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Abstract

In this article, we examine sets of lines in PG(d,F) meeting each hyperplane in
a generator set of points. We prove that such a set has to contain at least b1.5dc
lines if the field F has at least b1.5dc elements, and at least 2d− 1 lines if the field
F is algebraically closed. We show that suitable 2d − 1 lines constitute such a set
(if |F| > 2d − 1), proving that the lower bound is tight over algebraically closed
fields. At last, we will see that the strong (s,A) subspace designs constructed by
Guruswami and Kopparty have better (smaller) parameter A than one would think
at first sight.

Keywords: well-spread-out (‘higgledy-piggledy’) lines; subspace designs; Grass-
mann variety; Plücker co-ordinates

1 Introduction

Héger, Patkós and Takáts [1] hunt for a set G of points in the projective space PG(d, q)
that ‘determines’ all hyperplanes in the sense that the intersection Π∩G is individual for
each hyperplane Π.
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∗∗This research was partially supported by the Bolyai Grant and OTKA Grant K81310.
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A little different but similar problem is to find a set G such that each hyperplane is
spanned by the intersection Π ∩ G. Such a ‘generator set’ is always a ‘determining set’
since if all the intersections Π ∩ G span the hyperplanes Π then they must be individual.
Héger, Patkós and Takáts thus began to examine ‘generator sets’. In projective planes
generator sets and two-fold blocking sets are the same, since two distinct points span the
line connecting these points.

Definition 1 (Multiple blocking set). A set B of points in the projective space P is a t-fold
blocking set with respect to hyperplanes, if each hyperplane Π ⊂ P meets B in at least t
points. One can define t-fold blocking sets with respect to lines, planes, etc. similarly.

The definition of the t-fold blocking set does not say anything more about the inter-
sections with hyperplanes. In a projective space of dimension d > 3, a d-fold blocking
set can intersect a hyperplane Π in such a set of d points which is contained in a proper
subspace of Π. Thus (in higher dimensions), a natural specialization of multiple blocking
sets would be the following. (Since in higher dimension a projective space is always over
a field, we use the special notation PG(d,F) instead of the general P.)

Definition 2 (Generator set). A set G of points in the projective space PG(d,F) is a
generator set with respect to hyperplanes, if each hyperplane Π ⊂ PG(d,F) meets G in
a ‘generator system’ of Π, that is, G ∩ Π spans Π, in other words this intersection is not
contained in any hyperplane of Π. (Hyperplanes of hyperplanes are subspaces in PG(d,F)
of co-dimension two.)

Example 3. In a projective plane PG(2, q2) there exist two disjoint Baer-subgeometries.
These together constitute a 2-fold blocking set, and thus, a generator set consisting of
2q2 + 2q + 2 points.

Remark 4. In PG(d, qd), d disjoint subgeometries of order q together constitute a d-fold
blocking set. But it is not obvious whether this example is only a d-fold blocking set or
it could be also a generator set (if we choose the subgeometries in a proper way).

Héger, Patkós and Takáts [1] had the idea to search for generator set which is the
union of some disjoint lines and they gave an example for such a ‘determining set’ as the
union of the points of 2d + 2 distinct lines, using probabilistic method. They gave the
name ‘higgledy-piggledy’ to the property of such sets of lines. We investigate their idea.

2 Hyperplane-generating sets of lines

The trivial examples for multiple blocking sets are the sets of disjoint lines: If B is the set
of points of t disjoint lines then B is a t-fold blocking set (with respect to hyperplanes).
Héger, Patkós and Takáts [1] suggested to search generator sets in such a form. (Though
there can exist smaller examples.)

Sets of k disjoint lines are always multiple (k-fold) blocking sets (with respect to
hyperplanes) but not always generator sets, so the following definition is not meaningless.
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Definition 5 (Generator set of lines). A set L of lines is a generator set (with respect
to hyperplanes), if the set

⋃
L of all points of the lines contained by L is a generator

set with respect to hyperplanes. Elements of a generator set of lines are said to be in
higgledy-piggledy arrangement.

From now on, we will examine sets of lines of the property above.

2.1 Examples in projective planes

Let P be an arbitrary (desarguesian or not, finite or infinite) projective plane and let `1
and `2 be two distinct lines and let Q = `1 ∩ `2 denote the meeting point. Each line `
of P not containing Q meets `1 and `2 in two distinct points, thus, ` is generated. Lines
containing Q meet `1 and `2 only in Q, so they are not generated. This shows that two
lines cannot be in higgledy-piggledy arrangement.

Example 6 (Triangle). Let `3 be an arbitrary line not containing Q. Other lines containig
Qmeet `3, thus, they are also generated by {`1, `2, `3}. Thus, three lines in general position
constitute a generator set in arbitrary projective plane.

Remark 7. If P has only three lines through a point (i.e. P is the Fano plane), three
concurrent lines also form a generator set.

