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Abstract

For integers 0 < ¢ < k < v —t, let X be a v-set, and let Wy (v) be a (;’) X (Z)
inclusion matrix where rows and columns are indexed by t-subsets and k-subsets
of X, respectively, and for row T and column K, Wy (v)(T,K) = 1 if T C K
and zero otherwise. Since Wy (v) is a full rank matrix, by reordering the columns
of Wy(v) we can write Wy (v) = (S|N), where N denotes a set of independent
columns of Wy (v). In this paper, first by classifying ¢-subsets and k-subsets, we
present a new decomposition of Wy (v). Then by employing this decomposition, the
Leibniz Triangle, and a known right inverse of Wy (v), we construct the inverse of
N and consequently special basis for the null space (known as the standard basis)

of Wtk(i}).

Keywords: Signed t-design; Leibniz Triangle; Standard basis; Right inverse; Root
of a block; R-ordering; B-changer

1 Introduction

Integers ¢, k, and v with 0 <t < k < v —t are considered. Let X be a linearly ordered
v-set, and let

(),() —[ACX:|A =i}, O0<i<uw
1

For the sake of brevity, we will denote a set {aq,...,a;} by the string “a;...aq;”, and
assuming that a; < as < --- < a;. The elements of ()k{) and ()t{) are called blocks and
t-subsets, respectively.

The inclusion matriz Wy,(v) (known as Wilson matrix) is defined to be a (7) by (})

¢
(0, 1)-matrix whose rows and columns are indexed by (and referred to) the members of
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(X ) and ()k(), respectively, and where

t
. (1 #TCK X X
tk(T’K)'_{O otherwise ’ Te(t)’Ke(k)

For the sake of convenience, sometimes we use Wy or just a bare W for Wy (v).

Let S = z1x5 ...z, be afinite set, and let F be an arbitrary ring. An IF -collection of the
elements of S is a function f : S — F, with the vector representation (f(xl), e f(xn))T,
for i, 1 <i < n, f(z;) is defined to be the value of z; in f.

It is well known that Wy is a full rank matrix over Q [8]. As a linear operator, Wy
acts on a Z-collection of blocks, and algebraically counts the number of times that any
member of ()t( ) appears in the blocks of the collection.

In the set of our notations, for any matrix M, the free Z-module generated by rows
and columns of matrix M will be denoted by rowz(M) and coly (M), respectively, and
nully (M) will be the free Z-module orthogonal to rowyz(M).

Let 1 be the all 1 vector, and let A be a nonnegative integer. We call the following
equation the fundamental equation of design theory:

Wy f = M. (1)

Every integral solution of equation (1) is called a signed t-(v, k, \) design. For more
on this, see [4, 8.

Since W is a full rank matrix, by reordering the columns of W we can write W as
W = (S|N), where N denotes a set of independent columns of W. Therefore, there is a
matrix C' such that N7'(S|N) = (C|I). Let S be a matrix defined by stacking an identity
matrix above the matrix —Clie., S := (%) Since WS = 0 and W is full rank, the
columns of S form a basis for null;(W).

Now, we would like to give a rather comprehensive view on the problem addressed
in this paper: We start with the halving conjecture. In 1987 A. Hartman [9] stated the
following conjecture which is now known as the halving conjecture:

For 0 < i@ < t, there is a (1,—1)-vector in nullz(W) if and only if

(1~1) = 0 (mod ?2).

Up to our knowledge, the conjecture has been settled for ¢ = 2 utilizing a recursive
construction [2], and some infinite classes have been constructed too [10].

Since every (1, —1)-vector in nullz(W) is a linear combination of the columns of S,
therefore the null space of the W should be studied more carefully. For this, we have to
know the components, row structure and column structure of S.

e In what follows, an explicit formula for the entries of N~! and consequently a closed
formula for the entries of S are presented.

e For the row structure of S, there are two conjectures on the table:

— The elements of every row of S have the same sign.
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— For t > 1, the matrix S contains a nowhere zero row.

