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Abstract

For all positive integers n, we prove the following divisibility properties:

(2n + 3)

(
2n

n

) ∣∣∣∣3(6n

3n

)(
3n

n

)
and (10n + 3)

(
3n

n

) ∣∣∣∣21

(
15n

5n

)(
5n

n

)
.

This confirms two recent conjectures of Z.-W. Sun. Some similar divisibility proper-
ties are given. Moreover, we show that, for all positive integers m and n, the product
am
(
am+bm−1

am

)(
an+bn
an

)
is divisible by m + n. In fact, the latter result can be further

generalized to the q-binomial coefficients and q-integers case, which generalizes the
positivity of q-Catalan numbers. We also propose several related conjectures.

Keywords: congruences, binomial coefficients, p-adic order, q-Catalan numbers,
reciprocal and unimodal polynomials

1 Introduction

In [18, 19], Z.-W. Sun proved some divisibility properties of binomial coefficients, such as

2(2n+ 1)

(
2n

n

) ∣∣∣∣(6n

3n

)(
3n

n

)
, (1.1)

(10n+ 1)

(
3n

n

) ∣∣∣∣(15n

5n

)(
5n− 1

n− 1

)
. (1.2)

the electronic journal of combinatorics 21(2) (2014), #P2.54 1



Some similar divisibility results were later obtained by Guo [10] and Guo and Kratten-
thaler [11]. A generalization of (1.1) was recently given by Sepanski [15]. It is worth
mentioning that Bober [6] has completely described when ratios of factorial products of
the form

(a1n)! · · · (akn)!

(b1n)! · · · (bk+1n)!

with a1 + · · ·+ ak = b1 + · · ·+ bk+1 are always integers.
Let

Sn =

(
6n
3n

)(
3n
n

)
2(2n+ 1)

(
2n
n

) , and tn =

(
15n
5n

)(
5n−1
n−1

)
(10n+ 1)

(
3n
n

) .
In this paper we first prove the following two results conjectured by Z.-W. Sun [18, 19].

Theorem 1.1 (see [18, Conjecture 3(i)]) Let n be a positive integer. Then

3Sn ≡ 0 (mod 2n+ 3). (1.3)

Theorem 1.2 [19, Conjecture 1.3] Let n be a positive integer. Then

21tn ≡ 0 (mod 10n+ 3).

We shall also give more congruences for Sn and tn as follows.

Theorem 1.3 Let n be a positive integer. Then

105Sn ≡ 0 (mod 2n+ 5), (1.4)

315Sn ≡ 0 (mod 2n+ 7), (1.5)

6435Sn ≡ 0 (mod 2n+ 9), (1.6)

3003tn ≡ 0 (mod 2n+ 1), (1.7)

88179tn ≡ 0 (mod 10n+ 7), (1.8)

43263tn ≡ 0 (mod 10n+ 9). (1.9)

Let Z denote the set of integers. Another result in this paper is the following.

Theorem 1.4 Let a, b,m, n be positive integers. Then

abm

(a+ b)(m+ n)

(
am+ bm

am

)(
an+ bn

an

)
=

am

m+ n

(
am+ bm− 1

am

)(
an+ bn

an

)
∈ Z.

(1.10)

Letting a = b = 1 in (1.10), we get the following result, of which a combinatorial
interpretation was given by Gessel [9, Section 7].

Corollary 1.5 Let m,n be positive integers. Then

m

2(m+ n)

(
2m

m

)(
2n

n

)
∈ Z. (1.11)

In the next section, we give some lemmas. The proofs of Theorems 1.1–1.3 will be
given in Sections 3–5 respectively. A proof of the q-analogue of Theorem 1.4 will be
given in Section 6. We close our paper with some further remarks and open problems in
Section 7.
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2 Some lemmas

For the p-adic order of n!, there is a known formula

ordpn! =
∞∑
i=1

⌊
n

pi

⌋
, (2.1)

where bxc denotes the greatest integer not exceeding x. In this section, we give some
results on the floor function bxc.

