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Abstract

For integers 0 6 t 6 k 6 v − t, let X be a v-set, and let Wtk(v) be a
(
v
t

)
×
(
v
k

)
inclusion matrix where rows and columns are indexed by t-subsets and k-subsets
of X, respectively, and for row T and column K, Wtk(v)(T,K) = 1 if T ⊆ K
and zero otherwise. Since Wtk(v) is a full rank matrix, by reordering the columns
of Wtk(v) we can write Wtk(v) = (S|N), where N denotes a set of independent
columns of Wtk(v). In this paper, first by classifying t-subsets and k-subsets, we
present a new decomposition of Wtk(v). Then by employing this decomposition, the
Leibniz Triangle, and a known right inverse of Wtk(v), we construct the inverse of
N and consequently special basis for the null space (known as the standard basis)
of Wtk(v).

Keywords: Signed t-design; Leibniz Triangle; Standard basis; Right inverse; Root
of a block; R-ordering; B-changer

1 Introduction

Integers t, k, and v with 0 6 t 6 k 6 v − t are considered. Let X be a linearly ordered
v-set, and let (

X

i

)
:= {A ⊆ X : |A| = i}, 0 6 i 6 v.

For the sake of brevity, we will denote a set {a1, . . . , ai} by the string “a1 . . . ai”, and
assuming that a1 < a2 < · · · < ai. The elements of

(
X
k

)
and

(
X
t

)
are called blocks and

t-subsets, respectively.
The inclusion matrix Wtk(v) (known as Wilson matrix) is defined to be a

(
v
t

)
by
(
v
k

)
(0, 1)-matrix whose rows and columns are indexed by (and referred to) the members of
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(
X
t

)
and

(
X
k

)
, respectively, and where

W v
tk(T,K) :=

{
1 if T ⊆ K
0 otherwise

, T ∈
(
X

t

)
, K ∈

(
X

k

)
.

For the sake of convenience, sometimes we use Wtk or just a bare W for Wtk(v).
Let S = x1x2 . . . xn be a finite set, and let F be an arbitrary ring. An F -collection of the

elements of S is a function f : S → F, with the vector representation
(
f(x1), · · · , f(xn)

)T
,

for i, 1 6 i 6 n, f(xi) is defined to be the value of xi in f .
It is well known that Wtk is a full rank matrix over Q [8]. As a linear operator, Wtk

acts on a Z -collection of blocks, and algebraically counts the number of times that any
member of

(
X
t

)
appears in the blocks of the collection.

In the set of our notations, for any matrix M , the free Z-module generated by rows
and columns of matrix M will be denoted by rowZ(M) and colZ(M), respectively, and
nullZ(M) will be the free Z -module orthogonal to rowZ(M).

Let 1 be the all 1 vector, and let λ be a nonnegative integer. We call the following
equation the fundamental equation of design theory:

Wtk f = λ1. (1)

Every integral solution of equation (1) is called a signed t-(v, k, λ) design. For more
on this, see [4, 8].

Since W is a full rank matrix, by reordering the columns of W we can write W as
W = (S|N), where N denotes a set of independent columns of W . Therefore, there is a
matrix C such that N−1(S|N) = (C|I). Let S be a matrix defined by stacking an identity
matrix above the matrix −C,i.e., S :=

(
I
−C

)
. Since WS = 0 and W is full rank, the

columns of S form a basis for nullZ(W ).
Now, we would like to give a rather comprehensive view on the problem addressed

in this paper: We start with the halving conjecture. In 1987 A. Hartman [9] stated the
following conjecture which is now known as the halving conjecture:

For 0 6 i 6 t, there is a (1,−1)-vector in nullZ(W ) if and only if(
v−i
k−i

)
≡ 0 (mod 2).

Up to our knowledge, the conjecture has been settled for t = 2 utilizing a recursive
construction [2], and some infinite classes have been constructed too [10].

