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Abstract

Pólya’s enumeration theorem states that the number of labelings of a finite set up
to symmetry is given by a polynomial in the number of labels. We give a new
perspective on this theorem by generalizing it to partially ordered sets and order
preserving maps. Further we prove a reciprocity statement in terms of strictly
order preserving maps generalizing a classical result by Stanley (1970). We apply
our results to counting graph colorings up to symmetry.

1 Introduction

Counting objects up to symmetry is a basic problem of enumerative combinatorics. A
fundamental result in this context is Pólya’s enumeration theorem which is concerned
with counting labelings of a set of objects modulo symmetry. Here a labeling of a set
X is defined as a map f : X → Y where Y is the set of labels. If G is a group acting
on X then G also acts on the set of labelings Y X := {f : X → Y }. Pólya’s enumeration
theorem now states:

Theorem 1.1 (Pólya’s enumeration theorem [3]). Let G be a finite group acting on a
finite set X and let Y be a finite set of n = |Y | labels. Then∣∣Y X/G

∣∣ =
1

|G|
∑
g∈G

nc(g)

where Y X/G is the collection of orbits of Y X and c(g) is the number of cycles of g as
permutation of X.
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We give a new perspective on this theorem by generalizing it in terms of partially ordered
sets, or posets for short, and order preserving maps. More precisely, we consider a
finite poset P and a group G acting on P by automorphisms. Then G acts in a
natural way also on the set of all order preserving maps Hom(P, [n]) from P into the
n-chain [n] = {1 < · · · < n}. We show that the number of orbits of Hom(P, [n]) is
given by a polynomial ΩP,G(n) which we call the orbital order polynomial. Pólya’s
enumeration theorem then follows by specializing this result to antichains. Further we give
a combinatorial interpretation for ΩP,G(−n) in terms of orbits of strictly order preserving
maps. This naturally generalizes the classical polynomiality and reciprocity theorems for
order preserving maps due to Stanley [4]. These results can be furthermore generalized
to counting (P, ω)-partitions up to symmetry.
The results can be applied to graph colorings. We consider a finite group G acting by
automorphisms on a finite simple graph Γ = (V,E) and the function χΓ,G(n) counting
proper colorings c : V → [n] up to group action. Cameron and Kayibi [1] seem to be the
first who considered this function which they called the orbital chromatic polynomial.
Previously, Hanlon [2] treated the case of G being the automorphism group of Γ. It is
easy to see that χΓ,G(n) indeed agrees with a polynomial for all n > 1. We further give a
representation as a sum of order polynomials.
We also give a combinatorial interpretation for evaluating this polynomial at negative in-
tegers in terms of acyclic orientations and compatible colorings. This naturally generalizes
Stanley’s reciprocity for graph colorings [6].

2 Order preserving Pólya-enumeration

2.1 Groups

Let G be a finite group with identity element e and X be a finite set. A group operation
of G on X is a map · : G × X → X such that g · (h · x) = (gh) · x and e · x = x for all
g, h ∈ G and x ∈ X. We say that G operates or acts on X. For every g ∈ G we denote
by Xg the fixpoints of g, i.e., Xg = {x ∈ X : g ·x = x}. For an element x ∈ X we denote
by Gx = {g · x : g ∈ G} the orbit of x. The set of all orbits partitions X and is called
X/G.
Burnside’s lemma (see e.g. [9, Theorem 10.5]) gives a formula for the number of orbits in
terms of fixpoints:

Theorem 2.1 (Burnside’s lemma). Let G be a finite group acting on a finite set X. Then

|X/G| =
1

|G|
∑
g∈G

|Xg|.

For an element x ∈ X the stabilizer of x is Stab(x) = {g ∈ G : g ·x = x}. The operation
can be restricted to any subgroup H ⊆ G. For g ∈ G we denote by 〈g〉 = {e, g, g2, . . .}
the cyclic subgroup generated by g. The orbit of x under the action of 〈g〉 is denoted by
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[x]g and is called a cycle of g. In particular, c(g) = |X/〈g〉| is the number of cycles of g.
Identifying g with the corresponding permutation on X gives the usual notion of cycles.