Lemma 2.1 For any real number x, we have

b6xc+ bxc > b3xc+ 2 b2xc , (2.2)

b15xc+ b2xc > b10xc+ b4xc+ b3xc . (2.3)

Proof. See [6, Theorem 1.1] and one of the 52 sporadic step functions given in [6, Table 2,
line# 32]. �

Lemma 2.2 Let m and n be two positive integers such that m|2n+ 3 and m > 5. Then⌊
6n

m

⌋
+
⌊ n
m

⌋
=

⌊
3n

m

⌋
+ 2

⌊
2n

m

⌋
+ 1. (2.4)

Proof. Let {x} = x− bxc be the fractional part of x. Then (2.4) is equivalent to{
6n

m

}
+
{ n
m

}
=

{
3n

m

}
+ 2

{
2n

m

}
− 1. (2.5)

Now suppose that m|2n+ 3 and m > 5. We have{
2n

m

}
=
m− 3

m
>

1

3
, and

⌊
2n

m

⌋
=

2n+ 3

m
− 1 ≡ 0 (mod 2).

It follows that

{
6n

m

}
=


2m− 9

m
, if m = 5, 7,

m− 9

m
, if m > 9,{ n

m

}
=
m− 3

2m
,

{
3n

m

}
=


3m− 9

2m
, if m = 5, 7,

m− 9

2m
, if m > 9.

Therefore, the identity (2.5) is true for any positive integer m > 5. �

the electronic journal of combinatorics 21(2) (2014), #P2.54 3



Lemma 2.3 Let m and n be two positive integers such that m|10n+ 3 and m > 9. Then⌊
15n

m

⌋
+

⌊
2n

m

⌋
=

⌊
10n

m

⌋
+

⌊
4n

m

⌋
+

⌊
3n

m

⌋
+ 1. (2.6)

Proof. It is easy to see that (2.6) is equivalent to{
15n

m

}
+

{
2n

m

}
=

{
10n

m

}
+

{
4n

m

}
+

{
3n

m

}
− 1. (2.7)

Now suppose that m|10n+ 3 and m > 9. We have{
10n

m

}
=
m− 3

m
>

2

3
, and A :=

⌊
10n

m

⌋
=

10n+ 3

m
− 1 ≡ 0, 2, 6, 8 (mod 10).

It is easy to check that{
15n

m

}
=
m− 9

2m
,

({
2n

m

}
,

{
4n

m

}
,

{
3n

m

})
=



(
2m− 6

10m
,
4m− 12

10m
,
3m− 9

10m

)
, if A ≡ 0 (mod 10),(

6m− 6

10m
,
2m− 12

10m
,
9m− 9

10m

)
, if A ≡ 2 (mod 10),(

4m− 6

10m
,
8m− 12

10m
,
m− 9

10m

)
, if A ≡ 6 (mod 10),(

8m− 6

10m
,
6m− 12

10m
,
7m− 9

10m

)
, if A ≡ 8 (mod 10),

and so the identity (2.7) holds. �

3 Proofs of Theorem 1.1

First Proof. Let gcd(a, b) denote the greatest common divisor of two integers a and b. For
any positive integer n, since gcd(2n + 3, 4n + 2) = 1, to prove Theorem 1.1, it is enough
to show that

(2n+ 3)

∣∣∣∣∣3
(
6n
3n

)(
3n
n

)(
2n
n

) . (3.1)

By (2.1), for any odd prime p, the p-adic order of(
6n
3n

)(
3n
n

)
(2n+ 3)

(
2n
n

) =
(2n+ 2)!(6n)!(n)!

(2n+ 3)!(3n)!(2n)!2

the electronic journal of combinatorics 21(2) (2014), #P2.54 4



is given by

∞∑
i=1

(⌊
2n+ 2

pi

⌋
+

⌊
6n

pi

⌋
+

⌊
n

pi

⌋
−
⌊

2n+ 3

pi

⌋
−
⌊

3n

pi

⌋
− 2

⌊
2n

pi

⌋)
. (3.2)

Note that ⌊
2n+ 2

pi

⌋
−
⌊

2n+ 3

pi

⌋
=

{
−1, if pi|2n+ 3,

0, otherwise.