In the projective plane PG(2, q), a minimal generator set of lines contains three lines
and thus 3q points (if these three lines have three distinct meeting points). Whereas two
disjoint Baer subplanes (containing only 2q + 2

√
q + 2 points) together also constitute a

generator set (of points) with respect to lines. This example shows that there can exist
generator set (of points) with respect to hyperplanes, containing less points than the
smallest generator set of lines.

2.2 Examples in projective spaces of dimension three

Let `1, `2, `3 be pairwise disjoint lines in PG(3,F), and let Q+(3,F) be the (unique)
hyperbolic quadric containing these lines. Each plane of PG(3,F) which is not a tangent
plane of Q+(3,F) meets these three lines in non-collinear three points, thus it is generated.
Let ` denote one of the opposite lines meeting `1, `2 and `3. Planes through ` containing
neither `1, nor `2, nor `3 meet these lines in collinear points (on the opposite line `), and
thus, they are not generated.

Remark 8. The reader can show that if these three lines are not pairwise disjoint, they
cannot constitute a generator set: See the planes through the meeting point of two lines.

Example 9 (Over Fq and over R or Q). If there exists a line `4 disjoint to the hyperbolic
quadric Q+(3,F), then each plane Π not generated by {`1, `2, `3} (meeting them in three
collinear points) meet `4 in a point Q4 not on the line of the three collinear meeting points
Qi = Π ∩ `i, thus, Π is generated by {`1, `2, `3, `4}.
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The example above does not exist if the field F is algebraically closed since in this case
the hyperbolic quadric Q+(3,F) meets every lines.

Example 10 (Over arbitrary field). Let `4 and `5 be two lines meeting the hyperbolic
quadric Q+(3,F) above in such a way that there is no opposite line ` meeting both `4
and `5. Planes through opposite lines not meeting `4 are generated by {`1, `2, `3, `4}
and planes through opposite lines not meeting `5 are generated by {`1, `2, `3, `5}. Thus,
{`1, `2, `3, `4, `5} is a set of lines in higgledy-piggledy arrangement.

2.3 Lower bound over arbitrary (large enough) fields

At first, we try to give another equivalent definition to the higgledy-piggledy property
of generator sets of lines. The following is not an equivalent but a sufficient condition.
Although, in several cases it is also a necessary condition (if we seek minimal sets of this
type), thus, it could effectively be considered as an almost-equivalent condition.

Theorem 11 (Sufficient condition). If there is no subspace of co-dimension two meeting
each element of the set L of lines then L is a generator set with respect to hyperplanes.

Proof. Suppose that the set L of lines is not a generator set with respect to hyperplanes.
Then there exists at least one hyperplane Π that meets the elements of L in a set Π ∩ L
of points which is contained in a hyperplane H of Π. Since Π is a hyperplane it meets
every line, thus each element of L meets Π, but the point(s) of intersection has (have) to
be contained in H. Thus the subspace H (of co-dimension two) meets each element of
L.

The theorem above is a sufficient but not necessary condition. But if this condition
above does not hold, then the set L of lines could only be generator set in a very special
way.

Lemma 12. If the set L of lines is a generator set with respect to hyperplanes and there
exists a subspace H of co-dimension two that meets each element of L then L has to contain
at least as many lines as there are points in a projective line. (That is, |L| > q + 1 if the
field F = Fq and L is infinite if the field F is not finite.)

Proof. Let ` be a line not intersecting H. For each point Pi ∈ ` there exists a hyperplane
Πi containing H and meeting Pi. For each such hyperplane Πi there exists a line `i ∈ L
that meets Πi not only in H, thus `i ⊂ Πi. Two distinct hyperplanes Πi and Πj intersect
in H thus the lines `i and `j have to be different lines.

If we seek minimal size generator sets (and the field F has at least b1.5dc elements
where d is the dimension) we can suppose the condition of Theorem 11, so we seek minimal
size set of lines such that no subspace of co-dimension two meets each line.

Lemma 13. If the set L of lines in PG(d,F) has at most
⌊
d
2

⌋
+ d− 1 elements then there

exists a subspace H of co-dimension two meeting each line in L.
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Proof. Let `1, . . . , `b d
2
c and `b d

2
c+i (1 6 i 6 d − 1) denote the elements of L. There

exists a subspace of dimension 2
⌊
d
2

⌋
− 1 containing the lines `1, . . . , `b d

2
c (if these lines are

contained in a less dimensional subspace, it can be extended). If d is even, this subspace
is a hyperplane Π. If d is odd, this subspace has co-dimension two, and thus it can be
extended to a hyperplane Π. The hyperplane Π meets each line, thus let Pi ∈ Π ∩ `b d

2
c+i

for i = 1, . . . , d− 1. There exists a hyperplane H of Π that contains each point Pi above.
(If these points would be not in general position, that is not a problem.) The subspace
H has co-dimension two in PG(d,F) and it meets the lines `1, . . . , `b d

2
c since these lines

are contained in Π and H is a hyperplane of Π, and H meets the other lines since the
meeting points are the points Pi.

