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Abstract

The edge polytope of a finite graph G is the convex hull of the columns of
its vertex-edge incidence matrix. We study extremal problems for this class of
polytopes. For k ∈ {2, 3, 5}, we determine the maximal number of vertices of k-
neighborly edge polytopes up to a sublinear term. We also construct a family of
edge polytopes with exponentially-many facets.

Keywords: 0/1-polytopes; edge polytopes of graphs; subpolytopes of a hypersim-
plex; extremal f -vectors; number of facets; Turán numbers; pseudorandom graphs

1 Introduction

The main object of our investigation is a special class of 0/1-polytopes (cf. [31]): The edge
polytope P(G) of a graph G on the vertex set {1, 2, . . . , n} is the polytope generated by
all vectors ei + ej such that i is adjacent to j, where ei and ej stand for the ith and jth
unit vectors of Rn. For example, the edge polytopes of trees are simplices, while the edge
polytope of the complete graph Kn is the second hypersimplex ∆n−1(2). Thus the edge
polytopes are the subpolytopes of the second hypersimplex. A study of edge polytopes of
general graphs was initiated by Ohsugi & Hibi [25] and Villarreal [30], who both provided
the half-space description of these polytopes (cf. Theorem 19). Dupont & Villarreal [8]
have recently connected this to the setting Rees Algebras in combinatorial commutative
algebra. For further discussions of edge polytopes, see [12], [22], [24], and [26].
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In this paper we demonstrate that edge polytopes form a rich family of 0/1-polytopes
with interesting random and extremal properties. In particular, we obtain edge polytopes
with an exponential number of facets (see Theorem 22) and k-neighborly 0/1-polytopes
with more than linearly many vertices for any k > 2 (Corollary 17). On the other hand
we will show that edge polytopes can be described and analyzed in terms of parameters
of the graphs they are based on (and thus are not as intractable as the same problems
for general 0/1-polytopes [16] [31]). Thus we obtain structural overview concerning three
main topics:
(1) a description of the low-dimensional faces of the polytope P(G);
(2) non-linear relations between the components of the f -vector of P(G);
(3) the asymptotics of the maximal number of facets of d-dimensional edge polytopes for

large d.
Here are some remarks connected to this. To describe all low-dimensional faces of P(G) we
only need to consider “small” induced subgraphs of G. The second topic is closely related
to the problem of finding minimal density of a fixed bipartite graph in a dense graph.
Concerning the third topic Gatzouras et al. [10], improving on a breakthrough by Bárány

& Pór [5], showed that there are random 0/1-polytopes in R
d with as many as

(

cd
log2 d

)d/2

facets (or more), where c > 0 is an absolute constant. The situation for d-dimensional
random edge polytopes, however, where we have only a polynomial (quadratic) number
of potential vertices, turns out to be quite different from that of general 0/1-polytopes.

The paper is divided into five sections. In the next section we introduce the object of
our investigation and determine the dimension of an arbitrary edge polytope. A criterion
for determining faces of edge polytopes is provided.

In Section 3 we compute the number of edges of P(G) in terms of the number of
vertices of P(G), the number of 4-cycles and the number of 4-cliques in G. The function
g(n) := max {f1(P(G)) : G has n vertices} is in Theorem 12 shown to be of order Θ(n4).
The lower bound for this is provided by random edge polytopes.

In Section 4 we characterize k-neighborly edge polytopes for k > 2. We then obtain
a tight upper bound on the number of vertices of these edge polytopes, by counting
various types of walks in the graph. All edge polytopes which attain these bounds are
pseudo-random in some sense.

In Section 5 we use results of Ohsugi & Hibi [25] to show that a d-dimensional edge
polytope has at most 2d + d facets. Inspired by Moon & Moser [23], we provide a con-
struction for d-dimensional edge polytopes with roughly 4d/3 facets.

