 2

p

)
,

Bm =
∑

l+n=m

(−1)l2l3n

(n+ 1)(2n+ 1)

(
2n+ 2

n

)(
n+m

l

)
,

Xm =
∑

l+n=m

(−1)l2l+13n

n+ 1

(
2n

n

)(
n+m

l

)
,

Ym =
∑

l+n=m

(−1)l2l+33n

n+ 2

(
2n+ 1

n

)(
n+m

l

)
.

Next, we start to investigate the number of 2-connected 4-regular maps on the pro-
jective plane. We first consider general 2-connected maps (which may have loops).

Case 1. General 2-connected 4-regular maps on N1.
Let t = y = 1 and w = 0. Then all the cut-vertices disappear except for those

on the root-vertices by our definition. Furthermore, let x2 = η be a double root of 4,
the discriminant of (11). Then all the functions and variables in this case are handled
under those conditions unless special statements are given. Now the function Fp(2) can
be expressed in terms of f and F (2), i.e.,

(2f − 1)Fp(2) =

{
x2
∂(xf)

∂x
− F

z
(f − 1) + 2(f − 1)

} ∣∣∣
x2=η

,

where F = F (2)− z.
In order to determine the function Fp(2) completely, we have to state some facts as

our step-stones.

Fact 2 ([29]). The function F may be expressed in terms of η and z, i.e.,

F =
1− η + 2η3z(1− z)

2η(1− η2z)
,

in which

η = 1 +
z

2
φ(η, z), φ(η, z) =

η2(1 + η − 2ηz)2

(1 + 2ηz)(1− η2z)
. (13)
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Since the function f is algebraic, after some manipulations of the system of equations
(12) we may find the following

Fact 3. The functions F and f are related in such a way that

η − 2η2zf − 1 + 2ηF = 0, η
∂(xf)

∂x
=

1−
√

1− vη
ηz

− ηf,

where f = 1
1−η2zf .

The Lagrangian inversion formula stated above is vital in our simplification of the
parametrical expression of Fp(2). In fact, another inversion formula cited in Fact 2 may
also be expressed in terms of f , i.e.,

η = 1 +
z

2
φ(η, z), φ(η, z) = ηf

{
1 +

ηf

1− f

}
. (14)

Based on Facts 2 and 3, the function Fp(2) can be expressed by η and f elegantly, i.e.,

Fact 4. The enumerating function of rooted 2-valent near-4-regular maps (which may
have loops) without cut-vertices on the projective plane is

(2f − 1)Fp(2) =
1−
√

1− vη
ηz

+
η(η − 3)

2
f 2 + 2(f − 1),

in which vη = 4η2zf .
Although Fp(2) presents a formula to count a type of rooted 2-connected 4-regular

maps on N1, we may readily see from the definition that if loops are permitted, then the
enumerating function for rooted 2-connected 4-regular maps on N1 depends on both Fp(2)
and the same type of maps on the plane. In fact, rooted 2-connected 4-regular maps on
N1 consist of 5 types of maps which are depicted in Figure 8.

vv YY v
v

��

@@��

@@

6

v
v66

Figure 8: Five types of 2-valent maps which will result in five kinds of 4-regular maps on
N1.

Fact 5. The enumerating function of rooted 2-connected 4-regular maps on N1 can be
expressed as

Fp(4) = (1 + 2z)(Fp(2)− 1) + 3F,
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where Fp(2) and F are defined in Facts 2 and 4.
By using Lagrangian inversion (for a reference, one may see [16]) for these in (13) and

Fact 3, the two functions may be expanded into a power series of the variable z, i.e.,

Theorem B. The enumerating function of rooted 4-regular maps (which may have loops)
without cut-vertices on the projective plane is

Fp(4) =
∑
k>0
n>k

2kk

n

(
2n− k − 1

n− 1

)
(1 + 2z)zn−kη2(n−k)