Theorem 14 (Lower bound). If the field F has at least
⌊
d
2

⌋
+d elements, then a generator

set L of lines in PG(d,F) has to contain at least
⌊
d
2

⌋
+ d elements.

Proof. Lemma 12 and Lemma 13 together give the result.

The examples in PG(2, q) and PG(3, q) show that this lower bound is tight in small
dimensions (d 6 3) over finite fields, and over R and over Q.

Remark 15. As in PG(2, 2) three lines through a point are also in higgledy-piggledy ar-
rangement, four proper lines having a common transversal line meeting them can be in
higgledy-piggledy arrangement in PG(3, 3).

3 Grassmann varieties

The sufficient condition is an intersection-property of some subspaces. Such properties can
naturally be handled using Grassmann varieties and Plücker co-ordinates. The original
(hyperplane generating) property can also be translated to the language of Plücker co-
ordinates.

Let G(m,n,F) or simply G(m,n) denote the Grassmannian of the linear subspaces of
dimension m and co-dimension n in the vector space Fm+n, or, in other aspect G(m,n)
is the set of all projective subspaces of dimension m− 1 (and co-dimension n) in PG(m+
n − 1,F). Via ‘Plücker embedding’ we can identify this Grassmannian to the set of one
dimensional linear subspaces of

∧m Fm+n generated by totally decomposable multivectors,
that is, G(m,n) ⊂ PG (

∧m Fm+n) ≡ PG(
(
m+n
m

)
− 1,F) is an algebraic variety of dimension

mn.
The canonical isomorphism

∧m Fm+n ≡
∧n Fm+n defines a bijection between G(m,n)

and G(n,m). Thus, the Grassmannian of subspaces of co-dimension two can be considered
as the Grassmannian of the lines of the dual projective space.

Remark 16. If m = 2 or n = 2 then the Plücker co-ordinate vectors can be considered as
alternating matrices: Lij = aibj − ajbi where L = a ∧ b.

Proposition 17. Let {L(1), . . . , L(k)} denote the set of the Plücker co-ordinate vectors
representing the elements of the set L of k lines in PG(d,F). There exists a subspace H
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of co-dimension two in PG(d,F) meeting each element of L if and only if the subspace
L(1)⊥ ∩ · · · ∩L(k)⊥ 6 PG(

(
d+1
2

)
− 1,F) meets the Grassmann variety G(d− 1, 2), that is,

the equation system∑
i<j

Lij(1)Hij = 0
∑
i<j

Lij(2)Hij = 0 . . .
∑
i<j

Lij(k)Hij = 0

together with the quadratic Plücker relations (for each quadruple i1i2i3i4 of indices)

Hi1i2Hi3i4 −Hi1i3Hi2i4 +Hi1i4Hi2i3 = 0

has nontrivial solutions for Hij.

Proof. According to [2, Theorem 3.1.6.], the Plücker relations completely determine the
Grassmannian (moreover, they generate the ideal of polynomials vanishing on it). In case
n = 2, the Plücker relations found in [2, Subsection 3.1.3.] reduces to the form Hi1i2Hi3i4−
Hi1i3Hi2i4 + Hi1i4Hi2i3 = 0 for the quadruples i1i2i3i4 of indices. Since we consider the
Grassmannian G(d−1, 2) of subspaces of co-dimension two as the Grassmannian G(2, d−1)
of lines of the dual space, the Plücker relations determining G(d−1, 2) are the same (using
dual co-ordinates).

Let a, b ∈ Fd+1 be the homogeneous co-ordinate vectors of two projective points in
PG(d,F) and let x, y ∈ Fd+1 be the homogeneous (dual) co-ordinate vectors of two hyper-
planes in PG(d,F). The line connecting P(a) and P(b) is defined by the Plücker co-ordinate
vector a ∧ b ∈ G(2, d− 1). The subspace of co-dimension two defined by the Plücker co-
ordinate vector x ∧ y ∈ G(d− 1, 2) is the intersection of the hyperplanes x⊥ and y⊥.

The line co-ordinatized by L = a ∧ b and the subspace co-ordinatized by H = x ∧ y
meet each other if and only if the scalar product 〈x ∧ y|a ∧ b〉 = 〈x|a〉〈y|b〉 − 〈x|b〉〈y|a〉
equals to zero, because there exists a point P(αa + βb) ∈ L contained also in H if and
only if 〈x|αa + βb〉 = α〈x|a〉 + β〈x|b〉 = 0 and 〈y|αa + βb〉 = α〈y|a〉 + β〈y|b〉 = 0 for a
suitable pair (α, β) 6= (0, 0).

Finally, ∑
i<j

HijLij =
∑
i<j

(aibj − ajbi)(xiyj − xjyi)

=
∑
i 6=j

(aixi)(bjyj)−
∑
i 6=j

(ajyj)(bixi)

= 〈x|a〉〈y|b〉 − 〈x|b〉〈y|a〉 = 〈x ∧ y|a ∧ b〉.