Example 2.2. Let G = Sn be the symmetric group acting on [n] = {1, . . . , n} in the
usual way. Every permutation σ ∈ Sn can be written as product of disjoint cycles in
Sn and this representation is unique up to interchanging the order of the cycles in the
product. In this case [x]σ = {y ∈ [n] : y and x are in the same cycle} and c(σ) is the
number of cycles in the unique representation as product of disjoint cycles.

If a set X has additional structure we say that a group G acts by automorphisms on
X if the group operation respects the structure, that is, for all g ∈ G the map x 7→ g · x
is a structure preserving bijection.
Let P be a finite poset. Then a group G acts on P by automorphisms if for all g ∈ G
and for all p and q in P we have g · p ≺ g · q whenever p ≺ q.
For a finite simple graph Γ = (V,E) an action of a group G on V respects the structure
of Γ if for all edges uv ∈ E we have that there is an edge between g · u and g · v for all
g ∈ G.
The operation of G on X induces an operation on Y X . This induced operation is
defined by (g · f)(x) = f(g−1x) for all g ∈ G, f ∈ Y X and x ∈ X.

2.2 Order preserving maps

Let P be a finite poset. A map φ : P → [n] is called order preserving if φ(p) 6 φ(q)
whenever p ≺ q and equality is forbidden for strictly order preserving maps. We denote
the set of all order preserving maps by Hom(P, [n]), and the set of strictly order preserving
maps by Hom◦(P, [n]). Their cardinalities are given by the order polynomials ΩP (n)
and Ω◦P (n) respectively. The following classical result is due to Stanley [4].

Theorem 2.3 (Stanley [4]). For a finite poset P the function ΩP (n) agrees with a poly-
nomial of degree |P | for all n > 1, and

Ω◦P (n) = (−1)|P |ΩP (−n).

For every finite group G acting on P by automorphisms we define a partial order on P/G
by defining Gx ≺ Gy whenever there are x̃ ∈ Gx and ỹ ∈ Gy such that x̃ ≺ ỹ.
This, in fact, yields a poset, the quotient poset (see e.g. [7]).

Lemma 2.4. Let P be a finite poset and G a finite group acting by automorphisms on
P . Then P/G is a poset.

Proof. For irreflexivity we observe that every orbit Gx is an antichain. For that sup-
pose gx ≺ hx for some g, h ∈ G and consequently x ≺ g−1hx. Then it follows that
x ≺ g−1hx ≺ (g−1h)2x ≺ · · · ≺ x as g−1h has finite order which is a contradiction as P is
a poset.
For transitivity let x̃ ∈ Gx, ỹ, ȳ ∈ Gy and z̄ ∈ Gz with x̃ ≺ ỹ and ȳ ≺ z̄. Then there
exists a g ∈ G with gỹ = ȳ and we have gx̃ ≺ gỹ = ȳ ≺ z̄.
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For g ∈ G we define Pg = P/〈g〉. Then Pg is a poset with c(g) elements.
An order preserving action ofG on P induces an action on Hom(P, [n]) and Hom◦(P, [n]) as
subsets of [n]P . We define the orbital order polynomials ΩP,G(n) = |Hom(P, [n])/G|
and Ω◦P,G(n) = |Hom◦(P, [n])/G| for n > 1. The following main theorem states that
ΩP,G(n) and Ω◦P,G(n) are indeed polynomials for n > 1, and gives formulas in terms of
order polynomials:

Theorem 2.5. Let G be a finite group acting by automorphisms on a finite poset P . Then

ΩP,G(n) =
1

|G|
∑
g∈G

ΩPg(n), (1)

Ω◦P,G(n) =
1

|G|
∑
g∈G

Ω◦Pg(n) (2)

for n > 1. In particular, ΩP,G(n) and Ω◦P,G(n) agree with polynomials of degree |P | for
n > 1.