+
∑
k>0

n>k+2

2k−1(k + 2)

n

(
2n− k − 3

n− 1

)
(1 + 2z)zn−k−2(η − 3)η2(n−k−2)+1

+
∑
k>1
l>0

∑
n>k+l

2l+1(k + l)

kn

(
2k − 2

k − 1

)(
2n− k − l − 1

n− 1

)
(1 + 2z)zn−l−1η2(n−l)−1

+ 3
∑
m>2
n>m

m

2n

(
2n−m− 1

n− 1

)
zn−m+1(η − 1)η2(n−m)+1 + 3

∑
n>1

1

n

(
2n− 2

n− 1

)
znη2n−1,

where

ηs =
∑
m>1

m∑
p=0

∑
q>0

n>m+p+q

s(m+ p+ q)

m!n

(
2n−m− p− q − 1

n− 1

)

×
(
p+ q − 1

p− 1

)
D

(m−1)
η=1

{
η2n−m−p−2q

}
zn−q,

in which the differential operator “D
(m−1)
η=1 ” is defined as

D(m−1)
x=a H =

∂m−1H

∂x

∣∣∣
x=a

.

By using an algebraic symbolic system, say Maple, the first fewer coefficients of the
function Fp(4) may be calculated:

Fp(4) = 5z + 38z2 + 199z3 + 1466z4 + 12365z5 + 109700z6

+ 1003929z7 + 9404402z8 + · · ·

One may see that the low values of maps coincide with our calculation. For instance,
there are 38 distinct rooted 2-connected 4-regular maps with 4 edges on the projective
plane which are determined by the maps shown in Figure 9.

The contributions of the 6 maps to the rooted maps are, respectively, listed in the
following table:

M1 M2 M3 M4 M5 M6

8 8 8 2 4 8
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Figure 9: Six unrooted maps on N1 which will determine 38 distinct rooted maps.

Remark. The results stated previously permit the existence of loops and maps there
are slightly different from what defined by Tutte [30] where a 2-connected graph (map)
contains no loops. This is just the situation we shall handle next.

Case II. 2-connected 4-regular maps without loops.
Let y = 1 and t = w = 0. Then all the loops and cut-vertices are eliminated except

for those on the root-vertices. Still let x2 = η be a double root of the discriminant of (11).
Then all the functions and variables appearing in this case are all under those restrictions
unless special statements are given. Similar to what we have stated previously, we have

Fact 6 ([29]). The function F may be expressed as a function of η and z, i.e.,

F =
1− η − 2ηz + 2η3z(1 + z)

2η(1− η2z)
,

η = 1 + zφ(η, z), φ(η, z) = η2
{

(1 + η)2

2(1− η2z)
− 2

}
, (15)

in which F = F (2)− z.

Fact 7. The function F and f are related in such a way that

η − 2η2zf − 1 + 2ηz + 2ηF = 0, η
∂(xf)

∂x
=

1−
√

1− vη
ηz

− ηf,

where

f =
1

1− η2zf
. (16)
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Remark. There are several things striking us most: (1) The formula (16) is almost
the same as the one for trees presented by Tutte [33] and this raises a natural question:
Can we construct planar (near-)4-regular maps from trees? (2) Eliminating loops will
not change some properties cited in the Facts 2 and 3, especially the formula in Fact 3
(which is the same as (16)). But from the results in [29] one may see that those two types
of 2-connected 4-regular maps on the plane are indeed different in essentiality since we
have shown there that their convergence radius are distinct. Instead, as our discussion
goes on, one may see that such strict condition on maps (i.e., destroying loops) will make
our calculations much more easier and simpler. Besides, the function φ(η, z) appearing in
Fact 5 can be simply expressed as a function of f , i.e.,

φ(η, z) = η2
{

(1 + η)2

2(1− η2z)
− 2

}
= 2η2f(f − 1),

which will lead to a simpler formula of Fp(2).
Since the procedure is very much alike as we get in Theorem B, we omit the proofs

and only state them here.

