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Abstract

Let k = (k1, k2, · · · , kt) be a t-tuple of integers, and m be a positive integer.
For a subset A ⊂ Zm and any n ∈ Zm, let rkA(n) denote the number of solutions
of the equation k1a1 + · · ·+ ktat = n with a1, · · · , at ∈ A. In this paper, we give a
necessary and sufficient condition on (k,m) such that there exists a subset A ⊂ Zm
satisifying rkA = rkZm\A. This settles a problem of Yang and Chen.
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1 Introduction

We use N to denote the set of nonnegative integers. For any subset A ⊂ N and n ∈ N,
define the representation functions R1(A, n), R2(A, n) and R3(A, n) to be the number of
solutions of the equations

n = a+ a′, a, a′ ∈ A,
n = a+ a′, a, a′ ∈ A, a < a′,

and

n = a+ a′, a, a′ ∈ A, a 6 a′,
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respectively. Representation functions first appeared in the celebrated paper of Erdős and
Turán [12], and were extensively studied by Erdős, Sárközy and Sós (see [7, 8, 11, 9, 10]).

Sárközy asked for each i = 1, 2, 3, whether there exist sets A and B with infinite
symmetric difference such that Ri(A, n) = Ri(B, n) for all sufficiently large integers n.
There have been quite some work around Sárközy’s problem. Dombi [5] observed that
the answer is negative for i = 1, and constructed a subset A ⊂ N such that R2(A, n) =
R2(N\A, n) for all n ∈ N. An analogous example for R3(A, n) was constructed by Chen
and Wang [3]. For i = 2, 3, Lev [6], Sándor [13] and Tang [14] determined all subsets
A ⊂ N such that Ri(A, n) = Ri(N\A, n) for all n > 2N − 1. The asymptotic behavior
of the representation functions of these special sequences was studied by Chen and Tang
(see [1, 2]).

Analogously, for any two positive integers k1, k2, any subset A ⊂ N, one can define the
weighted representation function rk1,k2(A, n) as the number of solutions of the equation
n = k1a1 +k2a2 with a1, a2 ∈ A. Cilleruelo and Rué [4] proved that rk1,k2(A, n) can not be
eventually constant. Yang and Chen [15] proved that there exists a set A ⊂ N such that
rk1,k2(A, n) = rk1,k2(N\A, n) for all sufficiently large n if and only if k1 | k2 and k1 < k2.

Let k = (k1, k2, · · · , kt) be a t-tuple of integers, and m be a positive integer. For any
A ⊂ Zm and n ∈ Zm, denote the number of solutions of the equation k1a1 + · · ·+ktat = n
with a1, · · · , at ∈ A by rkA(n). We call rkA the weighted representation function on Zm
with respect to A and weight k. For t = 2, k = (k1, k2), Yang and Chen [16] characterized
all subsets A ⊂ Zm with the property that rkA = rkZm\A.

Note that if A ⊂ Zm satisfying rkA = rkZm\A, then m is even and |A| = m
2

. Indeed, this
follows from the fact that

|A|t =
∑
n∈Zm

rkA(n) =
∑
n∈Zm

rkB(n) = |B|t.

For any nonzero integer k, we use v2(k) to denote the largest nonnegative integer l such
that 2l | k. The following result is also proved in [16].

Theorem 1. Let k1, k2 be nonzero integers, and k = (k1, k2). For a subset A ⊂ Zm
satisfying rkA = rkZm\A to exist, it is necessary and sufficient that one of the following
holds:

(i) k1 + k2 is even;

(ii) k1 + k2 is odd and v2(k1k2) < v2(m).

It is natural to consider the following problem suggested by Yang and Chen [16].

Problem 2. For t > 3, determine all k = (k1, k2, · · · , kt) and m such that there exists a
subset A ⊂ Zm with the property that rkA = rkZm\A.