In [1] these two conjectures have been settled for ¢ = 2 and k = 3.

e In [1] the columns of Sy3(v) have been classified into five classes and by utilizing

these classes the correctness of the halving conjecture has been established.

2 Classification of blocks and t-subsets

Definition 1. For m, 1 <m < k, let A = {ar_my1,...,ax} € (ii), and

La={i:a;<2i—k+t, k—m+1<i<k}

Let {4 = max(L,). Note that max(@) := 0, here. Now, Ryx(A) := {ar—m+1,---,a0,} is
called the root of A.
Example 2. For A = 3458, we obtain:

1 a; 20— k41t | L4y 1 a; 20—k+t | la

4 | 8 7 4 | 8 6

31 5 5 v 31 5 4

2| 4 3 2| 4 2

1] 3 1 11 3 0

04 =3 = Ra4(3458) = 345 Li=2 = Rou(3458) = @
For B = 1478, we obtain:

i | a | 2i—k+t | {p i | a | 2i—k+t | Ip

51 8 8 v 5] 8 7

4 | 7 6 4 | 7 5

3| 4 4 3| 4 3

211 2 211 1 v

€B =5= R35(1478> = 1478 eB =2= R25(1478) =1

In [6, 14], a decomposition of Wy (v) is presented:
Wt—l,k—l(v — ].) 0
Wik (v) = (2)
Wt,k—l(v - 1) Wtk(v - 1)

Now, we propose a new ordering of blocks and t-subsets and consequently a new decom-
position.
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Definition 3. For given t, k, and X, let

Bi={B:|Ru(B)|=i,Be ()}

, 0<i<k 0<j<t.
T ={T: |Ru(T)| =4, T € ()},

If we order every B; and T; in reverse lexicographic ordering, then By, By, ..., By and
Ty, Ty, ..., T, are orders on ()k( ) and ()t( ), respectively. This ordering is called R-ordering.
E 0
Wi (v) = (3)
A | Wi (t + k)

Here the rows and the columns of Wy (t + k) are indexed by 7; and By elements, respec-
tively. In passing we note that the matrix F contains (v — k — t) copies of intersecting
submatrices W;_y 1 (v — 1).

Example 4. The above decomposition of Wy3(7) is:

347| O

156 B3
%
=

147
146
237
236
137
136
127
126
345
245
235
234
145
135
134
125
124
123

— 1467
457
456

~ 1367
357
356
346

—1267
257
256
247
246

~ 1167
157

67
57
To |56
a7l 11 1 1 1

a6 11 1 1 1

37 11 1 11
36 111 11

,7—27 11 1 1 1
196

17 11 1 1 1

16 1 1 1 1 1
45 11 1

35 11 1 1 1
34 11 1

25 11 11 1

T [ 11 11 1
2 |23

15 11 11 1

14 11 1 1 1

13 11 11 1
12 11 111

= = ~|567

Table 1. The decompostion of Wa3(7).

(In tables throughout this paper, unless otherwise indicated, blanks are zeros.)

Remark 5. To obtain the inverse of N, first we construct the inverse of Wy (¢t + k). In the
next section, we introduce a right inverse of W.
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3 Right inverse of W and Leibniz Triangle

Around 1980, Graham, Li, and Li [7] presented a right inverse for W with a closed formula.
Later on, Bapat [3] constructed a right inverse for W in a recursive form. The elements
of these right inverses are multiples of the entries of Leibniz Triangle (Table 2).

1
1 1
2 2
1 1 1
3 6 3
1 1 1 1
4 12 12 4
1 1 1 1 1
2 2
[ TS T T T
1 6 1 30 1 60 1 60 1 30 1 6 1
7 42 105 140 105 42 7

Table 2. Leibniz Triangle.