Proof. We only show equation (1) as the argument for equation (2) is analoguous. By
Theorem 2.1 we have

|Hom(P, [n])/G| = 1

|G|
∑
g∈G

|Hom(P, [n])g|

By definition, φ ∈ Hom(P, [n])g if and only if φ(g−1x) = φ(x) for all x ∈ P . But this is
equivalent to φ being constant on [x]g. Therefore

Hom(P, [n])g → Hom(Pg, [n])

ϕ 7→ ([x]g 7→ ϕ(x))

is a one-to-one correspondence. Further, observe that deg ΩPg(n) = c(g) = |P | if and only
if g acts trivially on P , and c(e) = |P |.

By applying Theorem 2.5 to antichains, we get Pólya’s enumeration theorem in the lan-
guage of posets:

Corollary 2.6. Let G be a finite group acting by automorphisms on a finite antichain A,
and let Y = [n]. Then ∣∣Y A/G

∣∣ =
1

|G|
∑
g∈G

nc(g).

Proof. As A is an antichain we have Hom(A, [n]) = Y A. The result follows by observing
that Ag is an antichain with c(g) elements for all g ∈ G and ΩAg(n) = n|Ag |.

Example 2.7. Let Sk be the symmetric group acting on an antichain A = {x1, . . . , xk}
on k elements by permuting indices, and let Y = [n]. Then

{φ ∈ Y A : 1 6 φ(x1) 6 · · · 6 φ(xk) 6 n}
is a set of representatives of Hom(A, Y )/Sk and therefore

ΩA,Sk(n) = Ω[k](n) =

(
n+ k − 1

k

)
.
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2.3 Combinatorial reciprocity

Let G be a finite group acting on a finite poset P by automorphisms. As the number of
orbits |Hom(P, [n])/G| agrees with a polynomial by Theorem 2.5 we ponder the question if
there is a combinatorial interpretation for evaluating this polynomial at negative integers.
For that we have to consider a certain class of order preserving maps. The sign sgn(g)
of an element g ∈ G is defined as the sign of g as a permutation of P and is equal to
(−1)|P |+c(g). An order preserving map φ ∈ Hom(P, [n]) is called even if for all g ∈ Stab(φ)
we have sgn(g) = 1. The set of all even order preserving maps is denoted by Hom+(P, [n]),
and we define Hom◦+(P, [n]) := Hom+(P, [n]) ∩Hom◦(P, [n]) to be the set of even strictly
order preserving maps. One observes that the action of G on Hom(P, [n]) restricts to an
action on Hom+(P, [n]). For these notions the following reciprocities hold:

Theorem 2.8. Let G be a finite group acting by automorphisms on a finite poset P . Then

ΩP,G(−n) = (−1)|P |
∣∣Hom◦+(P, [n])/G

∣∣ , (3)

Ω◦P,G(−n) = (−1)|P | |Hom+(P, [n])/G| . (4)

Proof. Again, we only show equation (3) as equation (4) follows by analogous arguments.
By equation (1) and Theorem 2.3 we have

ΩP,G(−n) =
1

|G|
∑
g∈G

(−1)|Pg |Ω◦Pg(n). (5)

We observe that |Pg| = c(g) is the number of orbits under the action of 〈g〉. Therefore
equation (5) becomes

ΩP,G(−n) = (−1)|P |
1

|G|
∑
g∈G

sgn(g) |Hom◦(P, [n])g|

= (−1)|P |
1

|G|
∑

φ∈Hom◦(P,[n])

∑
g∈Stab(φ)

sgn(g).

For φ ∈ Hom◦(P, [n]) and g0 ∈ Stab(ϕ) such that sgn(g0) = −1 there is a bijection

{g ∈ Stab(φ) : sgn(g) = 1} −→ {g ∈ Stab(φ) : sgn(g) = −1}
g 7→ g0g

Hence,
∑

g∈Stab(φ) sgn(g) = 0 whenever φ is not even. Therefore the right-hand side of

equation (5) equals

(−1)|P |
1

|G|
∑
g∈G

∣∣Hom◦+(P, [n])g
∣∣

which equals (−1)|P |
∣∣Hom◦+(P, [n])/G

∣∣ by Theorem 2.1.