Since every (1,−1)-vector in nullZ(W ) is a linear combination of the columns of S,
therefore the null space of the W should be studied more carefully. For this, we have to
know the components, row structure and column structure of S.

• In what follows, an explicit formula for the entries of N−1 and consequently a closed
formula for the entries of S are presented.

• For the row structure of S, there are two conjectures on the table:

– The elements of every row of S have the same sign.
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– For t > 1, the matrix S contains a nowhere zero row.

In [1] these two conjectures have been settled for t = 2 and k = 3.

• In [1] the columns of S23(v) have been classified into five classes and by utilizing
these classes the correctness of the halving conjecture has been established.

2 Classification of blocks and t-subsets

Definition 1. For m, 1 6 m 6 k, let A = {ak−m+1, . . . , ak} ∈
(
X
m

)
, and

LA = {i : ai 6 2i− k + t, k −m+ 1 6 i 6 k}.

Let `A = max(LA). Note that max(∅) := 0, here. Now, Rtk(A) := {ak−m+1, . . . , a`A} is
called the root of A.

Example 2. For A = 3458, we obtain:

i ai 2i− k + t `A
4 8 7
3 5 5 X
2 4 3
1 3 1
`A = 3⇒ R34(3458) = 345

i ai 2i− k + t `A
4 8 6
3 5 4
2 4 2
1 3 0
LA = ∅⇒ R24(3458) = ∅

For B = 1478, we obtain:

i ai 2i− k + t `B
5 8 8 X
4 7 6
3 4 4
2 1 2
`B = 5⇒ R35(1478) = 1478

i ai 2i− k + t `B
5 8 7
4 7 5
3 4 3
2 1 1 X
`B = 2⇒ R25(1478) = 1

In [6, 14], a decomposition of Wtk(v) is presented:

Wtk(v) =
Wt−1,k−1(v − 1) 0

Wt,k−1(v − 1) Wtk(v − 1)
(2)

Now, we propose a new ordering of blocks and t-subsets and consequently a new decom-
position.

the electronic journal of combinatorics 21(2) (2014), #P2.53 3



Definition 3. For given t, k, and X, let{
Bi = {B : |Rtk(B)| = i, B ∈

(
X
k

)
},

Tj = {T : |Rtk(T )| = j, T ∈
(
X
t

)
}, 0 6 i 6 k, 0 6 j 6 t.

If we order every Bi and Tj in reverse lexicographic ordering, then B0, B1, . . . , Bk and
T0, T1, . . . , Tt are orders on

(
X
k

)
and

(
X
t

)
, respectively. This ordering is called R-ordering.

Wtk(v) =
E 0

A Wtk(t+ k)
(3)

Here the rows and the columns of Wtk(t+ k) are indexed by Tt and Bk elements, respec-
tively. In passing we note that the matrix E contains (v − k − t) copies of intersecting
submatrices Wt−1,k−1(v − 1).

Example 4. The above decomposition of W23(7) is:

.

.W23(5)

.5
6
7

.4
6
7

.4
5
7

.4
5
6

.3
6
7

.3
5
7

.3
5
6

.3
4
7

.3
4
6

.2
6
7

.2
5
7

.2
5
6

.2
4
7

.2
4
6

.1
6
7

.1
5
7

.1
5
6

.1
4
7

.1
4
6

.2
3
7

.2
3
6

.1
3
7

.1
3
6

.1
2
7

.1
2
6

.3
4
5

.2
4
5

.2
3
5

.2
3
4

.1
4
5

.1
3
5

.1
3
4

.1
2
5

.1
2
4

.1
2
3

.67

.57

.56

.47

.46

.37

.36

.27

.26

.17

.16

.45

.35

.34

.25

.24

.23

.15

.14

.13

.12

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.T2

.T1

.T0

.B3.B2.B1.B0

Table 1. The decompostion of W23(7).

(In tables throughout this paper, unless otherwise indicated, blanks are zeros.)