3.1 Tangents of the moment curve

Let {(1, t, t2, . . . , td) : t ∈ F}∪ {(0, 0, 0, . . . , 1)} ⊂ PG(d,F) be the moment curve (rational
normal curve) and let `t denote its tangent line in the point (1, t, t2, . . . , td), and `∞ is the
tangent line in the point (0, . . . , 0, 1) at infinity.

At first, compute the Plücker co-ordinates of these tangent lines. The Plücker co-
ordinate vector of `t is L(t) = a(t)∧

(
a(t)+ȧ(t)

)
= a(t)∧ȧ(t) where a(t) = (1, t, t2, t3 . . . , td)
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is the point of the curve (ai(t) = ti) and its derivate ȧ(t) = (0, 1, 2t, 3t2 . . . , dtd−1) is the
direction (the ideal point in infinity) of the tangent line `t. In matrix representation:

L(t) =



0 1 2t . . . (d−1)td−2 dtd−1

−1 0 t2 . . . (d−2)td−1 (d−1)td

−2t −t2 0 . . . (d−3)td (d−2)td+1

...
...

...
. . .

...
...

(1−d)td−2 (2−d)td−1 (3−d)td . . . 0 t2d−2

(−d)td−1 (1−d)td (2−d)td+1 . . . −t2d−2 0


That is, Lij(t) = ai(t)ȧj(t)−ȧi(t)aj(t) = tijtj−1−tjiti−1 = (j−i)ti+j−1 where 0 6 i, j 6 d.

Remark 18. One can see that in suitable positions the Plücker co-ordinate vector L(t)
has the co-ordinates: 1, t2, t4, t6, . . . , t2d−2 and the co-ordinates: 2t, 2t3, . . . , 2t2d−3, thus,
if charF 6= 2, then the set {L(ti) : i = 0, . . . , 2d − 2} is linearly independent (ti 6= tj if
i 6= j).

Lemma 19. If either charF = p > d and |F| > 2d− 1 or charF = 0, then there does not
exist any subspace of co-dimension two meeting each tangent line `t of the moment curve.

Proof. Suppose to the contrary that there exists a subspace H of co-dimension two meet-
ing each tangent line `t. Let Hij (0 6 i < j 6 d) denote the (dual) Plücker co-ordinates
of H. For these Plücker co-ordinates we have Plücker relations Hi1i2Hi3i4 −Hi1i3Hi2i4 +
Hi1i4Hi2i3 = 0 for all quadruples i1i2i3i4 of indices.

The indirect assumpion means that
∑

i<j HijLij(t) = 0 for all t ∈ F.

∑
i<j

HijLij(t) =
d−1∑
i=0

d∑
j=i+1

Hij(j − i)ti+j−1 =
d∑

N=1

tN−1
bN

2
c∑

i=0

(N − 2i)Hi,N−i

+
2d−1∑
N=d+1

tN−1
d−bN

2
c∑

i=1

(N − 2i)Hi,N−i

Since the field F has more than 2d−2 elements, this polynomial above can vanish on each
element of F only if

∑
i(N − 2i)Hi,N−i = 0 for all N < 2d. So we have 2d− 1 new (linear)

equations for the Plücker co-ordinates:

H0,1 = 0 (1)

2H0,2 = 0 (2)

3H0,3 +H1,2 = 0 (3)

4H0,4 + 2H1,3 = 0 (4)
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5H0,5 + 3H1,4 +H2,3 = 0 (5)

6H0,6 + 4H1,5 + 2H2,4 = 0 (6)

...

dH0,d + (d− 2)H1,d−1 + · · ·+
(⌈

d
2

⌉
−
⌊
d
2

⌋)
Hb d

2
c,d d

2
e = 0 (d)

...

3Hd−3,d +Hd−2,d−1 = 0 (2d− 3)

2Hd−2,d = 0 (2d− 2)

Hd−1,d = 0 (2d− 1)

Notice that in equations (1), (2), . . . , (N), the Plücker co-ordinates Hij occur with indices
0 6 i < j 6 N − i, if N < d. Similarly, in equations (2d− 1), (2d− 2), . . . , (2d−N) the
Plücker co-ordinates occur with indices 2d−N − j 6 i < j 6 d, if N < d.

Using these equations and the Plücker relatios, we can prove by induction, that all
Plücker co-ordinates Hij are zero, and thus, they are not the homogeneous co-ordinates
of any subspace H. We do two inductions, one for N = 1, . . . , d (increasing) and another
(decreasing) one for N ′ = (2d − N) = 2d − 1, . . . , d + 1. Remember that charF = 0 or
charF > d, so the nonzero integers in these equations are nonzero elements of the prime
field of F.

Increasing induction The first two equations say that H01 = H02 = 0. Suppose by
induction that we have Hij = 0 for each pair (i, j) where 0 6 i < j 6 N − i, where N
is a positive integer less than d. Using this assumption, we prove that H0,N+1 = H1,N =
H2,N−1 = · · · = 0, and thus Hij = 0 for each pair (i, j) where 0 6 i < j 6 N + 1− i.