By Lemmas 2.1 and 2.2, for p > 5, the summation (3.2) is clearly greater than or equal
to 0. For p = 3, we have (3.2) > −1 because if the positive integer i satisfies 3i|2n + 3
and 3i < 5 then we must have i = 1. This proves that

3
(
6n
3n

)(
3n
n

)
(2n+ 3)

(
2n
n

)
is always an integer. Hence (3.1) holds. �

Second Proof (provided by T. Amdeberhan and V.H. Moll). Replacing n by n+ 1 in (1.1),
we see that (after some rearrangement)(

6n+6
3n+3

)(
3n+3
n+1

)
2(2n+ 3)

(
2n+2
n+1

) =
6(6n+ 5)(6n+ 1)Sn

(n+ 1)(2n+ 3)
∈ Z.

Hence, (2n + 3)|6(6n + 5)(6n + 1)Sn. Since gcd(2n + 3, 2) = gcd(2n + 3, 6n + 5) =
gcd(2n+ 3, 6n+ 1) = 1, we must have (2n+ 3)|3Sn. �

Remark. Z.-W. Sun [18, Conjecture 3(i)] also conjectured that Sn is odd if and only if
n is a power of 2. After reading a previous version of this paper, Quan-Hui Yang told
me that it is easy to show that ord2((6n)!n!/(3n)!(2n)!2) equals the number of 1’s in the
binary expansion of n by noticing

ord2(6n)! = 3n+ ord2(3n)!, ord2(2n)! = n+ ord2n!,

and using Legendre’s theorem. T. Amdeberhan and V.H. Moll also pointed out this.

4 Proof of Theorem 1.2

For any positive integer n, since gcd(10n + 3, 10n + 1) = 1, to prove Theorem 1.2, it is
enough to show that

(10n+ 3)

∣∣∣∣∣21
(
15n
5n

)(
5n−1
n−1

)(
3n
n

) . (4.1)
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Furthermore, since gcd(10n+3, 5) = 1 and
(
5n
n

)
= 5
(
5n−1
n−1

)
, one sees that (4.1) is equivalent

to

(10n+ 3)

∣∣∣∣∣21
(
15n
5n

)(
5n
n

)(
3n
n

) . (4.2)

By (2.1), for any odd prime p, the p-adic order of(
15n
5n

)(
5n
n

)
(10n+ 3)

(
3n
n

) =
(10n+ 2)!(15n)!(2n)!

(10n+ 3)!(10n)!(4n)!(3n)!

is given by

∞∑
i=1

(⌊
10n+ 2

pi

⌋
+

⌊
15n

pi

⌋
+

⌊
2n

pi

⌋
−
⌊

10n+ 3

pi

⌋
−
⌊

10n

pi

⌋
−
⌊

4n

pi

⌋
−
⌊

3n

pi

⌋)
. (4.3)

Note that ⌊
10n+ 2

pi

⌋
−
⌊

10n+ 3

pi

⌋
=

{
−1, if pi|10n+ 3,

0, otherwise.

By Lemmas 2.1 and 2.3, for p > 11, or p = 5, the summation (4.3) is clearly greater than
or equal to 0. For p = 3, 7, we have (4.3) > −1 because there is at most one index i > 1
satisfying pi|10n+ 3 and pi < 9 in this case. This proves that

21
(
15n
5n

)(
5n
n

)
(10n+ 3)

(
3n
n

)
is always an integer. Namely, (4.2) is true.

5 Proof of Theorem 1.3

Lemma 5.1 Let m and n be two positive integers. Then⌊
6n

m

⌋
+
⌊ n
m

⌋
=

⌊
3n

m

⌋
+ 2

⌊
2n

m

⌋
+ 1, (5.1)

if m|2n+ 5 and m > 9, or m|2n+ 7 and m > 11, or m|2n+ 9 and m > 15.