Remark 5. To obtain the inverse of N , first we construct the inverse of Wtk(t+ k). In the
next section, we introduce a right inverse of W .
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3 Right inverse of W and Leibniz Triangle

Around 1980, Graham, Li, and Li [7] presented a right inverse for W with a closed formula.
Later on, Bapat [3] constructed a right inverse for W in a recursive form. The elements
of these right inverses are multiples of the entries of Leibniz Triangle (Table 2).

1
1
2

1
2

1
3

1
6

1
3

1
4

1
12

1
12

1
4

1
5

1
20

1
30

1
20

1
5

1
6

1
30

1
60

1
60

1
30

1
6

1
7

1
42

1
105

1
140

1
105

1
42

1
7

Table 2. Leibniz Triangle.

For given 0 6 r 6 n, the (n, r)-th position of Leibniz Triangle was introduced as the
(n, r)-th harmonic coefficient which is defined to be

Hn
r =

1

(n+ 1)
(
n
r

) =
1

(r + 1)
(
n+1
r+1

) . (4)

Now we index the rows and the columns of the right inverse of W by the elements of(
X
k

)
and

(
X
t

)
, respectively. According to [7] and (4) every entry of this matrix comes from

the following relation:

GLL(B, T ) =
(−1)(k−t)(k − t)

(−1)|B−T ||B − T | ·
1(
v−t
|B−T |

)
= (−1)k−t+|B−T |(k − t)Hv−t−1

|B−T | ,

(5)

where B ∈
(
X
k

)
, T ∈

(
X
t

)
.

? ? ? ? ?

Now back to the inverse of Wtk(t + k). We replace v − t by k in (5), and then every
element of the inverse of Wtk(t+ k), denoted by F (B, T ), is defined as

F (B, T ) := (−1)(t−θ)(k − t)Hk−1
θ , (6)

where θ = |B ∩ T |.
Let B be an arbitrary block such that |Rtk(B)| = k. Suppose that b = (b1, . . . , b(v

t)
) is

a vector where bi = F (B, Ti), Ti ∈
(
X
t

)
. Now we compute the product of b in the column

B′ of W . The product is the sum of those F (B, Ti) where Ti ⊆ B′.

b.B′ = (k − t)
t∑

θ=0

(−1)t−θ
(
s

θ

)(
k − s
t− θ

)
Hk−1
θ = (−1)t

(
k − s− 1

t

)
, (7)

where s = |B ∩B′|.
The above formula is easily verified by Maple [13] and exhibits a very interesting

relation between Leibniz Triangle and binomial triangle.
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4 The inverse of N

The construction of the inverse of N is based on (6), but first we should partition W into
independent and dependent columns. The function which is defined on blocks in [5, 11],
classifies the blocks into t + 2 classes. Although through that classification independent
and dependent columns are separated, the partitioning is not refined enough to be useful
for the inverse construction. Here we introduce a new function to partition subsets of X,
which is based on R-ordering.

Definition 6. The block B is called a starting block if 0 6 |Rtk(B)| < k − t, and a
non-starting block if k − t 6 |Rtk(B)| 6 k.

Notation. kB:=|Rtk(B)|.
Now, we omit the columns indexed by the starting blocks from W and we denote the

remaining matrix by Ntk. If we R-order the t-subsets and non-starting blocks, then:

.

.t

.

...

.2

.1

.0

.0 .1 .2 .· · · .t

.0 .0 .0 .0

.0 .0 .0

.0 .0

.0

.|Rtk(T )|
.kB − (k − t)

.Ntk =

.Note. The entries of shaded boxes could be zero or one.

Let B be a non-starting block and T ∈
(
X
t

)
. If kB − (k− t) = i and |Rtk(T )| < i, then

k − kB < t − |Rtk(T )|. That is to say that there exists an element in T which is not in
B. Therefore, Ntk(T,B) = 0.

Lemma 7. For given t, k, and X, the number of non-starting blocks is
(
v
t

)
.