In the setting of Pólya’s enumeration theorem the statement simplifies:
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Corollary 2.9. Let G be a finite group acting on a finite antichain A, and let Y = [n].
Then

ΩA,G(−n) = (−1)|A| |Hom+(A, [n])/G| .

Proof. This follows from the fact that every order preserving map from an antichain is
automatically strictly order preserving.

Example 2.10. In Example 2.7 we have φ ∈ Hom+(A, [n]) if and only if φ is injective.
Therefore

{φ ∈ Y A : 1 6 φ(x1) < · · · < φ(xk) 6 n}

is a set of representatives for Hom+(A, [n])/Sk. Therefore

|Hom+(A, [n])/Sk| = Ω◦[k](n) =

(
n

k

)
.

Remark 2.11. An alternative, geometric route is by way of Ehrhart theory of order
polytopes. Geometrically the setting can be translated into counting lattice points in
order polytopes where the action of the group is given by permuting coordinates. This
complements results by Stapledon [8] who considers lattice preserving group actions and
counts lattice points inside stable rational polytopes.

2.4 (P, ω)-partitions

Theorem 2.5 and Theorem 2.8 hold, in fact, in greater generality for (P, ω)-partitions
which were first considered by Stanley in [5]. Let P be a poset and let ω : P → R,
such that ω(p) 6= ω(q) whenever p and q are comparable. An order preserving map
f ∈ Hom(P, [n]) is a (P, ω)-partition if for all p, q ∈ P

p ≺ q and ω(p) > ω(q) =⇒ f(p) < f(q).

The pairs {(p, q) : p ≺ q, ω(p) > ω(q)} are called inversions. Therefore, a (P, ω)-partition
is an order preserving map which is strict on inversions given by ω. Let Homω(P, [n])
be the set of all (P, ω)-partitions P → [n]. We observe that if ω is order preserv-
ing then Homω(P, [n]) simply equals Hom(P, [n]). If ω is order reversing then we have
Homω(P, [n]) = Hom◦(P, [n]).
Stanley considered in [5] the (P, ω)-polynomial Ωω

P (n) = |Homω(P, [n])| and showed the
following generalization of Theorem 2.3:

Theorem 2.12 (Stanley [5]). Let P be a finite poset and ω : P → R be a map, such that
ω(p) 6= ω(q) whenever p and q are comparable. Then Ωω

P (n) agrees with a polynomial of
degree |P | for n > 1 and

Ωω
P (−n) = (−1)|P |Ω−ωP (n).
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Now let G be a group acting on P by automorphisms which preserve inversions, i.e.
for all g ∈ G we have ω(p) < ω(q) ⇔ ω(gp) < ω(gq) for all comparable p and q. For
g ∈ G we define ωg : Pg → R by ωg([x]g) = 1

|〈g〉|
∑

x̃∈[x]g
ω(x̃). It is easy to see that ωg takes

different values on comparable elements in Pg. Analogously as in the case of ordinary order
preserving maps we define the orbital (P, ω)-polynomial Ωω

P,G(n) = |Homω(P, [n])/G|,
and Homω

+(P, [n]) = Homω(P, [n]) ∩ Hom+(P, [n]). By very similar arguments as in the
proofs of Theorem 2.5 and Theorem 2.8 we have the following generalization:

Theorem 2.13. Let P be a finite poset and ω : P → R be a map, such that ω(p) 6= ω(q)
whenever p and q are comparable. Then

Ωω
P,G(n) =

1

|G|
∑
g∈G

Ω
ωg
Pg

(n),

Ωω
P,G(−n) = (−1)|P |

∣∣Hom−ω+ (P, [n])/G
∣∣ .