Proof. The proof is similar to that of Lemma 2.2. We only consider the case when m|2n+5
and m > 9. In this case, we have{

2n

m

}
=
m− 5

m
>

1

3
, and

⌊
2n

m

⌋
=

2n+ 5

m
− 1 ≡ 0 (mod 2).
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It follows that

{
6n

m

}
=


2m− 15

m
, if m = 9, 11, 13,

m− 15

m
, if m > 15,{ n

m

}
=
m− 5

2m
,

{
3n

m

}
=


3m− 15

2m
, if m = 9, 11, 13,

m− 15

2m
, if m > 15,

and so {
6n

m

}
+
{ n
m

}
=

{
3n

m

}
+ 2

{
2n

m

}
− 1.

This proves (5.1). �

Lemma 5.2 Let m and n be two positive integers. Then⌊
15n

m

⌋
+

⌊
2n

m

⌋
=

⌊
10n

m

⌋
+

⌊
4n

m

⌋
+

⌊
3n

m

⌋
+ 1, (5.2)

if m|2n+ 1 and m > 15, or m|10n+ 7 and m > 21, or m|10n+ 9 and m > 27.

Proof. The proof is similar to that of Lemma 2.3. We only consider the case when
m|10n+ 9 and m > 27. In this case, we have{

10n

m

}
=
m− 9

m
>

2

3
, and A :=

⌊
10n

m

⌋
=

10n+ 9

m
− 1 ≡ 0, 2, 6, 8 (mod 10).

It follows that {
15n

m

}
=
m− 27

2m
,

({
2n

m

}
,

{
4n

m

}
,

{
3n

m

})
=



(
2m− 18

10m
,
4m− 36

10m
,
3m− 27

10m

)
, if A ≡ 0 (mod 10),(

6m− 18

10m
,
2m− 36

10m
,
9m− 27

10m

)
, if A ≡ 2 (mod 10),(

4m− 18

10m
,
8m− 36

10m
,
m− 27

10m

)
, if A ≡ 6 (mod 10),(

8m− 18

10m
,
6m− 36

10m
,
7m− 27

10m

)
, if A ≡ 8 (mod 10).
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Hence, {
15n

m

}
+

{
2n

m

}
=

{
10n

m

}
+

{
4n

m

}
+

{
3n

m

}
− 1,

which means that (5.2) holds. �

Proof of Theorem 1.3. Since the proofs of the congruences (1.4)–(1.9) are similar in view
of Lemmas 5.1 and 5.2, we only give proofs of (1.5) and (1.9). Noticing that gcd(2n +
1, 2n+ 7) = 1 or 3, to prove (1.5), it suffices to show that

(2n+ 7)

∣∣∣∣∣105
(
6n
3n

)(
3n
n

)(
2n
n

) . (5.3)

Let

Xn :=

(
6n
3n

)(
3n
n

)
(2n+ 7)

(
2n
n

) =
(2n+ 6)!(6n)!(n)!

(2n+ 7)!(3n)!(2n)!2
.

By (2.1), for any odd prime p, we have

ordpXn =
∞∑
i=1

(⌊
2n+ 6

pi

⌋
+

⌊
6n

pi

⌋
+

⌊
n

pi

⌋
−
⌊

2n+ 7

pi

⌋
−
⌊

3n

pi

⌋
− 2

⌊
2n

pi

⌋)
.

Note that (5.1) is also true for m = 3 and n ≡ 1 (mod 3), and⌊
2n+ 6

pi

⌋
−
⌊

2n+ 7

pi

⌋
=

{
−1, if pi|2n+ 7,

0, otherwise.

By Lemmas 2.1 and 5.1, we obtain{
ordpXn > 0, if p > 11,

ordpXn > −1, if p = 3, 5, 7.

This proves (5.3).
Similarly, since gcd(10n + 9, 10n + 1) = gcd(10n + 9, 5) = 1, the congruence (1.9) is

equivalent to

(10n+ 9)

∣∣∣∣∣43263
(
15n
5n

)(
5n
n

)(
3n
n

) . (5.4)

Let

Yn :=

(
15n
5n

)(
5n
n

)
(10n+ 9)

(
3n
n

) =
(10n+ 8)!(15n)!(2n)!