For given 0 < r < n, the (n,r)-th position of Leibniz Triangle was introduced as the
(n,r)-th harmonic coefficient which is defined to be

S S 1 )

Hr - n n :
(n+1()  C+DH)
Now we index the rows and the columns of the right inverse of W by the elements of

(1) and (), respectively. According to [7] and (4) every entry of this matrix comes from

the following relation:

(—D* Pk -t) 1
(=DIETNB =T (57%) (5)

|B-T|

GLL(B,T) =

= (1T —

where B € ()k(), T e ()t()
* K K kK
Now back to the inverse of Wy (t + k). We replace v — ¢t by k in (5), and then every
element of the inverse of Wy (t + k), denoted by F(B,T), is defined as
F(B,T) = (1) (k — t)Hg ", (6)
where § = |BNT|.
Let B be an arbitrary block such that |R.(B)| = k. Suppose that b = (by,.. ., b(v)) is

a vector where b; = F\(B,T;), T; € ()t() Now we compute the product of b in the column
B’ of W. The product is the sum of those F(B,T;) where T; C B'.

b.B = (k—t) i:(—n”) (Z) (k :5) Hy = (—1) <k - f - 1>, (7)

0=0

where s = |BN B/|.
The above formula is easily verified by Maple [13] and exhibits a very interesting

relation between Leibniz Triangle and binomial triangle.
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4  The inverse of N

The construction of the inverse of NV is based on (6), but first we should partition W into
independent and dependent columns. The function which is defined on blocks in [5, 11],
classifies the blocks into t 4+ 2 classes. Although through that classification independent
and dependent columns are separated, the partitioning is not refined enough to be useful
for the inverse construction. Here we introduce a new function to partition subsets of X,
which is based on R-ordering.

Definition 6. The block B is called a starting block if 0 < |Ruy(B)| < k —t, and a
non-starting block if k —t < |Ru(B)| < k.

Notation. kp:=|Ru(B)|.
Now, we omit the columns indexed by the starting blocks from W and we denote the
remaining matrix by Ny. If we R-order the t-subsets and non-starting blocks, then:

kg — (k—t)
R (T)] O 1) 2 t
0 0 0 0 0
1 0 0 0
2 0 0
Ny, =

0

t

Note. The entries of shaded boxes could be zero or one.

Let B be a non-starting block and T" € ()t() If kg —(k—t) =i and |Ry(T)| < i, then
k—kp <t—|Ru(T)|. That is to say that there exists an element in 7" which is not in
B. Therefore, Ny (T, B) = 0.

Lemma 7. For given t, k, and X, the number of non-starting blocks is (1’)

Proof. For 0 < m < t, let A = {ax_t4m,-.-,ax} and Ry(A) = @. If A C T and
|Ru(T)| = m — 1, then T\ Ru(T) = A. Let Ry(T) = {ak—t4+1,---,0k—t+m-1}, by
Definition 2.1, ax_y1m-1 < k —t + 2m — 2. Therefore, the number of 7" such that A C T
is equal to (k_t:f?d).

Similarly the number of non-starting blocks B such that A C B and |Ru(B)| =
k—t+m —1isequal to (k,:ﬁg:f).
Now, we have to show that different A’s with the same size, produce different ¢-subsets

and different blocks.
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Let Ay, Ay, Dy, and Dy be subsets of X. Suppose Ry (A1) = Ry(A2) = @, Ay # Ay,

and |A;| = |Az|. We show that, if
Ay € Dy, Ay C Dy, and |Ruy(D1)| = |Ru(D2)| = |D1| — |A4],

then D1 7é DQ.

Suppose Dy = Ds. Since A; # As, there is an e € Ay, such that e € Ry (D). Hence,
by Definition 2.1 |Ryu(D2)| = |Ds| — |A2| — 1, and this is a contradiction. Therefore, there

exists a bijection from the set of non-starting blocks to all the ¢t-subsets.
Corollary 8. The main diagonal boxes of Ny, are square matrices.