2 Preliminaries

All graphs in this paper are finite, undirected, with no loops, no multiple edges and no
isolated vertices. The vertex and edge sets of a graph G are denoted by V (G) and E(G).
We write |G| for the number of vertices of G, and e(G) for the number of edges. We write
G[S] for the subgraph of G induced by a set S ⊆ V (G). Given two sets S, T ⊆ V (G),
not necessarily disjoint, we write eG(S, T ) for the number of ordered pairs (s, t) with
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s ∈ S, t ∈ T and st ∈ E(G). Given a non-empty subset X ⊆ V (G), the neighbor set of X
in G is NG(X) := {v ∈ V (G) \X : v is adjacent to some vertex in X}. If the graph G is
clear from the context, we often write N(X) instead of NG(X).

The main object of our consideration is a special class of 0/1-polytopes.

Definition 1. Let G be a graph on the vertex set [n]. The edge polytope P(G) of G is
the convex hull of all vectors ei + ej such that i is adjacent to j, where ei and ej denote
the ith and jth unit vectors of Rn.

Thus the edge polytopes of n-vertex graphs correspond to the subpolytopes of the
second hypersimplex of order n.

Example 2. The second hypersimplex of order n is defined as

∆n−1(2) := conv{ei + ej : 1 6 i < j 6 n} ⊆ R
n.

It is the edge polytope of the complete graph Kn. The second hypersimplex ∆n−1(2) has
dimension n − 1 (it is contained in {x ∈ R

n : x1 + · · · + xn = 2}),
(

n
2

)

vertices, and 2n
facets if n > 4. For example, ∆3(2) ⊆ R

4 is affinely equivalent to the regular octahedron.

Example 3. Let Cn be the cycle (1, 2, . . . , n−1, n). If n is odd, then e1 + e2, e2 + e3,
. . . , en−1 + en, en + e1 are affinely independent, so the edge polytope P(Cn) is an (n− 1)-
simplex. If n is even, then the edge polytope P(Cn) has dimension n− 2: It is a sum of
two (n

2
− 1)-simplices in {x ∈ R

n : x1 + · · ·+ xn = 2,
∑n

i=1(−1)ixi = 0}.

The definition of edge polytope can be rephrased in the following way. Let G be a
graph. The incidence matrix of G is the matrix A ∈ {0, 1}V (G)×E(G) with

av,e =

{

1 if v ∈ e,

0 otherwise.

The edge polytope P(G) of G is precisely the convex hull of the column vectors of the
matrix A. Hence P(G) can be obtained by taking the intersection between the cone
cone (A) and the hyperplane {x ∈ R

n : x1 + · · ·+ xn = 2}. Thus

dim (P(G)) = dim (cone (A))− 1 = rank (A)− 1.

On the other hand, by [11, Theorem 8.2.1], rank (A) = n−c0(G), where c0(G) is the num-
ber of connected bipartite components of G. We have therefore determined dim (P(G)).

Lemma 4 (Valencia & Villarreal [29, p. 57]). Let G be a graph with n vertices and
c0(G) bipartite components. Then the dimension of the edge polytope P(G) of G equals
n− c0(G)− 1.

This result enables us to obtain a quadratic upper bound on the number of vertices
of the polytope P(G) in terms of its dimension.
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Proposition 5. Let G be a finite graph, and let d = dim (P(G)) + 1. If d > 4, then
e(G) 6

(

d
2

)

. Equality holds if and only if G is a complete graph with at least 4 vertices.

For further investigation, we need a criterion for determining faces of an edge polytope.
From now on, the symbol eij is used to denote the vector ei + ej.

We will use the following simple criterion.

Lemma 6. Let V ⊂ R
n be the vertex set of a polytope P and let U ⊆ V . Then U is the

vertex set of a face of P if and only if aff (U) ∩ conv (V \U) = ∅.

For edge polytopes, this criterion can be reformulated as follows.

Lemma 7. Let H be a subgraph of G with the vertex set U . Then P(H) is a face of P(G)
if and only if P(H) is a face of P(G[U ]).

Proof. The “only if” part follows from the fact that P(G[U ]) is a subpolytope of P(G)
and P(H) ⊆ P(G[U ]). For the “if” part, it is enough to show that P(G[U ]) is a face of
P(G). Observe that all points x ∈ aff

{

eij : {i, j} ∈ E(G[U ])
}

satisfy xi = 0 for all i /∈ U .
Hence we have

aff
{

eij : {i, j} ∈ E(G[U ])
}

∩ conv
{

eij : {i, j} ∈ E(G)\E(G[U ])
}

= ∅.