Equation (N + 1) says that a linear combination of the Plücker co-ordinates H0,N+1,
H1,N , H2,N−1, . . . , HbN+1

2
c,dN+1

2
e is zero. Let Hij and Hkl be two arbitrary element among

these above. We have the Plücker relation HijHkl − HikHjl + HilHjk = 0. Using the
assumption Hij = 0 for i < j 6 N − i, this Plücker relation is reduced to HijHkl = 0.

Thus, these Plücker relations say that all Hij (among H0,N+1, H1,N , . . . , HbN+1
2
c,dN+1

2
e)

should be zero except one. And the linear Equation (N + 1) says that this one cannot be
exception either.

Decreasing induction The decreasing induction, started with the last two equations
Hd−1,1 = Hd−2,d = 0 is similar.

So we have proved that each Plücker co-ordinate of the subspace H of co-dimension two
should be zero, that is a contradiction, since Plücker co-ordinates are homogeneous.

Theorem 20. If either charF = p > d and |F| > 2d−1 or charF = 0, then arbitrary 2d−1
distinct tangent lines `t together constitute a generator set with respect to hyperplanes.
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Proof. Let {`ti : i = 1, 2, . . . , 2d − 1} be an arbitrary set of 2d − 1 tangent lines of the
rational normal curve. It is enough to prove that there is no subspace H of co-dimension
two meeting each element of this set.

Suppose to the contrary that there exists such a subspace H and let Hij be the Plücker
co-ordinates of it. Since H meets each line `ti , this means

∑
i<j HijLij(tk) = 0 for all tk,

k = 1, . . . , 2d − 1. Thus, the polynomial
∑d−1

i=0

∑d
j=i+1Hij(j − i)ti+j−1 has 2d − 1 roots,

but its degree is at most 2d − 2. So, if there exists such a subspace H of co-dimension
two, the polynomial above is the zero polynomial, and thus, H meets each tangent line
`t, contradicting Lemma 19.

These results above require the characteristic charF to be greater than the dimension d
(or to be zero). However, we can generalize these results over small prime characteristics.

3.2 Small prime characteristics: ‘diverted tangents’

The only weakness of the proof of Lemma 19 (which can be ruined by small prime char-
acteristic) is the linear equation system for the Plücker co-ordinates Hij. The Plücker
co-ordinate Hij has coefficient j − i mod p and this could be zero for j 6= i if the charac-
teristic p is not greater than the dimension d.

Remark 21. If the characteristic of F equals to the dimension d, then there exists exactly
one subspace of co-dimension two that meets each tangent `t of the moment curve. The
Plücker co-ordinates of this subspace should be all zero except one: H0,d. This subspace
H thus can be get as the intersection of two hyperplanes co-ordinatized by [1, 0, . . . , 0]
(the ideal hyperplane) and [0, . . . , 0, 1].

In higher dimension there will be more such subspaces, and thus, their intersection is
a subspace of codimension more than two, meeting each tangent line.

If we substitute the coefficients (j − i) by nonzero elements, the proof of Lemma 19
will be valid over arbitrary characteristic. Remember that the Plücker co-ordinates of the
tangent line `t are Lij(t) = (j − i)ti+j−1 and the coefficient (j − i) comes from here.

Notation. Let ϕ : {0, 1, . . . , d} → F be an arbitrary injection. If |F| 6 d, such an
injection there does not exist, but, if F has more than d elements, such a ϕ does exist,
independently from the characteristic. For convenience sake, we suppose that ϕ(0) = 0
and ϕ(1) = 1.

Let a(t) = (1, t, t2, . . . , td) again denote the affine points of the moment curve (ai(t) =
ti), and let b(t) = (0, 1, ϕ(2)t, . . . , ϕ(d)td−1) denote the points of a special curve in the
ideal hyperplane, defined by bj(t) = ϕ(j)tj−1.

Definition 22 (Diverted tangent lines). Consider the line `′t connecting a(t) and b(t)
instead of the tangent line `t of the moment curve in the point a(t). The Plücker co-
ordinate vector of the ‘diverted tangent line’ `′t is L′(t) = a(t) ∧ b(t).

L′ij(t) = ai(t)bj(t)− bi(t)aj(t) =
(
ϕ(j)− ϕ(i)

)
ti+j−1

Diverted tangent lines depend on the injection ϕ.
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Remark 23. If charF is zero, the injection ϕ can be the identity, and if charF = p > d,
the injection ϕ can be defined by ϕ(k) ≡ k mod p. In these cases the diverted tangent
line `′t determined by ϕ equals to the actual tangent line `t of the moment curve.

Theorem 24. If |F| > 2d − 1, then arbitrary 2d − 1 distinct diverted tangent lines
`′t1 , . . . , `

′
t2d−1

(determined by arbitrary injection ϕ) together constitute a generator set
with respect to hyperplanes.