Example 9. Table 3 demonstrates the boxing structure of Na3(6).

kp=1 kp =2 kp =3
Ne] Ne] Vo] [N} [V} 0 0 0 <t 0 0 < 0 < [2g)
0 < [~ [2p) A\ <t < [p)] gl < [2p) [pl [a\] A\ [a\]
v (o (a\] ] L [~r] [a\} [a\] N (o L L ] L L]
56 | 1
[Ra23(T)| =0
46 1
36 11
Ras(T)| =1 | 26 1 1
161 1 1 1
45 1 1 1
Na3(6) = 35 1 1 1
34 1 1 1
25 1 1 1
24 1 1 1
|Ra3(T)| = 2
23 1 11 1
15 | 1 11 1
14 1 1 1 1
13 1 1 1 1
12 1 11 1

]

Definition 10. For given ¢, k, and X, let B be a non-starting block. For any A C X
such that |A| < |B|, A\ (B \ Ru(B)) denoted by Ry (A, B) is called the root of A with

respect to B.
Example 11. R,4(58,3458) = 5, R34(5678,1234) = 5678, and R34(5678,1478) = 56.
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Now, to show that the columns of Ny are linearly independent, first we define a
matrix Fy(v), whose rows and columns are indexed by non-starting blocks and t-subsets,
respectively. We note that the non-starting blocks and ¢-subsets are R-ordered. Then
Fur(v) is defined as:

F(Rtk(B)vRtk(BvT)) k— kB =t— |Rtk(BvT)|v

0 behpt - RaBT), )

Fu(v)(B,T) := {

where F(B,T) = (—1)*9(k — t)H, " as in (6). Now let M := Fy(v)Nyy. Naturally the
rows and the columns of M are indexed by non-starting blocks.

Example 12.

56 46 | 36 26 16 | 45 35 34 25 24 23 15 14 13 12
156 | 1
146 1
me -4 -1 & 1 -
e |- 4| 4 -1
1 I
R e I
P e O R T T T e B B B
I e T T T I T s I B
A I
I I R e e e T R R
I I e T e T e I
I e e e T
I I
R R I
I I T T 1 I T T T M T O W O B
Notation. tp :=t — (k — kp).

Lemma 13. If for two non-starting blocks B and B', kg = kg, then |Ry.(B)NRu(B')| >
kg —tg.

Proof. Since kg = kg, every element of Ry (B) and Ry (B') is at most 2kp—k+t = kp+ip
by Definition 1. Hence |Ru(B) N Ru(B')| = kp — tp. O
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Now, we have
—1)ts (kB—IRk(B)N"Ru(B"B)I-1\ L, — |R..(B". B
M(B,B/> — ( ) ( tp ) B | tk‘( /’ )|7
kB 7& ‘Rtk(B aB)|
For clarity we add the following statements:
o kg — |Ru(B) NRu(B',B)| — 1 =—1if and only if B = B’, and (;Bl) = (—1)'z;

L k‘B = |Rtk(B,, B)| and B 7é B/,then Rtk(B/, B)‘ = Rtk<B/), and 0 < k’B — |Rtk(B) N
Ru(B', B)| — 1 < tp, implying that the binomial coefficient is 0.

By Corollary 8, (9), and the above statements, the main diagonal boxes of matrix M are
identity matrices. Therefore, M is a lower triangular matrix.

Example 14.

156
146
236
136
126
345
245
235
234
145
135
134
125
124
123

156 | 1

146 1
236 | -1 -1 | 1

136 1

126 1
345 1] 1

Ms3(6) = | 245 1 1

235 1 1

234 | 1 1

145 1 1

135 1

134 1

125 1

124 1

123 1

Theorem 15. The columns indexed by non-starting blocks in W are linearly independent.

Definition 16. For a given non-starting block B, a block A is called a B-changer, if the
following conditions hold:

(1) kp > ka,

(17) |Ru(B) N Ru(A,B)| < kp —tg,
(171) B\ Ru(B) C A\ Ru(A, B).
Lemma 17. Let B and A be two non-starting blocks such that A # B. Then A is a
B-changer if and only if M(B,A) # 0.
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Proof. For a given block B, let A be a B-changer. By Definition 16 we have |R;(A) N
Riu(B)| < kg —tg — 1. Therefore, by (9) it follows that M (B, A) # 0.

