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Abstract
Let k = (ki,ka,--- ,kt) be a t-tuple of integers, and m be a positive integer.
For a subset A C Z,, and any n € Z,,, let rﬁ(n) denote the number of solutions
of the equation kiai + -+ + kia; = n with a1, -+ ,a; € A. In this paper, we give a

necessary and sufficient condition on (k,m) such that there exists a subset A C Z,,
satisifying r}f‘ = rlém\ - This settles a problem of Yang and Chen.

Keywords: Representation function, Partition, Sarkézy problem.

1 Introduction

We use N to denote the set of nonnegative integers. For any subset A C N and n € N,
define the representation functions Ri(A,n), Ra(A,n) and R3(A,n) to be the number of
solutions of the equations

n=a+d, a,d €A,
n=a+d, aad €A a<d,
and

/ / /
n=a+a, aa €A a<ad,
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respectively. Representation functions first appeared in the celebrated paper of Erdés and
Turdn [12], and were extensively studied by Erdés, Sarkozy and Sés (see [7, 8, 11, 9, 10]).

Sarkozy asked for each ¢ = 1,2,3, whether there exist sets A and B with infinite
symmetric difference such that R;(A,n) = R;(B,n) for all sufficiently large integers n.
There have been quite some work around Sarkézy’s problem. Dombi [5] observed that
the answer is negative for i« = 1, and constructed a subset A C N such that Ry(A,n) =
Ry(IN\A,n) for all n € N. An analogous example for R3(A,n) was constructed by Chen
and Wang [3]. For ¢ = 2,3, Lev [6], Sandor [13] and Tang [14] determined all subsets
A C N such that R;(A,n) = R;(N\A,n) for all n > 2N — 1. The asymptotic behavior
of the representation functions of these special sequences was studied by Chen and Tang
(see [1, 2]).

Analogously, for any two positive integers kq, ko, any subset A C N, one can define the
weighted representation function ry, x,(A,n) as the number of solutions of the equation
n = kyay + keas with ay,as € A. Cilleruelo and Rué [4] proved that 7, x,(A, n) can not be
eventually constant. Yang and Chen [15] proved that there exists a set A C N such that
Thy ko (A, 1) = 75, 1y (N\A, n) for all sufficiently large n if and only if k; | k2 and k1 < ko.

Let k = (ky, ko, - -+ , k) be a t-tuple of integers, and m be a positive integer. For any
A CZ,, and n € Z,,, denote the number of solutions of the equation kia; +---+kia; = n
with ai,---,a; € A by 7%(n). We call 7% the weighted representation function on Z,,
with respect to A and weight k. For ¢t = 2, k = (kq, k), Yang and Chen [16] characterized

all subsets A C Z,, with the property that r% = r%m\A.

Note that if A C Z,, satisfying r¥ = r%m\A, then m is even and [A| = . Indeed, this
follows from the fact that

[Al"= Y )= Y ri(n) = |B"
nEZm nEZm

For any nonzero integer k, we use vy(k) to denote the largest nonnegative integer [ such
that 2’ | k. The following result is also proved in [16].

Theorem 1. Let ki, ko be nonzero integers, and k = (ki,ks). For a subset A C Zy,
satisfying r¥ = r%m\ 4 to exist, it is necessary and sufficient that one of the following
holds:

(i) ki + ko is even;
(i) k1 + ko is odd and vy(kiks) < va(m).

It is natural to consider the following problem suggested by Yang and Chen [16].

Problem 2. For t > 3, determine all k = (ky, k2, - - , k;) and m such that there exists a
subset A C Z,, with the property that r% = rlz‘m\ A

In this paper, we give a complete answer to this problem. Since ki, --- , k; are only
considered modulo m, we may assume kq,--- , k; are all positive integers, and write

k| = ki + ke + -+ k.
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Let A(k,m) be the set of all subsets A C Z,, such that r¥ = le{m\A- We also identify an
integer with its canonical image in Z,,. Our main result is the following.

Theorem 3. The following statements are equivalent:
(i) A(k,m) is nonempty;
(i) {0,1,--- ,[F] — 1} € A(k,m);
(i11) m is even, and either |k| is even, or 0 < va(k;) < va(m) for some i € [1,1].
Currently we have no answer for the following problem.

Problem 4. Determine the set A(k, m).