Theorem C. The enumerating function of 2-connected loopless rooted 4-regular maps
on the projective plane is

Fp(4) =
1−
√

1− vη
ηz(2f − 1)

− ηf

2f − 1
− η3zf 3(2− f)

2f − 1
− 1,

in which vη = 4η2zf .
After applying Lagrangian inversion for the formulae in Facts 4 and 5, we may expand

Fp(4) into a power series of z, i.e.,

Fp(4) =
∑
k>0

n>k+3

2k3(k + 3)

n

(
2n− k − 4

n− 1

)
zn−k−2η2(n−k−2)+1

−
∑
k>0

n>k+3

2k(k + 3)

n

(
2n− k − 4

n− 1

)
zn−k−3η2(n−k−3)+1

−
∑
k>2
l>0

∑
n>k+l

2l+1(k + l)

kn

(
2k − 2

k − 1

)(
2n− k − l − 1

n− 1

)
zn−l−1η2(n−l)−1

− 1,

where for s > 1,

ηs = 1 +
∑
m>1
p>0

∑
q>2m+p

s(2m+ p)

q(2q + s)

(
m+ p− 1

p

)(
2q − 2m− p− 1

q − 1

)(
2q + s

m

)
zq.
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After some manipulations via an algebraic system such as Maple, the first fewer coefficients
of the function Fp(4) may be determined:

Fp(4) = 6z2 + 21z3 + 138z4 + 781z5 + 4836z6 + 30099z7 + 191698z8 + · · ·
One may compare the initial values of maps with the number presented by this formula

and see that they are coincide with each other. For instance, there are 6 rooted loopless 4-
regular maps with 4 edges on N1 as determined by the two maps M4 and M5 in Figure 10.
Furthermore, Figure 10 shows another group of unrooted maps which will induce 21
distinct rooted maps with 4 faces on N1.

v
v

v

v

v
v vAA

A
A

v

v
v v

v v
�
��

M1 M2

M3 M4

Figure 10: Four distinct embedding of the double graph K2
3 on N1 which will induce 21

rooted maps.

The contributions of the four maps to the rooted maps are, respectively, listed in the
following table:

M1 M2 M3 M4

12 6 2 1

4 Asymptotic evaluations

In this section we concentrate on the approximate values of the number of the two types of
maps obtained in the last section. Since applying of the Darboux’s theorem [2, Theorem 4]
needs some theory backgrounds, we have to state some basic facts before our evaluations.

Fact 8. Let M be a class of infinite rooted maps with M1 as its subset. Suppose that
their enumerating functions may be expanded into power series and their respective con-
vergence radiuses are R and R1. Then R and R1 are, respectively, the singularities of
them. Furthermore, R 6 R1.

the electronic journal of combinatorics 21(2) (2014), #P2.51 17



In the case of y = t = w = 1, the function Fp(2) has a very simple expression:

zFp(2) = 1− 3θ

2
− (1− θ)

√
1− 2θ

1− θ
, θ =

4z

2− 3θ
.

By a result in [2, Theorem 5] and Darboux’s Theorem [2, Theorem 4], we have:

Fact 9[15]. The convergence radius of the power series expansion with the number of
inner faces as the parameter of the enumerating function for the rooted 4-regular maps on
the projective plane is 1

12
and consequently, the number of rooted 4-regular maps on the

projective plane with n inner faces is asymptotic to

− C12n

n
5
4 Γ(−1

4
)
,

where C =
√
6
3

. Furthermore, any type of infinite rooted 4-regular maps on the projective
plane must have its convergence radius, say r, of enumerating function satisfying

1

12
6 r 6 1.