So P(G[U ]) is a face of P(G), by Lemma 6.

3 Graphs of edge polytopes

The following simple result of Ohsugi and Hibi identifies the edges of P(G).

Lemma 8 (Ohsugi & Hibi [25]). The vertices eij and ekℓ of P(G) form an edge if and
only if
(i) the two edges {i, j} and {k, ℓ} have a common vertex, or
(ii) {i, j} ∩ {k, ℓ} = ∅, {i, j} and {k, ℓ} are not contained in any 4-cycle of G.

12

13

34

24

14

23

Figure 1: The octahedron P(K4), a face of P(Kn).
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Using Lemma 8, we can compute the number of edges of P(G). For this, let c4(G)
and k4(G) be the numbers of copies of C4 and of K4 in G, respectively. As usual in
polytope theory, we denote by fk the number of k-dimensional faces of a polytope.

Proposition 9. If P(G) be the edge polytope of a simple graph G, then f0(P(G)) = e(G)
and

f1(P(G)) =
(

e(G)
2

)

− 2c4(G) + 3k4(G).

Proof. Let r4(G) denote the number of pairs of disjoint edges of G which are contained
in some 4-cycle of G. Lemma 8 shows that f1 =

(

f0
2

)

− r4(G). Thus Proposition 9 will be
established if r4(G)− 2c4(G) + 3k4(G) = 0 holds. Now

r4(G)− 2c4(G) + 3k4(G) =
∑

U⊆[n], |U |=4

(

r4(G[U ])− 2c4(G[U ]) + 3k4(G[U ])
)

,

so we can assume from the beginning that |G| = 4. The rest is left to the reader.

We next give a sharp lower bound for f1(P(G)) in terms of f0(P(G)).

Theorem 10. If f0 and f1 denote the number of vertices resp. edges of the edge polytope
P(G), then

f
3/2
0 − f0 6 f1.

Equality holds if and only if G is a complete bipartite graph with equal size parts.

Proof. Without restriction we can assume that G is a connected graph on n vertices.
Let d̄ be the average degree of G. Since G is connected, it has at most one bipartite
component. Thus we have d := dim (P(G)) = n− c0(G)− 1 > n− 2. Now we count the
following set S in two ways: S is the set of incidence pairs (v, e) where v is a vertex of
P(G), and e is an edge of P(G). Here 2f1 = |S| > df0, and hence f1 >

df0
2
. It follows that

f1 >
df0
2

>
(n−2)f0

2
= nf0

2
− f0.

Next we let T be the set of pairs (u, {v, w}) where u is adjacent to v and to w, with
v 6= w. Since {u, v} and {u, w} are two edges of G which have one common node, they
form an edge of P(G), by Lemma 8. Therefore we have

f1 > |T | = ∑

v∈V (G)

(

deg(v)
2

)

> n
(

d̄
2

)

=
2f2

0

n
− f0.

Combining this inequality with the previous one, we get

f1 >
1
2

{

nf0
2

+
2f2

0

n

}

− f0 > f
3/2
0 − f0.

It is easy to check that the equality holds if and only if G ∼= Kn/2,n/2.
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Let P(G) be the edge polytope of a graph G and f1(P(G)) be its number of edges.
How large can f1(P(G)) be if the number of vertices of G is fixed? Formally, we want to
know the asymptotic behaviour of the number of edges of the polytope in terms of the
number n of vertices of the graph,

g(n) := max {f1(P(G)) : |G| = n}.

For that we use the following bound on the number of copies of a fixed complete bipartite
subgraph of a graph of given density.

Lemma 11 (Alon [2, Corollary 2.1]). For every fixed ε > 0, any two fixed integers
s > t > 1, and for any graph G with n vertices and at least εn2 edges, the number of
subgraphs of G isomorphic to Ks,t is at least

(1 + o(1))
(

n
s

)(

n
t

)

(2ε)st

if s > t, and at least
(1
2
+ o(1))

(

n
s

)(

n
t

)

(2ε)st

for s = t, where the o(1) terms tend to 0 as n tends to infinity.