Proof. For 0 6 m 6 t, let A = {ak−t+m, . . . , ak} and Rtk(A) = ∅. If A ⊆ T and
|Rtk(T )| = m − 1, then T \ Rtk(T ) = A. Let Rtk(T ) = {ak−t+1, . . . , ak−t+m−1}, by
Definition 2.1, ak−t+m−1 6 k − t+ 2m− 2. Therefore, the number of T such that A ⊆ T
is equal to

(
k−t+2m−2

m−1

)
.

Similarly the number of non-starting blocks B such that A ⊆ B and |Rtk(B)| =
k − t+m− 1 is equal to

(
k−t+2m−2
k−t+m−1

)
.

Now, we have to show that different A’s with the same size, produce different t-subsets
and different blocks.
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Let A1, A2, D1, and D2 be subsets of X. Suppose Rtk(A1) = Rtk(A2) = ∅, A1 6= A2,
and |A1| = |A2|. We show that, if

A1 ⊆ D1, A2 ⊆ D2, and |Rtk(D1)| = |Rtk(D2)| = |D1| − |A1|,

then D1 6= D2.
Suppose D1 = D2. Since A1 6= A2, there is an e ∈ A1, such that e ∈ Rtk(D2). Hence,

by Definition 2.1 |Rtk(D2)| = |D2|− |A2|−1, and this is a contradiction. Therefore, there
exists a bijection from the set of non-starting blocks to all the t-subsets.

Corollary 8. The main diagonal boxes of Ntk are square matrices.

Example 9. Table 3 demonstrates the boxing structure of N23(6).

N23(6) =

kB = 1 kB = 2 kB = 3

1
5
6

1
4
6

2
3
6

1
3
6

1
2
6

3
4
5

2
4
5

2
3
5

2
3
4

1
4
5

1
3
5

1
3
4

1
2
5

1
2
4

1
2
3

|R23(T )| = 0
56 1

46 1

|R23(T )| = 1

36 1 1

26 1 1

16 1 1 1 1

|R23(T )| = 2

45 1 1 1

35 1 1 1

34 1 1 1

25 1 1 1

24 1 1 1

23 1 1 1 1

15 1 1 1 1

14 1 1 1 1

13 1 1 1 1

12 1 1 1 1

Definition 10. For given t, k, and X, let B be a non-starting block. For any A ⊆ X
such that |A| 6 |B|, A \

(
B \ Rtk(B)

)
denoted by Rtk(A,B) is called the root of A with

respect to B.

Example 11. R24(58, 3458) = 5, R34(5678, 1234) = 5678, and R34(5678, 1478) = 56.
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Now, to show that the columns of Ntk are linearly independent, first we define a
matrix Ftk(v), whose rows and columns are indexed by non-starting blocks and t-subsets,
respectively. We note that the non-starting blocks and t-subsets are R-ordered. Then
Ftk(v) is defined as:

Ftk(v)(B, T ) :=

{
F (Rtk(B),Rtk(B, T )) k − kB = t− |Rtk(B, T )|,
0 k − kB 6= t− |Rtk(B, T )|, (8)

where F (B, T ) = (−1)(t−θ)(k − t)Hk−1
θ as in (6). Now let M := Ftk(v)Ntk. Naturally the

rows and the columns of M are indexed by non-starting blocks.

Example 12.

F23(6) =

56 46 36 26 16 45 35 34 25 24 23 15 14 13 12

156 1

146 1

236 − 1
2
− 1

2
1
2

1
2

− 1
2

136 − 1
2
− 1

2
1
2

− 1
2

1
2

126 − 1
2
− 1

2
− 1

2
1
2

1
2

345 − 1
6
− 1

6
− 1

6
1
3

1
3

1
3

1
3

1
3

− 1
6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
1
3

245 − 1
6
− 1

6
1
3

− 1
6

1
3

1
3

− 1
6
− 1

6
1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6

235 − 1
6

1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

1
3

− 1
6
− 1

6

234 1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

1
3

1
3

− 1
6
− 1

6
− 1

6

145 − 1
6
− 1

6
1
3

1
3

− 1
6

1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

1
3

1
3

− 1
6
− 1

6

135 − 1
6

1
3

− 1
6

1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

134 1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
− 1

6
1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

1
3

− 1
6

125 − 1
6

1
3

1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

124 1
3

− 1
6

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

123 1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

1
3

Notation. tB := t− (k − kB).