(10n+ 9)!(10n)!(4n)!(3n)!
.
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Then, for any odd prime p, ordpYn is given by

∞∑
i=1

(⌊
10n+ 8

pi

⌋
+

⌊
15n

pi

⌋
+

⌊
2n

pi

⌋
−
⌊

10n+ 9

pi

⌋
−
⌊

10n

pi

⌋
−
⌊

4n

pi

⌋
−
⌊

3n

pi

⌋)
.

Note that (5.2) also holds for m = 7, 13, 17 and any positive integer n such that m|10n+9.
Similarly as before, we have

ordpYn > 0, if p = 5, 7, 13, 17, or p > 29,

ordpYn > −1, if p = 11, 19, 23,

ordpYn > −2, if p = 3.

Observing that 43263 = 32 · 11 · 19 · 23, we complete the proof of (5.4).

6 A q-analogue of Theorem 1.4

Recall that the q-binomial coefficients are defined by

[
n

k

]
q

=


(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
, if 0 6 k 6 n,

0, otherwise.

We begin with the announced strengthening of Theorem 1.4.

Theorem 6.1 Let a, b,m, n > 1. Then

1− qgcd(am,m+n)

1− qm+n

[
am+ bm− 1

am

]
q

[
an+ bn

an

]
q

(6.1)

is a polynomial in q with non-negative integer coefficients.

Corollary 6.2 Let a, b,m, n > 1. Then

1− qam

1− qm+n

[
am+ bm− 1

am

]
q

[
an+ bn

an

]
q

(6.2)

is a polynomial in q with non-negative integer coefficients.

It is easily seen that Theorem 1.4 can be obtained upon letting q → 1 in Corollary 6.2.
Moreover, when a = b = m = 1, the numbers (6.2) reduce to the q-Catalan numbers

Cn(q) =
1− q

1− q2n+1

[
2n

n

]
q

.
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It is well known that the q-Catalan numbers Cn(q) are polynomials with non-negative
integer coefficients (see [2, 3, 5, 7]). There are many different q-analogues of the Catalan
numbers (see Fürlinger and Hofbauer [7]). For the so-called q, t-Catalan numbers, see
[8, 13, 12].

Recall that a polynomial P (q) =
∑d

i=0 piq
i in q of degree d is called reciprocal if

pi = pd−i for all i, and that it is called unimodal if there is an integer r with 0 6 r 6 d
and 0 6 p0 6 · · · 6 pr > · · · > pd > 0. An elementary but crucial property of reciprocal
and unimodal polynomials is the following.

Lemma 6.3 If A(q) and B(q) are reciprocal and unimodal polynomials, then so is their
product A(q)B(q).

Lemma 6.3 is well known and its proof can be found, e.g., in [1] or [16, Proposition 1].
Similarly to the proof of [11, Theorem 3.1], the following lemma plays an important

role in the proof of Theorem 6.1. It is a slight generalization of [14, Proposition 10.1.(iii)],
which extracts the essentials out of Andrews [4, Proof of Theorem 2].

Lemma 6.4 Let P (q) be a reciprocal and unimodal polynomial and m and n positive
integers with m 6 n. Furthermore, assume that A(q) = 1−qm

1−qn P (q) is a polynomial in q.

Then A(q) has non-negative coefficients.

Proof. See [11, Lemma 5.1]. �

Proof of Theorem 6.1. It is well known that the q-binomial coefficients are reciprocal and
unimodal polynomials in q (cf. [17, Ex. 7.75.d]), and by Lemma 6.3, so is the product of
two q-binomial coefficients. In view of Lemma 6.4, for proving Theorem 6.1 it is enough
to show that the expression (6.1) is a polynomial in q. We shall accomplish this by a
count of cyclotomic polynomials.