We give an example illustrating the complexity of Problem 4. For any even divisor
s | m, a subset A C Z,, is said to be balanced modulo s if for any integer k, we have

HaeA:a=k (mods)}|=|{a€A:aEk—|—§ (mod s)}|.

Example 5. Let m =2, 1>2, k=2, ky=--- =k, = 1.

(i) If ¢ is even, then A € A(k,m) if and only if |A| = m/2, and A is balanced modulo
2, in other words, A has same number of odd elements and even elements.

(ii) If ¢t is odd, then A € A(k, m) if and only if |A| = m/2, and for any integer s € [2,1],
A is balanced modulo 257! or 2°, or both.

2 Proofs

For a subset A C Z,,, we always use B to denote the complement Z,,\ A. Let
fA(x) = Zxaa
a€A
and
t t
T(x) =[] fae™) = ][ fo(a*
=1 =
-1

1

i i

m

).
These polynomials are considered in the ring Z[x]/(z ).
Lemma 6. A € A(k,m) if and only if T(xz) = 0.

Proof. Since

t
HfA(xkz) _ Z xk1a1+~..+ktat _ Z ’I“l:l(n)l’n,
=1

ai, - ,at€A nNEZm

and similarly
t

[I /s =" i),

i=1 nEZLm

we conclude that A € A(k,m) if and only if T'(x) = 0. O
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Let d; = (k;,m), i € [1,t]. For any positive integer d, we write &; = e*™/¢. For d | m
it makes sense to write f(&y) for f(z) € Z[z]/(2™ — 1), and we use I(d) to denote the set
of indices i € [1,¢] such that d { d;.

Lemma 7. For A C Z,, with |A] = m/2, A € A(k,m) if and only if for any positive
divisor d | m with |1(d)| odd, there exists i € I(d) such that fa(a/a.a)) = 0.

Proof. By Lemma 6, A € A(k,m) if and only if T'(z) = 0. This is true if and only if for
every positive divisor d | m, we have T'(¢;) = 0. For any d | m, if d | k;, then

fal&y) = fa(&5) = m/2. (1)
If d 1 k;, then
Fa(€h) + fa(€)) Zs"’“ =0,

thus
Fal&h) = —fa(&l). (2)

Combining (1) and (2), we have

T(Sd) _ (%>t—1(d)| (1 |I(d H fA gd

i€l(d)

If |1(d)| is even, it is always true that T'(§;) = 0. If |I(d)| is odd, then T'(§;) = 0 if
and only if f4(£5) = 0 for some i € I(d). Since £ is a d/(d, d;)-th primitive root of unity
and f has rational coefficients, any primitive d/(d, d;)-th root of unity is a root of f4. In
particular f4(&4/(.4,)) = 0 and vice versa. This completes the proof of Lemma 7. O]

We are now ready to prove Theorem 3.

Proof of Theorem 3. (ii)=-(i) is trivial.

We now show that (i)=-(iii). Assuming .A(k,m) is nonempty, m must be even. Suppose
on the contrary that (iii) fails, then |k| is odd and either vo(k;) = 0 or va(k;) = vo(m) for
every i € [1,t], and it is clear that the number of i € [1,¢] with va(k;) = 0 is odd. For any
positive number s < vy(m) =: [, consider d = 2% | m. Since I(d) = {i € [1,t] : vo(k;) = 0},
|1(d)| is odd. By Lemma 7, we have f4(£4) = 0. Since this is true for all s < [, we conclude
that the product of all 2°-th cyclotomic polynomials for s € [1,(] divides fa(z), i.e.

T+z+- 4221 falo).

For i € [0,2' — 1], let n; denote the number of elements a € A such that a =i (mod 2').
Then

fa(z) = Zxaz anx’ (mod 1+x+..,+x2l—1)7

acA =0
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hence
2l—1

L+a++2? Y nal
=0

It follows that ng = ny = -+ = ny_y =: n, |A| = 2'n. However |A| = m/2, vy(|A|) =
va(m) — 1 =1 — 1, and this contradicts |A| = 2'n, therefore (iii) is true.
Finally we show that (iii)=-(ii). So m is even, and we put

A=1{01,-- ,%—1}.
Then
fo(x) = 2™ fa(x),

and

T(z) = (1 — x|k|m/2) HfA(xk

If |k| is even, then 2™ — 1 divides 1 — 2/X™/2 thus T(z) = 0. By Lemma 6, we have
A € A(k,m). Now suppose |k| is odd, and there exists j € [1,¢] such that 0 < vy(k;) <
va(m). Let d be any positive divisor of m such that |I(d)] is odd. If d | m/2, then for any
i € I(d), letting d' = d/(d, d;), we have

m/2—1 m/2 1
gd’ Z fd/ = —é_d/ 1 =0.
If d ¥+ m/2, then vy(d) = wve(m), and we have j € I(d). Since 2 | (d;,d), therefore
d/(d,d;) | m/2. Let d' = d/(d;,d), then again,

m/2-1 m/2 1

fd’ Z @—m:O.