Now assume that M(B,A) # 0, again by (9) we have kg > ka and |Ru(B) N
Ri(A,B)| < kg —tg — 1. If kg = ky, then based on Lemma 13 and (9) we have
M (B, A) = 0, which is a contradiction. Therefore, kg > k4 and A is a B-changer. O]

Theorem 18. Suppose that the rows and the columns of matric N~' are indexed by
non-starting blocks and t-subsets, respectively. For a block B and a t-subset T', we have:

F(Rux(B), Rix(T, B)) = Y M(B, AN, (A,T) k—kp=t—|Ru(T,B)|,
A

N;YB,T) = { (10)

0 k—kp #t—|Ru(T, B)|.

Proof. The correctness of the statement of the theorem can be easily established by the
elementary row operations. O

Example 19.

56 46 36 26 16 45 35 34 25 24 23 15 14 13 12
156 1
146 1
26| 5 1| 1 1
10| -3 3| b oo
O R I S S
W & 4| & b k| F § 3 -k -3 3 -3 -k 3
o T R N N T T I T T T S S S g
o35 | 1 _2 | _1 _1 1] _1 11 11 11 11 _1
6 3 6 6 3 6 3 6 3 6 3 6 3 6 6
e T I e Y e i S S A e i
I e e T O i e
I I I I T T T T T B
I I S e i A
I I R R R e R T T e I B
I e R e R R R N I I
L0 RS ST S S I S S S S S S B S S

5 Standard basis and the unique signed design

Let Fi(v) and S be defined as before and let B and B® be a non-starting and a starting
block, respectively. Suppose M*® := Fu(v)S. Clearly, the rows and the columns of M?*
are indexed by non-starting blocks and starting blocks, respectively. By Definition 16 we
have kg > kps. Every entry of matrix M?, based on proof (9) is obtained as:

M*(B, B*) = {<—1>tB (o BRIk = [Ru (B, B,

tp
kg # |Ru(B%, B)|.
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Example 20.

456 356 346 256 246
156 1 1 1
146 1 1 1
236 -1
136 -1 -1 -1
126 -1 -1 —1
345
My (6) = | 240
235
234
145
135 1
134 1
125 1
124 1
123 1

Note 21. We recall that C' = N~1S. From this, it follows that the rows and the columns
of C' are indexed by non-starting and starting blocks, respectively.

Theorem 22. Let B and B?® be a non-starting and a starting block, respectively. Every

entry of C is given by

C(B, B®) =
0

where A is a B-changer.

Example 23.

M*(B,B*) =) M(B,A)C(A,B°) kg =|Ru(B*, B),
A

kB 7é ’Rtk(Bsa B)|>

456 356 346 256 246

156 1 1 1
146 1 1 1
236 1 1 1 1 1
136 -1 -1 -1
126 -1 -1 -1
345 1 1 1

023 (6) — 245 1 1 1
235 -1 -1 -1
234 -1 -1 -1
145 -1 -1 -1 -1 -1
135 1
134 1
125 1
124 1
123 1

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(2) (2014), #P2.53

11



In [12] Khosrovshahi and Tayfeh-Rezaie showed that by subtracting 1 from the sum
of the columns of the standard basis of W, one obtains a unique signed t-design D. For
more on this subject see [15]. Here we show that D is also obtained by the sum of the
columns of the inverse of V.

Let (811, e ’Si(v) (U)) be the i-th row of S;, and D = (dl, e ,d(@)T. Therefore,

k) \t

Let (Vi - % ()) be the i-th row of N,;'. We have the following identities:

t

oo W (1) () (M)-()
</€ —t) Zzl%m - ZZ%mej =1- Z si; = d;.

m=1 j=1 j=1

Theorem 24. Let n = Zz(i)l Ty, where T';’s are the columns of N;;', then (Z:i)n =D.
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