3 Graphs

Let Γ = (V,E) be a finite simple graph and let G be a finite group acting on Γ by
automorphisms. A n-coloring of Γ is a map c : V → [n]. The coloring is called proper
if c(v) 6= c(w) whenever there is an edge between v and w. The action of G on Γ
induces an action on the set of all colorings, and also on the set of all proper colorings
which we denote by Coln(Γ). The orbital chromatic polynomial χΓ,G is defined by
χΓ,G(n) = |Coln(Γ)/G| for all n > 1. An orientation σ : E → V of Γ assigns to every
edge e a vertex of e called its head. An orientation is acyclic if there are no directed
cycles. Every acyclic orientation σ induces a partial order on the vertex set of Γ by
defining v ≺σ w if there is a directed path from v to w. For the corresponding poset we
write Γσ. G acts on the set Σ of all acyclic orientations of Γ: For an edge uv we define
(g · σ)(uv) = g · σ(g−1 · uv). The next theorem gives us an expression of χΓ,G(n) in terms
of order polynomials. In particular, χΓ,G(n) is a polynomial for all n > 1.

Theorem 3.1. Let Γ be a graph and let G be a group acting on Γ. Then G acts on
Coln(Γ) and we have

χΓ,G(n) =
1

|G|
∑
g∈G

∑
σ∈Σg

Ω◦Γσg (n)

for all n > 1. In particular, χΓ,G(n) agrees with a polynomial of degree |Γ| for all n > 1.

Proof. By Theorem 2.1 we have

|Coln(Γ)/G| = 1

|G|
∑
g∈G

|Coln(Γ)g|

Let φ be an element of Coln(Γ)g and let σ be the acyclic orientation induced by the
coloring φ, i.e. an edge e = uv is oriented from u to v whenever φ(u) < φ(v). Then φ is a
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strictly order preserving map from Γσ into [n] and σ is fixed by g, because for every edge
vw ∈ E we have v ≺σ w by definition if and only if φ(v) < φ(w), and as φ is fixed by g,
this implies φ(gv) < φ(gw) which is equivalent to gv ≺σ gw, i.e. σ ∈ Σg.

Example 3.2. Let k > 2. We consider a cycle Ck on k vertices {xi}i∈Zk . Then its
symmetry group is the dihedral group

Dk = 〈r, s | rk = 1, s2 = 1, srs−1 = r−1〉

which acts on Ck by

r · xi = xi+1

s · xi = x−i

Then

χCk,Dk(n) =
1

2k

(
k∑
l=1

∣∣∣Coln(Ck)r
l
∣∣∣+

k∑
l=1

∣∣∣Coln(Ck)sr
l
∣∣∣) .

Let c ∈ Coln(Ck). If l = 2q is even, then sr2q · c = c⇔ (rq · c) = s · (rq · c) and therefore

∣∣∣Coln(Ck)sr
l
∣∣∣ =

∣∣Coln(Ck)s
∣∣ =

{∣∣Coln([k
2

+ 1])
∣∣ if k is even,

0 otherwise.

If l = 2q + 1 is odd, then sr2q+1 · c = c⇔ (rq+1 · c) = rs · (rq+1 · c) and therefore∣∣∣Coln(Ck)s·r
l
∣∣∣ =

∣∣Coln(Ck)rs
∣∣ = 0

as rs · x0 = x1, and x0 and x1 are connected by an edge. Further, for all 1 6 l 6 k we
obtain ∣∣∣Coln(Ck)r

l
∣∣∣ =

{
|Coln(Cm)| if m = gcd(l, k) 6= 1,

0 otherwise.

If k > 1 is odd, we therefore get

χCk,Dk(n) =
1

2
χCk,Zk(n),

with Zk := Z/kZ = 〈r〉 ⊂ Dk. If k = p > 2 is a prime this simplifies even further:

|Coln(Cp)/Dp| =
1

2p
|Coln(Cp)| .