Lemma 13. If for two non-starting blocks B and B′, kB = kB′, then |Rtk(B)∩Rtk(B
′)| >

kB − tB.

Proof. Since kB = kB′ , every element ofRtk(B) andRtk(B
′) is at most 2kB−k+t = kB+tB

by Definition 1. Hence |Rtk(B) ∩Rtk(B
′)| > kB − tB.
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Now, we have

M(B,B′) =

{
(−1)tB

(
kB−|Rtk(B)∩Rtk(B

′,B)|−1
tB

)
kB = |Rtk(B

′, B)|,
0 kB 6= |Rtk(B

′, B)|.
(9)

For clarity we add the following statements:

• kB − |Rtk(B) ∩Rtk(B
′, B)| − 1 = −1 if and only if B = B′, and

(−1
tB

)
= (−1)tB ;

• kB = |Rtk(B
′, B)| and B 6= B′,then Rtk(B

′, B)| = Rtk(B
′), and 0 6 kB − |Rtk(B)∩

Rtk(B
′, B)| − 1 < tB, implying that the binomial coefficient is 0.

By Corollary 8, (9), and the above statements, the main diagonal boxes of matrix M are
identity matrices. Therefore, M is a lower triangular matrix.

Example 14.

M23(6) =

1
5
6

1
4
6

2
3
6

1
3
6

1
2
6

3
4
5

2
4
5

2
3
5

2
3
4

1
4
5

1
3
5

1
3
4

1
2
5

1
2
4

1
2
3

156 1

146 1

236 −1 −1 1

136 1

126 1

345 1 1

245 1 1

235 1 1

234 1 1

145 1 1

135 1

134 1

125 1

124 1

123 1

Theorem 15. The columns indexed by non-starting blocks in W are linearly independent.

Definition 16. For a given non-starting block B, a block A is called a B-changer, if the
following conditions hold:

(i) kB > kA,

(ii) |Rtk(B) ∩Rtk(A,B)| < kB − tB,

(iii) B \ Rtk(B) ⊆ A \ Rtk(A,B).

Lemma 17. Let B and A be two non-starting blocks such that A 6= B. Then A is a
B-changer if and only if M(B,A) 6= 0.
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Proof. For a given block B, let A be a B-changer. By Definition 16 we have |Rtk(A) ∩
Rtk(B)| 6 kB − tB − 1. Therefore, by (9) it follows that M(B,A) 6= 0.

Now assume that M(B,A) 6= 0, again by (9) we have kB > kA and |Rtk(B) ∩
Rtk(A,B)| < kB − tB − 1. If kB = kA, then based on Lemma 13 and (9) we have
M(B,A) = 0, which is a contradiction. Therefore, kB > kA and A is a B-changer.

Theorem 18. Suppose that the rows and the columns of matrix N−1 are indexed by
non-starting blocks and t-subsets, respectively. For a block B and a t-subset T , we have:

N−1
tk (B, T ) =

F (Rtk(B),Rtk(T,B))−
∑
A

M(B,A)N−1
tk (A, T ) k − kB = t− |Rtk(T,B)|,

0 k − kB 6= t− |Rtk(T,B)|.
(10)

Proof. The correctness of the statement of the theorem can be easily established by the
elementary row operations.

Example 19.