We first consider the asymptotic evaluation of the number of rooted 2-connected 4-
regular maps (which may have loops) on N1, i.e., y = t = 1 and w = 0. So all the
discussions in this case are under those restrictions unless special statements are given.
The expressions in Fact 2 may be rewritten as

F =
1− x+ 2x3z(1− z)

2x(1− x2z)
, x = 1 +

zx2(1 + x− 2xz)2

2(1 + 2xz)(1− x2z)
. (17)

Remark. Here we use x2 = x = η to denote the double root of (11) in convenience.
Since Darboux’s Theorem needs the location of the singularity corresponding to the

convergence radius of the enumerating function, we have to determine the convergence
radius of Fp(4) defined in Fact 5. By definition of Fp(4), one may see the following

Fact 10. The singularities of Fp(4) satisfy either
(1) 2f − 1 = 0,
(2) or x = 0,
(3) or vx = 1,
(4) or Equations in (20).

It is clear that (17) implies x 6= 0. If 2f = 1, then by Fact 3 we have x = 1 or
1 + 2xz = 0 either will contradict (17). So the wanted singularities will be determined by
xv = 1 or equations of (17). The condition vx = 4x2zf together with (18) shows that the
singularities of Fp(4) will be induced by the following system of equations:

4(x− 1)(1 + 2xz) = 1 + x− 2xz,

2x2z(x+ 1− 2xz) = 1− x2z. (18)
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The variable z my be extracted from the above equations such that

z =
5− 3x

2x(4x− 3)
.

We now substitute it into an equation of (18) and arrive at another equation of x:

x(5− 3x)

(
4x2 + 6x− 9

2

)
− (4x− 3)2 = 0. (19)

By using Maple we may solve the equation by factoring the left side of (19) as

(x− 1)(x+ 2)(24x2 − 28x− 9) = 0 (20)

and find its zeros and the corresponding values of z as listed in the following table:

x 1 -2 7+
√
103

12
7−
√
103

12

z 1 1
4

0.0918035245 2.723004459

Now, what left for us is to determine the wanted singularity corresponding to the
convergence radius. The following fact is useful in our evaluations.

Fact 11. The convergence radius of the power series with the number of inner faces as the
parameter for the rooted 2-connected 4-regular planar maps is 0.0918035245. Furthermore,
the convergence radius, say r, of the power series expansion of Fp(4) must satisfy the
following condition:

1

12
6 r 6 0.0918035245,

which shows that the convergence radius of power series of Fp(4) is 0.0918035245.
The proof of the first part of the fact may be found in [29]. The left side of the

inequality follows from Fact 9. Since any rooted 2-connected 4-regular planar map may
be re-embedded into N1 by making a twist on its root-edge (the operation is shown in
Figure 11), the set of rooted 2-connected 4-regular planar maps may be viewed as an
infinite subset of Up(4), the set of rooted 2-connected 4-regular maps on N1. Thus, the
rest part of the inequality follows from Fact 8 and the table below (20).

Let Fp(4) = (1 + 2z)(Fp(2) − 1) + 3F be as defined in Fact 5 and m = 0.0918103549
be the convergence radius of Fp(4). In order to apply Darboux’s method [2, Theorem 4],

we should study the behavior of x = x(z) near m. Since both ∂2H(x,z)
∂x2

and ∂H(x,z)
∂x

are not
equal to zero (where the function H(x, z) is defined by the Lagrangian inversion formula

in (17)), x = x(z) may be expanded into a power series of (1− z
m

)
1
2 near m. Let

x = a+ b

(
1− z

m

) 1
2

+ c

(
1− z

m

)
+ d

(
1− z

m

) 3
2

,

z = m−m
(

1− z

m

)
. (21)
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Figure 11: Re-embedding a rooted planar map into the projective plane by twisting the
root-edge.