This is reminiscient of counting necklaces with colored beads (see e.g. [9, Chapter 35]).
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A pair (c, σ) consisting of a coloring c : V → [n] and an acyclic orientation σ : E → V
is called weakly compatible if for every edge e = uv we have σ(uv) = v whenever
c(u) < c(v). We define

Σn(Γ) = {(c, σ) ∈ [n]V × Σ: weakly compatible}

If G acts on Γ by automorphisms it also acts on Σn(Γ) by g · (c, σ) = (g · c, g · σ) for
all (c, σ) ∈ Σn(Γ) and g ∈ G. An element (c, σ) ∈ Σn(Γ) is called even if for all
g ∈ Stab((c, σ)) we have sgn(g) = 1 as permutation of the vertices. We denote the set of
all even elements of Σn(Γ) by Σn,+(Γ). The action of G restricts to an action on Σn,+(Γ).
We get the following reciprocity statement:

Theorem 3.3. Let Γ be a graph and G a group acting on Γ. Then

χΓ,G(−n) = (−1)|Γ| |Σn,+(Γ)/G|

Proof. By Theorem 3.1 and Theorem 2.3 and sgn(g) = (−1)|Γ|+c(g) we have

χΓ,G(−n) = (−1)|Γ|
1

|G|
∑
g∈G

sgn(g)
∑
σ∈Σg

ΩΓσg (n).

As in the proof of Theorem 2.5 we see ΩΓσg (n) = |Hom(Γσ, [n])g|, and we observe

|Σn(Γ)g| =
∑
σ∈Σg

|Hom(Γσ, [n])g|. (6)

Now we argue the same way as in the proof of Theorem 2.8: By equation (6) we get

χΓ,G(−n) = (−1)|Γ|
1

|G|
∑
g∈G

sgn g |Σn(Γ)g| = (−1)|Γ|
1

|G|
∑

(c,σ)∈Σn(Γ)

∑
g∈Stab((c,σ))

sgn(g). (7)

For (c, σ) ∈ Σn(Γ) and g0 ∈ Stab((c, σ)) such that sgn g0 = −1 as permutation of the
vertices there is a bijection

{g ∈ Stab((c, σ)) : sgn(g) = 1} −→ {g ∈ Stab((c, σ)) : sgn(g) = −1}
g 7→ g0g

Hence,
∑

g∈Stab((c,σ)) sgn(g) = 0 whenever (c, σ) is not even. Therefore the right hand side

of equation (7) equals

(−1)|Γ|
1

|G|
∑
g∈G

|Σn,+(Γ)g|

which by Theorem 2.1 equals (−1)|Γ| |Σn,+(Γ)/G|.

An easy interpretation can be given in the case of G = Z2:
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Corollary 3.4. Let Γ be a graph and let Z2 = {e, τ} act on Γ by automorphisms such
that sgn τ = −1. Then

χΓ,Z2(−1) = (−1)|Γ|
|Σ+|

2

where Σ+ = Σ1,+(Γ) is the set of even acyclic orientations of Γ.

For G acting trivially on Γ we recover a well-known theorem by Stanley:

Corollary 3.5 ([6, Thm. 1.2]). Let Γ be a graph and χΓ its chromatic polynomial. Then
|χΓ(−n)| equals the number of weakly compatible pairs (c, σ) consisting of a n-coloring
c and an acyclic orientation σ of Γ. In particular, |χΓ(−1)| is the number of acyclic
orientations of Γ.

Similarly as in Theorem 2.8 there is a twin reciprocity in the case of graph colorings. We
say that a n-coloring c of Γ is even if for all g ∈ Stab(c) we have sgn g = 1 and define
Coln,+(Γ) as the set of all even proper n-colorings of Γ. Then the action of G on Coln(Γ)
restricts to an action on Coln,+(Γ). We further define χ+

Γ,G(n) = |Coln,+(Γ)/G| as the
function counting the number of orbits of even proper n-colorings for n > 1. By similar
arguments as in Theorem 3.1 and Theorem 3.3 we then have the following:

Proposition 3.6. Let Γ be a graph and G a group acting on Γ by automorphisms. Then
χ+

Γ,G(n) agrees with a polynomial of degree |Γ| for n > 1 and we have

χ+
Γ,G(−n) = (−1)|Γ| |Σn(Γ)/G| .
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