Proof. Suppose to the contrary that the subspace H meets the diverted tangent lines
`′t1 , . . . , `

′
t2d−1

, that is,
∑

i<j HijL
′
ij(tk) = 0 for all k = 1, . . . , 2d− 1. Thus, the polynomial∑d−1

i=0

∑d
j=i+1Hij

(
ϕ(j)−ϕ(i)

)
ti+j−1 has 2d−1 roots, but its degree is at most 2d− 2. So,

the polynomial above is the zero polynomial, and thus, H meets each connecting line `′t
(t ∈ F), that is,

∑
i<j

HijL
′
ij(t) =

d−1∑
i=0

d∑
j=i+1

Hij

(
ϕ(j)− ϕ(i)

)
ti+j−1 = 0 ∀t ∈ F

Now, we can repeat the proof of Lemma 19 by substituting the coefficients (j − i) by(
ϕ(j)−ϕ(i)

)
in the linear equations (1), (2), . . . , (2d− 1), and since ϕ is injective, these

coefficients are nonzero. Thus, we can prove that each Plücker co-ordinate Hij should be
zero, which is a contradiction.

We have proved that over arbitrary (large enough) field we can construct a hyperplane-
generating set of lines of size 2d−1. In the next section, we will prove that it is the smallest
one if the field is algebraically closed.

3.3 Lower bound over algebraically closed fields

A projective line has infinitely many points over an algebraically closed field, so Lemma 12
concludes that (over algebraically closed field) the finite set L of lines could be a generator
set only if the sufficient (almost-equivalent) condition of Theorem 11 holds.

Lemma 25 ([2, Corollary 3.2.14 and Subsection 3.1.1]). The dimension of the Grassman-
nian as an algebraic variety is dimG(m,n) = mn and its degree is

degG(m,n) =
0!1! . . . (n−1)!

m!(m+1)! . . . (m+n−1)!

(
mn
)
!

In particular, the Grassmann variety G(2, d − 1) of the lines of PG(d,F) has dimension
2(d− 1) = 2d− 2 and its degree is 1

2d−1

(
2d−1
d

)
> 0.

Remember that an algebraic surface G ⊂ P of dimension n and a projective subspace
S 6 P of co-dimension n always meet over an algebraically closed field.

Theorem 26. Over algebraically closed field F, if the set L of lines in PG(d,F) has at
most 2d−2 elements, then there exists a subspace H in PG(d,F) of co-dimension two that
meets each element of L, and thus, L is not a generator set.
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Proof. Suppose that L = {L(1), . . . , L(2d − 2)} has exactly 2d − 2 elements (if not, we
can extend it). The subspace L(1)⊥ ∩ · · · ∩ L(2d− 2)⊥ has co-dimension at most 2d− 2
in PG(

(
d+1
2

)
− 1,F). The Grassmannian G(d− 1, 2) of the 2-co-dimensional subspaces of

PG(d,F) has dimension 2(d− 1) = 2d− 2 and its degree is 1
2d−1

(
2d−1
d

)
> 0.

Thus, L(1)⊥∩ · · ·∩L(2d− 2)⊥∩G(d−1, 2) contains at least 1
2d−1

(
2d−1
d

)
> 1 elements,

which are subspaces of co-dimension two meeting the lines in L.

Corollary 27. Over algebraically closed field F, arbitrary 2d−1 distinct diverted tangent
lines `′t in PG(d,F) constitute a generator set of minimal size. Thus, over algebraically
closed fields the lower bound 2d− 1 is tight.

4 The Guruswami–Kopparty constructions

In their very recent work [3], Venkatesan Guruswami and Swastik Kopparty construct
subspace designs.

Definition 28 (Weak subspace design [3, Definition 2]). A collection H1, . . . , HM ⊂ Fd+1
q

of subspaces is called a weak (s, A) subspace design if for every q-linear subspace W ⊂ Fd+1
q

of dimension s, the number of indices i for which dimq(Hi ∩W ) > 0 is at most A.

A collection of at most A subspaces would always be a weak (s, A) subspace design,
so the definition is not meaningless only if the subspace design contains at least A + 1
subspaces.

Definition 29 (Strong subspace design [3, Definition 3]). A collection of subspaces
H1, . . . , HM ⊂ Fd+1

q is called a strong (s, A) subspace design if for every q-linear sub-

space W ⊂ Fd+1
q of dimension s, the sum

∑M
i=1 dimq(Hi ∩W ) is at most A.

Every strong (s, A) subspace design is also a weak (s, A) subspace design, and every
weak (s, A) subspace design is also a strong (s, sA) subspace design. The main theorem
of [3] is the following.

Theorem 30 (Guruswami–Kopparty [3, Theorem 7]). For all positive integers s, r, t,m =
d + 1 and prime powers q satisfying s 6 t 6 d + 1 < q, there is an explicit collection of
M = Ω

(
qr

rt

)
linear subspaces H1, . . . , HM ⊂ Fd+1

q , each of co-dimension rt, which forms a

strong
(
s, d·s

r·(t−s+1)

)
subspace design.