Recall the well-known fact that

qn − 1 =
∏
d|n

Φd(q),

where Φd(q) denotes the d-th cyclotomic polynomial in q. Consequently,

1− qgcd(am,m+n)

1− qm+n

[
am+ bm− 1

am

]
q

[
an+ bn

an

]
q

=

min{am+bm−1, an+bn}∏
d=2

Φd(q)
ed ,

with

ed = χ(d | gcd(am,m+ n))− χ(d | m+ n) +

⌊
am+ bm− 1

d

⌋
+

⌊
an+ bn

d

⌋
−
⌊am
d

⌋
−
⌊
bm− 1

d

⌋
−
⌊an
d

⌋
−
⌊
bn

d

⌋
, (6.3)
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where χ(S) = 1 if S is true and χ(S) = 0 otherwise. This is clearly non-negative, unless
d | m+ n and d - gcd(am,m+ n).

So, let us assume that d | m + n and d - gcd(am,m + n), which means that d - am
and therefore ⌊

am+ bm− 1

d

⌋
+

⌊
an+ bn

d

⌋
=

(a+ b)(m+ n)

d
− 1,⌊am

d

⌋
+
⌊an
d

⌋
=
a(m+ n)

d
− 1,⌊

bm− 1

d

⌋
+

⌊
bn

d

⌋
=
b(m+ n)

d
− 1,

and so ed = 0 is also non-negative in this case. This completes the proof of polynomiality
of (6.1). �

Proof of Corollary 6.2. This follows immediately from Theorem 6.1 and the fact that
gcd(am,m+ n) | am. �

7 Concluding remarks and open problems

On January 2, 2014 T. Amdeberhan and V.H. Moll (personal communication) found the
following generalization of Theorem 1.1, which was soon proved by Q.-H. Yang [21] and
C. Krattenthaler.

Conjecture 7.1 Let a, b and n be positive integers with a > b. Then

(2bn+ 1)(2bn+ 3)

(
2bn

bn

) ∣∣∣∣3(a− b)(3a− b)
(

2an

an

)(
an

bn

)
.

Let [m]! = (1− q) · · · (1− qm). By a result of Warnaar and Zudilin [20, Proposition 3],
one sees that, for any positive integer n, the polynomial

[6n]![n]!

[3n]![2n]!2

has non-negative integer coefficients. Similarly as before, we can prove the following
generalization of congruences (1.3)–(1.5).

Theorem 7.2 Let n be a positive integer. Then all of

(1− q)[6n]![n]!

(1− q2n+1)[3n]![2n]!2
,

(1− q3)[6n]![n]!

(1− q2n+3)[3n]![2n]!2
,

(1− q)(1− q3)[6n]![n]!

(1− q2n+1)(1− q2n+3)[3n]![2n]!2
,

(1− q3)(1− q5)(1− q7)[6n]![n]!

(1− q2n+3)(1− q2n+5)(1− q2n+7)[3n]![2n]!2
(n > 2),

(1− q3)2(1− q5)(1− q7)[6n]![n]!

(1− q2n+1)(1− q2n+3)(1− q2n+5)(1− q2n+7)[3n]![2n]!2
(n > 2)

are polynomials in q.
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We have the following two related conjectures.

Conjecture 7.3 All the polynomials in Theorem 7.2 have non-negative integer coeffi-
cients.

Conjecture 7.4 Let n > 2. Then the polynomial [6n]![n]!
[3n]![2n]!2

is unimodal.

It is obvious that the polynomial [6n]![n]!
[3n]![2n]!2

is reciprocal. If Conjecture 7.4 is true, then,
applying Lemma 6.3, we conclude that the first two polynomials in Theorem 7.2 have
non-negative integer coefficients.

It was conjectured by Warnaar and Zudilin (see [20, Conjecture 1]) that

[15n]![2n]!

[10n]![4n]![3n]!

has non-negative integer coefficients. Similarly, we have the following generalization of
Theorem 1.2.

Theorem 7.5 Let n be a positive integer. Then both

(1− q)[15n]![2n]!

(1− q10n+1)[10n]![4n]![3n]!
, and

(1− q3)(1− q7)[15n]![2n]!

(1− q)(1− q10n+3)[10n]![4n]![3n]!

are polynomials in q.

We end the paper with the following conjecture, strengthening the above theorem.

Conjecture 7.6 The two polynomials in Theorem 7.5 have non-negative integer coeffi-
cients.
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