By Lemma 7, we conclude that A € A(k,m). This completes the proof of Theorem 3. [

We now explain Example 5. Assume therefore that m =2, 1 > 2, k; =2, ky = --- =
ki =1, and A C Z,, with |A] =m/2.

Lemma 8. For any integer s € [1,1], fa(&s) =0 if and only if A is blanced modulo 2°.

Proof. For k € [0,2° — 1], let ng denote the number of elements a € A such that a = k
(mod 2%). fa(&) = 0 if and only if (14 22 ") | fa(x). We have

25711

= Zx“ = Z (N — Nppyas—t )™ (mod 1+ 22 ).

a€A k=0

It follows that (14 22" ') | fa(z) if and only if ny = nyio. for any k € [0,271 — 1], i.e.
A is balanced modulo 2°. O
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Ezxplanation of Example 5. If t is even, consider d | m with |I(d)| odd, it is easy to see
that d = 2. By Lemma 7, A € A(k,m) if and only if f4(&) = 0. By Lemma 8, this is
equivalent to A being balanced modulo 2.

If ¢ is odd, then d | m with |I(d)| odd if and only if d = 2° such that 2 < s < [. By
Lemma 7, A € A(k,m) if and only if for any s € [2,(], we have either f4(£2s) = 0 or
fa(€y-1) = 0. By Lemma 8, this is equivalent to A being balanced modulo 2°~! or 2%, or
both. O

Acknowledgements

[ am grateful to the referee for his/her detailed comments.

References

[1] Y.-G. Chen, On the values of representation functions, Sci. China Math. 54 (2011),
1317-1331.

[2] Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation
functions, J. Number Theory 129 (2009), 2689-2695.

[3] Y.-G. Chen and B. Wang, On additive perperties of two special sequences, Acta Arith.
110 (2003), 299-303.

[4] J. Cilleruelo and J. Rué, On a question of Sdrkézy and Sés for bilinear forms, Bull.
Lond. Math. Soc. 41 (2009), 274-280.

[5] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137-146.

[6] V.F. Lev, Reconstructing integer sets from their representation functions, Electron.
J. Combin. 11 (2004), R7S.

[7] P. Erdés and A. Sérkozy, Problems and results on additive properties of general
sequences, I, Pacific J. Math. 118 (1985), 347-357.

8] P. Erdés and A. Sérkdzy, Problems and results on additive properties of general
sequences, II, Acta Math. Hungar. 48 (1986), 201-211.

[9] P. Erd6s, A. Sarkozy, and V. T. Sés, Problems and results on additive properties of
general sequences, IV, Number Theory (Proceedings, Ootacamund, India), Lecture
Notes in Math., vol. 1122, Springer-Verlag, Berlin, 1984, pp. 85-104.

[10] P. Erd6s, A. Sarkozy, and V. T. Sés, Problems and results on additive properties of
general sequences, V, Monatsh. Math. 102 (1986), 183-197.

[11] P. Erd6s, A. Sarkozy, and V. T. Sés, Problems and results on additive properties of
general sequences, I1I; Studia Sci. Math. Hungar. 22 (1987), 53-63.

[12] P. Erd6s and P. Turdn, On a problem of sidon in additive number theory and some
related problems, J. London Math. Soc. 16 (1941), 212-215.

[13] C. Séandor, Partitions of natural numbers and their representation functions, Integers

4 (2004), A18.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(2) (2014), #P2.55 6



[14] M. Tang, Partitions of the set of natural numbers and their representation functions,
Discrete Math. 308 (2008), 2614-2616.

[15] Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted
representation functions, J. Number Theory 132 (2012), 3047-3055.

[16] Q.-H. Yang and Y.-G. Chen, Weighted representation functions on Z,, Taiwan. J.
Math. 17 (2013), no. 4, 1311-1319, Erratum: to appear in Taiwan. J. Math.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(2) (2014), #P2.55 7



	Introduction
	Proofs