4.1 Relation to higgledy-piggledy lines

If we dualize our problem (to find a minimal collection of lines such that no subspace of
co-dimension two intersects all of them) and use linear terminology instead of projective
one, we want to find a collection of subspaces L1, . . . , LN of co-dimension two having the
property that for every 2-dimensional subspace (projective line) H, at most N−1 of the
Li’s intersect H non-trivially. So, we seek a weak (2, N−1) subspace design of N subspaces
of co-dimension two, where N is minimal.
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Remark 31. If we have a weak (s, A) subspace-design of M subspaces (M > A), then any
A+ 1 subspaces among them constitute a weak (s, A) subspace design. Thus, if we have
a weak (2, N−1) subspace design of M > N subspaces of co-dimension two, we will also
have a set of N lines in higgledy-piggledy arrangement.

We are interested in (2, N−1) subspace designs containing subspaces of co-dimension
two, thus s = 2 = rt, and thus r = 1 and t = 2. In this case the Guruswami–
Kopparty Theorem 30 gives a strong (2, 2d) subspace design containing M > const · q
subspaces of co-dimension two. If M > 2d, this design (after dualization) gives us a set
of 2d+ 1 lines in higgledy-piggledy arrangement.

Watching the Guruswami–Kopparty constructions [3, Sections 4–5] with both eyes,
we can behold the fact that these constructions yield a little bit stronger version of The-
orem 30. This will be shown in the following two subsections.

4.2 Constructions based on Folded Reed–Solomon codes

Guruswami and Kopparty based their main result [3, Theorem 7] on the following con-
struction presented in [3, Section 4]. We will use d instead of m−1. Let s 6 t 6 d+1 < q
and r be positive integer parameters and identify Fd+1

q with the Fq-linear subspace of
polynomials of degree 6 d in Fq[X] and let ω denote a generator of F∗q. For α ∈ Fqr , let
Sα ⊆ Fqr be given by

Sα = {αqjωi | 0 6 j < r, 0 6 i < t}.

Let F ⊆ Fqr be a large set such that:

• For each α ∈ F : Fq(α) = Fqr .

• For α 6= β ∈ F : Sα ∩ Sβ = ∅.

• Each Sα has cardinality rt.

For each α ∈ F let

Hα = {P (X) ∈ Fd+1
q |P (α · ωi) = 0 : ∀i = 0, 1, . . . , t− 1}

Theorem 32 (Guruswami–Kopparty [3, Theorem 14]). Using the notation above, the

collection {Hα|α ∈ F} is a strong
(
s, d·s

r·(t−s+1)

)
subspace design.

We do not repeat the proof here, for details see [3, pages 8–10]. The keystone of the
proof of this theorem above is the following matrix. Let W 6 Fd+1

q be a subspace and let
the polynomials P1, . . . , Ps constitute a basis of W . Define the following t × s matrix of
polynomials:

M(X) =


P1(X) . . . Ps(X)
P1(Xω) . . . Ps(Xω)

...
. . .

...
P1(Xω

t−1) . . . Ps(Xω
t−1)


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Let A(X) be the top s×s submatrix of M(X) and let L(X) be the determinant of A(X).

The term d · s in the parameter
(
s, d·s

r(t−s+1)

)
comes directly from the fact that the

polynomial L(X) has degree at most d · s. We can give a better bound for this degree:

Lemma 33. The polynomial L(X) has degree at most ds−
(
s
2

)
.

Proof. The basis P1, . . . , Ps of the subspace W 6 Fd+1
q can be chosen (by Gaussian

elimination) such that deg(P1) < deg(P2) < · · · < deg(Ps) 6 d and thus, deg(L) 6
d+ · · ·+

(
d− (s− 1)

)
= ds− s(s−1)

2
.

As a consequence, the Guruswami–Kopparty Theorem 32 above will have the following
improved form.

Corollary 34 (Guruswami–Kopparty; improved version). Using the notation above, the

collection {Hα|α ∈ F} is a strong

(
s,

(d− s−1
2 )s

r(t−s+1)

)
subspace design.

This observation shows that the Guruswami–Kopparty construction of [3, Section 4]
based on Folded Reed–Solomon codes actually give us a strong (2, 2d−1) subspace design,
and thus, a set of 2d lines in higgledy-piggledy arrangement.