It is worth noting that the assertions of the above lemma are tight, as shown by the
random graph G(n, 2ε) on n labeled vertices in which each pair of vertices is an edge with
probability 2ε.

And now, as promised, we provide bounds for the function g(n).

Theorem 12. For every integer n > 6, the function g(n) = max {f1(P(G)) : |G| = n}
satisfies

1
54
n4

6 g(n) 6 ( 1
32

+ o(1))n4.

Proof.
(i) Lower bound
For simplicity of notation, we write G instead of G(n, p). Define

p1 = Pr (e12, e13 form an edge of P(G))

and
p2 = Pr (e12, e34 form an edge of P(G)).

Lemma 8 shows that conv {e12, e13} is an edge of P(G) iff e12, e13 ∈ G, and thus p1 = p2.
To compute p2, note that {1, 2} and {3, 4} are not contained in any 4-cycle of G if and
only if not both {1, 3}, {2, 4} and not both {1, 4}, {2, 3} belong to G (see Figure 1). From
this, we get p2 = p2(1− p2)2. Thus by linearity of expectation

Ef1 = n
(

n−1
2

)

p1 +
1
2

(

n
2

)(

n−2
2

)

p2

= n
(

n−1
2

)

p2 + 1
2

(

n
2

)(

n−2
2

)

p2(1− p2)2.
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For p = 1/
√
3 we get

Ef1 = n4/54 + n3/18− 8n2/27 + n/3 > n4/54.

From this it follows that g(n) > n4/54.
(ii) Upper bound
Let G be an arbitrary graph with n vertices and ρn2

2
edges (0 < ρ < 1). Since the cycle

of length 4 is isomorphic to the complete bipartite graph K2,2, Lemma 11 shows that
c4(G) > (1

8
+o(1))ρ4n4. Furthermore, as each clique of size 4 contains exactly three cycles

of length 4, we have c4(G) > 3k4(G). Therefore, the number of edges of P(G) is at most

(

e(G)
2

)

− 2c4(G) + 3k4(G) 6
(

e(G)
2

)

− c4(G)

6
1
8
ρ2n4 − 1

8
ρ4n4 + o(n4)

6 ( 1
32

+ o(1))n4.

Remark. The upper bound in Theorem 12 is not tight: For any pair of graphs F and G,
let N(F,G) denote the number of labeled copies of F in G. A sequence (Gn) of graphs
(|Gn| → ∞) is quasi-random with density p (0 < p < 1) if, for every graph F ,

N(F,Gn) = (pe(F ) + o(1))|Gn||F |.

According to Chung, Graham, and Wilson [7] this happens iff N(K2, Gn) = (p+o(1))|Gn|2
and N(C4, Gn) = (p4 + o(1))|Gn|4.

If the upper bound of Theorem 12 is tight, then we can find a sequence (Gn) of graphs
such that e(Gn) = ( 1√

8
+ o(1))|Gn|2, c4(Gn) = ( 1

32
+ o(1))|Gn|4, and k4(Gn) = ( 1

96
+

o(1))|Gn|4. This forces that N(K2, Gn) = ( 1√
2
+ o(1))|Gn|2, N(C4, Gn) = (1

4
+ o(1))|Gn|4,

and N(K4, Gn) = (1
4
+o(1))|Gn|4. The first two equalities imply that (Gn) is quasi-random

with density 1√
2
. Hence N(K4, Gn) = (1

8
+ o(1))|Gn|4, a contradiction.

It remains to be explored whether the upper bound can be improved by formalizing
the subgraph count via flag algebras as in [14].

4 Neighborly edge polytopes

Here we provide a forbidden subgraph characterization for k-neighborly edge polytopes,
and then determine the maximal number of vertices of such polytopes. For this we first
prepare some notation.

Given a family F of graphs, a graph G is F-free if it contains no copy of a graph in F
as a subgraph. The Turán number ex (n,F) is the maximal number of edges in an F -free
graph on n vertices. The Zarankiewicz number z(n,F) is the maximal number of edges
in an F -free bipartite graph on n vertices.