Substitute those into the equation system (18) and let the coefficients of (1 − z
m

) and

(1− z
m

)
3
2 be zero. Further, by using a polynomial 24a2−28a−9 induced in (20) to reduce

the orders of the corresponding polynomials appearing the identities obtained, we may
find a group of relations such as

a =
7 +
√

103

12
, b2 =

α

β
,

c =
m(8a3m− 12mb2a− 2a3 + 5a2 + 6b2a− 6a− 5b2)

−6m+ 12m2a2 − 6ma2 + 10ma+ 3
,

d =
b(3a+ 5a2m− 4a3m+ 4a3m2 + 5b2m− 6ab2m+ 12am2b2)

a(−6m+ 12m2a2 − 6ma2 + 10ma+ 3)
,

where

α = (1 + 2m)(−559498752am+ 3077533008am2 + 40310784a

+ 50868841072am6 − 63747912240am5 − 10902385800am3

+ 26896643452am4 + 692327412m2 − 81041472m+ 7057741014m4

− 2826562311m3 − 16728212988m5 + 13348368792m6),

β = 432m(279410720am6 + 265248am− 23432500am3

− 129887248am5 + 172029608am4 + 22625424am2

+ 279936a+ 45176364m4 + 1242216m− 5852502m3

− 155520 + 4298103m2 + 73304640m6 − 33897240m5).

Remark. We only need to expand x(z) into the form of (21). If necessary, higher terms
have to be introduced and hence more parameters such as a, b, c, d will appear.

Now, we begin to investigate the asymptotic behavior of Fp(2) near m. By (16)

1− vx = 2
√

1− 4x2z − 1,
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which implies that

√
1− vx ≈

√
−8amb√
1− 4a2m

(
1− z

m

) 1
4
,

and therefore
1−
√

1− vx
xz(2f − 1)

≈ −0.5079632059
(

1− z

m

) 1
4
.

By Darboux’s method, the coefficient of zn of the power series of Fp(2) is asymptotic to

−0.5079632059
n−

5
4mn

Γ(−1
4
)
.

This together with the approximate values of the coefficients of F obtained in [29]
shows the following

Theorem D. The number of rooted 2-connected 4-regular maps on N1 with n inner
faces is asymptotic to

− C1(1 + 2m)

n
5
4mnΓ(−1

4
)
,

where Γ(x) is the gamma function and m = 0.0918103549, C1 = 0.5079632059.

Finally, we evaluate the asymptotic values of the number of rooted 2-connected 4-
regular maps without loops on N1. All the discussions next are based on the conditions
that y = 1 and t = w = 0. Furthermore, we still let x2 = x = η denote a double root of
(11) in convenience. Now expressions of (17) and the function F may be rewritten as

x = 1 + zx2
{

(1 + x)2

2(1− x2z)
− 2

}
= 1 + 2x2zf(f − 1),

F =
1− x− 2xz + 2x3z(1 + z)

2x(1− x2z)
, (22)

where f satisfies (16).
As we have reasoned previously, we should first locate the singularity which corre-

sponds to the convergence radius of the function Fp(4). Theorem C guarantee the follow-
ing

Fact 12. The singularities of Fp(4) satisfy either
(1) 2f − 1 = 0,
(2) or x = 0,
(3) or vx = 1,
(4) or Equations in (22).

After a very similar procedure as we did in our proof of Fact 11, the singularity
determined by the sources in Fact 12 which corresponds to the convergence radius of Fp(4)
is located at 27

196
, i.e., both of the enumerating functions of rooted 2-connected 4-regular

maps without loops on the sphere and the projective plane have the same convergence
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radius. But as we will see that their asymptotic behaviors near 27
196

are basically distinct.
Also we notice that nearly all the discussions used in our proof of Theorem D are still valid
except for the corresponding parameters such as a, b, c, d and m, we obtain the following

Theorem E. The number of rooted 2-connected 4-regular maps without loops on the
projective plane with n inner faces is asymptotic to

− C3

n
5
4mnΓ(−1

4
)
,

where

C3 =

√
8abm√
1−4a2m

am
(

1 + −1+
√
1−4a2m
a2m

) ,
and

a =
7

6
, m =

27

196
, b =

7
√

18766662918506

61089624
.
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