In this paper, we give a complete answer to this problem. Since k1, · · · , kt are only
considered modulo m, we may assume k1, · · · , kt are all positive integers, and write

|k| = k1 + k2 + · · ·+ kt.
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Let A(k,m) be the set of all subsets A ⊂ Zm such that rkA = rkZm\A. We also identify an
integer with its canonical image in Zm. Our main result is the following.

Theorem 3. The following statements are equivalent:

(i) A(k,m) is nonempty;

(ii) {0, 1, · · · , [m
2

]− 1} ∈ A(k,m);

(iii) m is even, and either |k| is even, or 0 < v2(ki) < v2(m) for some i ∈ [1, t].

Currently we have no answer for the following problem.

Problem 4. Determine the set A(k,m).

We give an example illustrating the complexity of Problem 4. For any even divisor
s | m, a subset A ⊂ Zm is said to be balanced modulo s if for any integer k, we have

|{a ∈ A : a ≡ k (mod s)}| = |{a ∈ A : a ≡ k +
s

2
(mod s)}|.

Example 5. Let m = 2l, l > 2, k1 = 2, k2 = · · · = kt = 1.

(i) If t is even, then A ∈ A(k,m) if and only if |A| = m/2, and A is balanced modulo
2, in other words, A has same number of odd elements and even elements.

(ii) If t is odd, then A ∈ A(k,m) if and only if |A| = m/2, and for any integer s ∈ [2, l],
A is balanced modulo 2s−1 or 2s, or both.

2 Proofs

For a subset A ⊂ Zm, we always use B to denote the complement Zm\A. Let

fA(x) =
∑
a∈A

xa,

and

T (x) =
t∏
i=1

fA(xki)−
t∏
i=1

fB(xki).

These polynomials are considered in the ring Z[x]/(xm − 1).

Lemma 6. A ∈ A(k,m) if and only if T (x) = 0.

Proof. Since
t∏
i=1

fA(xki) =
∑

a1,··· ,at∈A

xk1a1+···+ktat =
∑
n∈Zm

rkA(n)xn,

and similarly
t∏
i=1

fB(xki) =
∑
n∈Zm

rkB(n)xn,

we conclude that A ∈ A(k,m) if and only if T (x) = 0.
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Let di = (ki,m), i ∈ [1, t]. For any positive integer d, we write ξd = e2πi/d. For d | m,
it makes sense to write f(ξd) for f(x) ∈ Z[x]/(xm− 1), and we use I(d) to denote the set
of indices i ∈ [1, t] such that d - di.

Lemma 7. For A ⊂ Zm with |A| = m/2, A ∈ A(k,m) if and only if for any positive
divisor d | m with |I(d)| odd, there exists i ∈ I(d) such that fA(ξd/(d,di)) = 0.

Proof. By Lemma 6, A ∈ A(k,m) if and only if T (x) = 0. This is true if and only if for
every positive divisor d | m, we have T (ξd) = 0. For any d | m, if d | ki, then

fA(ξkid ) = fB(ξkid ) = m/2. (1)

If d - ki, then

fA(ξkid ) + fB(ξkid ) =
m−1∑
n=0

ξnkid = 0,

thus
fA(ξkid ) = −fB(ξkid ). (2)

Combining (1) and (2), we have

T (ξd) =
(m

2

)t−|I(d)| (
1− (−1)|I(d)|

) ∏
i∈I(d)

fA(ξkid ).

If |I(d)| is even, it is always true that T (ξd) = 0. If |I(d)| is odd, then T (ξd) = 0 if
and only if fA(ξkid ) = 0 for some i ∈ I(d). Since ξkid is a d/(d, di)-th primitive root of unity
and f has rational coefficients, any primitive d/(d, di)-th root of unity is a root of fA. In
particular fA(ξd/(d,di)) = 0 and vice versa. This completes the proof of Lemma 7.

We are now ready to prove Theorem 3.