A polytope P is k-neighborly if every subset of at most k of its vertices defines a face
of P . Thus every polytope is 1-neighborly, and a polytope is 2-neighborly if and only
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if its graph is complete. Except for simplices, no d-dimensional polytope is more than
⌊d
2
⌋-neighborly.
For k > 2, let Fk be a family of graphs on at most 2k vertices consisting of

• even cycles,
• graphs obtained by joining two odd cycles by a path.
For example, F2 = {C4} and F3 = {C4, F2, 2K3 + e, C6} (see Figure 2).

s s

ss

C4

s

s

s

ss

F2

s

s s

s

ss

2K3 + e

s

s s

s

ss

C6

Figure 2: the family F3.

Now we can characterize k-neighborly edge polytopes for k > 2.

Theorem 13. For k > 2 the edge polytope P(G) of a graph G with at least k edges is
k-neighborly if and only if G is Fk-free.

Before proving Theorem 13 we state a consequence. Let Ceven
2k denotes the family of

all even cycles of lengths at most 2k. As a bipartite graph is Fk-free if and only if it is
Ceven
2k -free, Theorem 13 implies the following result.

Corollary 14. For k > 2 the edge polytope P(G) of a bipartite graph G with at least k
edges is k-neighborly if and only if G is Ceven

2k -free.

For the proof of Theorem 13, we use the following lemma, which is a straightforward
consequence of results by Oshugi & Hibi [25, Lemmas 1.4 and 1.5].

Lemma 15. Let H be a finite graph. Then P(H) is a simplex if and only if every cycle
in H is odd, and every connected component of H has at most one odd cycle.

This lemma can be reformulated in terms of forbidden subgraphs as follows.

Lemma 16. Suppose that k > 2 and H is a graph with at most 2k vertices. Then H is
Fk-free if and only if every cycle in H is odd, and every connected component of H has
at most one odd cycle.

Proof. The “if” part is obvious. For the “only if” part we observe that if a graph contains
two odd cycles that intersect in more than one vertex, then it also has an even cycle.

We are now ready to prove Theorem 13.

Proof of Theorem 13. Assume that G is Fk-free. Let {i1, j1}, . . . , {ik, jk} be k different
edges of G. Set U = {i1, j1, . . . , ik, jk}, then |U | 6 2k. By Lemma 16 and Lemma 15,
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P(G[U ]) is a simplex. Therefore, conv{ei1j1 , . . . , eikjk} is a face of P(G) by Lemma 7.
From this it follows that P(G) is k-neighborly.

Assume that P(G) is k-neighborly. Let U ∈
(

V (G)
2k

)

be arbitrary. If we set ℓ =
min{k, e(G[U ])}, then the number of non-isolated vertices of G[U ] is at most 2ℓ. Lemma 4
now shows that P(G[U ]) has dimension at most 2ℓ − 1. On the other hand, P(G[U ]) is
ℓ-neighborly by Lemma 7. Hence P(G[U ]) is a simplex. Lemmas 15 and 16 imply that
G[U ] is Fk-free for each U ∈

(

V (G)
2k

)

. Thus, G is Fk-free.

Theorem 13 can be used to obtain the following upper bound on the number of vertices
of k-neighborly edge polytopes.

Corollary 17. Let k > 2 be a fixed integer. Then a k-neighborly edge polytope of an
n-vertex graph has at most 1

2
n1+1/k +

(

k−1
2k

+ o(1)
)

n vertices.
Furthermore, for each k ∈ {2, 3, 5} there are infinitely many positive integers n for

which there is an n-vertex graph Gn whose edge polytope is k-neighborly with at least
1
2
n1+1/k + k−1

2k
n− n1−1/k vertices.

Proof. In the following we will use results on Turán numbers and on pseudorandomness,
Theorems 25 and 26, which are presented in the appendix.

Since P(G) is k-neighborly, Theorem 13 implies that the graph G is Fk-free. Under
this condition we will show that, as n goes to infinity, e(G) 6 1

2
n1+1/k + (k−1

2k
+ o(1))n.