N−123 (6) =

56 46 36 26 16 45 35 34 25 24 23 15 14 13 12

156 1

146 1

236 1
2

1
2

1
2

1
2

− 1
2

136 − 1
2
− 1

2
1
2

− 1
2

1
2

126 − 1
2
− 1

2
− 1

2
1
2

1
2

345 1
3

1
3

1
3

− 1
6
− 1

6
1
3

1
3

1
3

− 1
6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
1
3

245 1
3

1
3

− 1
6

1
3

− 1
6

1
3

− 1
6
− 1

6
1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6

235 − 1
6
− 2

3
− 1

6
− 1

6
1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

1
3

− 1
6
− 1

6

234 − 2
3
− 1

6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

1
3

1
3

− 1
6
− 1

6
− 1

6

145 − 2
3
− 2

3
− 1

6
− 1

6
1
3

1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

1
3

1
3

− 1
6
− 1

6

135 − 1
6

1
3

− 1
6

1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

− 1
6

1
3

− 1
6

134 1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
− 1

6
1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

1
3

− 1
6

125 − 1
6

1
3

1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

124 1
3

− 1
6

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6
− 1

6
1
3

− 1
6

1
3

123 1
3

1
3

− 1
6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
− 1

6
− 1

6
1
3

− 1
6
− 1

6
1
3

1
3

5 Standard basis and the unique signed design

Let Ftk(v) and S be defined as before and let B and Bs be a non-starting and a starting
block, respectively. Suppose M s := Ftk(v)S. Clearly, the rows and the columns of M s

are indexed by non-starting blocks and starting blocks, respectively. By Definition 16 we
have kB > kBs . Every entry of matrix M s, based on proof (9) is obtained as:

M s(B,Bs) =

{
(−1)tB

(
kB−|Rtk(B)∩Rtk(B

s,B)|−1
tB

)
kB = |Rtk(B

s, B)|,
0 kB 6= |Rtk(B

s, B)|.
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Example 20.

M s
23(6) =

456 356 346 256 246

156 1 1 1

146 1 1 1

236 −1
136 −1 −1 −1
126 −1 −1 −1
345

245

235

234

145

135 1

134 1

125 1

124 1

123 1

Note 21. We recall that C = N−1S. From this, it follows that the rows and the columns
of C are indexed by non-starting and starting blocks, respectively.

Theorem 22. Let B and Bs be a non-starting and a starting block, respectively. Every
entry of C is given by

C(B,Bs) =

M
s(B,Bs)−

∑
A

M(B,A)C(A,Bs) kB = |Rtk(B
s, B)|,

0 kB 6= |Rtk(B
s, B)|,

where A is a B-changer.

Example 23.

C23(6) =

456 356 346 256 246

156 1 1 1

146 1 1 1

236 1 1 1 1 1

136 −1 −1 −1
126 −1 −1 −1
345 1 1 1

245 1 1 1

235 −1 −1 −1
234 −1 −1 −1
145 −1 −1 −1 −1 −1
135 1

134 1

125 1

124 1

123 1
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In [12] Khosrovshahi and Tayfeh-Rezaie showed that by subtracting 1 from the sum
of the columns of the standard basis of W , one obtains a unique signed t-design D. For
more on this subject see [15]. Here we show that D is also obtained by the sum of the
columns of the inverse of N .

Let
(
si1 , . . . , si(v

k)−(v
t)

)
be the i-th row of Stk and D =

(
d1, . . . , d(v

k)
)T

. Therefore,

di =

(v
k)−(v

t)∑
j=1

sij − 1.

Let
(
γi1 , . . . γi(v

t)

)
be the i-th row of N−1tk . We have the following identities:

(
v − t
k − t

) (v
t)∑

m=1

γim =

(v
t)∑

m=1

(v
k)∑
j=1

γimWmj = 1−
(v
k)−(v

t)∑
j=1

sij = di.

Theorem 24. Let η =
∑(v

t)
i=1 Γi, where Γi’s are the columns of N−1tk , then

(
v−t
k−t

)
η = D.
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