Proof of Theorem 3. (ii)⇒(i) is trivial.
We now show that (i)⇒(iii). AssumingA(k,m) is nonempty, mmust be even. Suppose

on the contrary that (iii) fails, then |k| is odd and either v2(ki) = 0 or v2(ki) > v2(m) for
every i ∈ [1, t], and it is clear that the number of i ∈ [1, t] with v2(ki) = 0 is odd. For any
positive number s 6 v2(m) =: l, consider d = 2s | m. Since I(d) = {i ∈ [1, t] : v2(ki) = 0},
|I(d)| is odd. By Lemma 7, we have fA(ξd) = 0. Since this is true for all s 6 l, we conclude
that the product of all 2s-th cyclotomic polynomials for s ∈ [1, l] divides fA(x), i.e.

1 + x+ · · ·+ x2
l−1 | fA(x).

For i ∈ [0, 2l − 1], let ni denote the number of elements a ∈ A such that a ≡ i (mod 2l).
Then

fA(x) =
∑
a∈A

xa ≡
2l−1∑
i=0

nix
i (mod 1 + x+ · · ·+ x2

l−1),
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hence

1 + x+ · · ·+ x2
l−1 |

2l−1∑
i=0

nix
i.

It follows that n0 = n1 = · · · = n2l−1 =: n, |A| = 2ln. However |A| = m/2, v2(|A|) =
v2(m)− 1 = l − 1, and this contradicts |A| = 2ln, therefore (iii) is true.

Finally we show that (iii)⇒(ii). So m is even, and we put

A = {0, 1, · · · , m
2
− 1}.

Then
fB(x) = xm/2fA(x),

and

T (x) =
(
1− x|k|m/2

) t∏
i=1

fA(xki).

If |k| is even, then xm − 1 divides 1 − x|k|m/2, thus T (x) = 0. By Lemma 6, we have
A ∈ A(k,m). Now suppose |k| is odd, and there exists j ∈ [1, t] such that 0 < v2(kj) <
v2(m). Let d be any positive divisor of m such that |I(d)| is odd. If d | m/2, then for any
i ∈ I(d), letting d′ = d/(d, di), we have

fA(ξd′) =

m/2−1∑
i=0

ξid′ =
ξ
m/2
d′ − 1

ξd′ − 1
= 0.

If d - m/2, then v2(d) = v2(m), and we have j ∈ I(d). Since 2 | (dj, d), therefore
d/(d, dj) | m/2. Let d′ = d/(dj, d), then again,

fA(ξd′) =

m/2−1∑
i=0

ξid′ =
ξ
m/2
d′ − 1

ξd′ − 1
= 0.

By Lemma 7, we conclude that A ∈ A(k,m). This completes the proof of Theorem 3.

We now explain Example 5. Assume therefore that m = 2l, l > 2, k1 = 2, k2 = · · · =
kt = 1, and A ⊂ Zm with |A| = m/2.

Lemma 8. For any integer s ∈ [1, l], fA(ξ2s) = 0 if and only if A is blanced modulo 2s.

Proof. For k ∈ [0, 2s − 1], let nk denote the number of elements a ∈ A such that a ≡ k
(mod 2s). fA(ξ2s) = 0 if and only if (1 + x2

s−1
) | fA(x). We have

fA(x) =
∑
a∈A

xa ≡
2s−1−1∑
k=0

(nk − nk+2s−1)xk (mod 1 + x2
s−1

).

It follows that (1 + x2
s−1

) | fA(x) if and only if nk = nk+2s−1 for any k ∈ [0, 2s−1 − 1], i.e.
A is balanced modulo 2s.
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Explanation of Example 5. If t is even, consider d | m with |I(d)| odd, it is easy to see
that d = 2. By Lemma 7, A ∈ A(k,m) if and only if fA(ξ2) = 0. By Lemma 8, this is
equivalent to A being balanced modulo 2.

If t is odd, then d | m with |I(d)| odd if and only if d = 2s such that 2 6 s 6 l. By
Lemma 7, A ∈ A(k,m) if and only if for any s ∈ [2, l], we have either fA(ξ2s) = 0 or
fA(ξ2s−1) = 0. By Lemma 8, this is equivalent to A being balanced modulo 2s−1 or 2s, or
both.
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