4.3 Constructions based on Multiplicity codes

The main result of [3] is also proved by the following construction presented in [3, Section 5]
which could be used only over large characteristics. We will again use d instead of m− 1.
Let 0 < s 6 t 6 d+1 < charFq be integer parameters and identify Fd+1

q with the Fq-linear
subspace of polynomials of degree 6 d in Fq[X]. For each α ∈ Fq let

Hα = {P (X) ∈ Fd+1
q |mult(P, α) > t}

Theorem 35 (Guruswami–Kopparty [3, Theorem 17]). For every Fq-linear subspace W 6
Fd+1
q with dim(W ) = s we have∑

α∈Fq

dim(Hα ∩W ) 6
d · s

t− s+ 1

We do not repeat the proof here, for details see [3, pages 11–12]. The proof of this the-
orem uses the the following matrix. Let W 6 Fd+1

q be a subspace and let the polynomials
P1, . . . , Ps constitute a basis of W . Define the following t× s matrix of polynomials:

M(X) =


P1(X) . . . Ps(X)
P ′1(X) . . . P ′s(X)

...
. . .

...

P
(t−1)
1 (X) . . . P

(t−1)
s (X)


Let A(X) be the top s×s submatrix of M(X) and let L(X) be the determinant of A(X).
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The term d · s in the parameter d·s
t−s+1

in Theorem 35 above comes from the fact
deg(L(X)) 6 ds. As in the previous subsection, there is again a better bound for this
degree:

Lemma 36. The polynomial L(X) has degree at most s(d− s+ 1).

Proof. Expanding the determinant L(X) =
∑

π∈Ss
(−1)I(π)

∏s
k=1 P

(k−1)
π(k) (X), each term∏s

k=1 P
(k−1)
π(k) (X) has degree

∑s
k=1

(
deg(Pπ(k))− (k− 1)

)
, that is equal to

∑s
k=1 deg(Pk)−(

s
2

)
. The basis P1, . . . , Ps of the subspace W 6 Fd+1

q can be chosen (by Gaussian elimina-
tion) such that deg(P1) < deg(P2) < · · · < deg(Ps) 6 d and thus,

deg(L) 6

(∑
i

deg(Pi)

)
−
(
s

2

)
6
(
d+ · · ·+

(
d− (s− 1)

))
−
(
s

2

)
=

=

(
sd−

(
s

2

))
−
(
s

2

)
= ds− 2

s(s− 1)

2
= s(d− s+ 1).

As a consequence, the Guruswami–Kopparty Theorem 35 above will have the following
improved form.

Corollary 37 (Guruswami–Kopparty; improved). For every Fq-linear subspace W 6
Fd+1
q with dim(W ) = s we have

∑
α∈Fq

dim(Hα ∩W ) 6
(d− s+ 1)s

t− s+ 1

These stronger versions of [3, Theorem 14] and [3, Theorem 17] stated in these sub-
sections imply a stronger version for the main [3, Theorem 7] as follows.

Theorem 38 (Guruswami–Kopparty; improved). For all positive integers s, r, t,m = d+1
and prime powers q satisfying s 6 t 6 m < q, there is an explicit collection of M = Ω

(
qr

rt

)
linear subspaces H1, . . . , HM ⊂ Fmq , each of co-dimension rt, which forms a strong (s, A)

subspace design, where A 6
(m−1− s−1

2 )s
r(t−s+1)

, and even A 6 (m−s)s
r(t−s+1)

if m < charFq.

So, we have shown that over large enough characteristic, the construction of [3, Sec-
tion 5] based on multiplicity codes actually give us a strong (2, 2d − 2) subspace design,
and thus, a set of 2d− 1 lines in higgledy-piggledy arrangement.

5 Open questions

As we have seen previously, subspace designs constructed by Guruswami and Kopparty [3]
can also give us hyperplane-generating set of lines of size 2d − 1 (if charF > d + 1), the
optimal size over algebraically closed field. But examples in low dimensions show that
much smaller hyperplane-generating sets of lines could exist, if the field is finite.
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Open Problem 39. While hunting for weak and strong (s, A) subspace designs aims
subspace designs of cardinality as large as possible (while s and A are constants), our
problem is to find as small as possible hyperplane-generating sets of lines, which are weak
(2, N−1) subspace designs of cardinality N where N is as small as possible. In this article
we have proved that (if the field F has at least 1.5d elements, then) a generator set L of
lines in PG(d,F) has to contain at least

⌊
d
2

⌋
+d elements. Open problem is to find minimal

size hyperplane-generating sets of lines over fields that are not algebraically closed.

Open Problem 40. A natural generalization of the hyperplane-generating sets of lines
would be the following. A set L of k-subspaces is said to be generating set (or set of k-
subspaces in higgledy-piggledy arrangement) if each subspace H of co-dimension k meet
L in a set of points that generates H. Open question is the minimal size of a set of
k-subspaces in higgledy-piggledy arrangement.

Open Problem 41. We have shown that the Guruswami–Kopparty construction based
on multiplicity codes gives stronger results than the construction based on Folded Reed–
Solomon codes, in case m < charFq. We conjecture that using the generalization of our
trick of ‘diverting’ the tangents of the moment curve (shown in Subsection 3.2), can gen-
eralize these Guruswami–Kopparty constructions over small characteristics, and thus, the
main Guruswami–Kopparty Theorem can be improved over fields of small characteristics.
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