We may assume that e(G) > 1
2
n1+1/k. Now let T be the set of all odd cycles of length at

most k in G, and let U be the set of all vertices in G which is contained in some element of
T . Because G is Fk-free, elements in T are pairwise disjoint, and consequently |T | 6 n/3.
By removing one edge from each element of T we get a (Ceven

2k ∪ Ck)-free graph H with
e(H) > 1

2
n1+1/k− 1

3
n, where Ck denotes the family of all cycles of lengths at most k. Since

H is (Ceven
2k ∪Ck)-free, Theorem 25 tells us that e(H) 6 1

2
n1+1/k+ k−1

2k
n+n1−1/k. Therefore,

H has average degree dH ∼ n1/k. Theorem 26 can be applied showing that

eH(S, T ) = n−1+1/k|S||T |+ o(n1+1/k) for every S, T ⊆ V (G).

Since H is obtained from G by deleting o(n1+1/k) edges, a similar formula holds for G,
namely

eG(S, T ) = n−1+1/k|S||T |+ o(n1+1/k) for every S, T ⊆ V (G).

As G is Fk-free, the induced subgraph G[U ] is the disjoint union of elements in T . Hence
eG(U,U) = 2|U | > 6|T |. On the other hand, eG(U,U) = n−1+1/k|U |2 + o(n1+1/k). It
follows that |U | = o(n), and so |T | = o(n). From Theorem 25 we obtain

e(G) 6 ex(n, Ceven
2k ∪ Ck) + |T | 6 1

2
n1+1/k + (k−1

2k
+ o(1))n.

According to Theorem 25, for infinitely many positive integers n there is a (Ceven
2k ∪Ck)-

free graph Gn on n vertices such that e(Gn) >
1
2
n1+1/k + k−1

2k
n− n1−1/k. By Theorem 13,

the edge polytopes of these graphs have the desired property.

We also have the following lower bound on the maximal number of vertices of a
k-neighborly edge polytope.
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Corollary 18. Let k > 2 be a fixed integer. Then the following holds.
(i) A k-neighborly edge polytope of an n-vertex graph has at most 1

2
n1+1/k+O(n) vertices.

Moreover, there are graphs Gn on n vertices such that P(Gn) is a k-neighborly
polytope with Ω(n1+2/3k) vertices.

(ii) A k-neighborly edge polytope of an n-vertex bipartite graph has at most (1
2
)1+1/kn1+1/k

+O(n) vertices. Moreover, for k ∈ {2, 3, 5} this bound is tight up to the linear term
for infinitely many n.

Proof. (i) If the edge polytope P(G) is k-neighborly, then G is Ceven
2k -free by Theorem 13.

Thus P(G) has at most ex(n, Ceven
2k ) 6 1

2
n1+1/k + O(n) vertices, according to Lam & Ver-

straëte [20]. On the other hand, Sarnak et al. [19] showed that ex(n, {C3, C4, . . . , C2k}) =
Ω
(

n1+2/3k
)

. Thus Theorem 13 completes the proof.
(ii) If the edge polytope P(G) of a bipartite graph G is k-neighborly, then the graph

is Ceven
2k -free by Theorem 13. It follows from [13] that the polytope P(G) has at most

z(n, Ceven
2k ) 6

(

1
2

)1+1/k
n1+1/k +O(n) vertices.

For k ∈ {2, 3, 5} the existence of generalized polygons (Erdős & Rényi [9], Benson [4],

and Singleton [28]) shows that z(n, Ceven
2k ) >

(

1
2

)1+1/k
n1+1/k +O(n) for infinitely many n.

Thus Corollary 14 completes the proof.

5 Edge polytopes with many facets

In this section we study the maximal number of facets of a d-dimensional edge polytope.
Here we only deal with edge polytopes of connected graphs; all results can easily be
extended to the general case.

We use some terminology of Ohsugi & Hibi [25], as follows. Let G be a connected
graph on the vertex set {1, 2, . . . , n} := [n]. A vertex i ∈ [n] is regular (resp. ordinary) in
G if G[[n]\i] has no bipartite components (resp. if G[[n]\{i}] is connected).
A subset ∅ 6= A ⊆ [n] is independent in G if N({i}) ∩ A = ∅ for all i ∈ A. If A is
independent in G, then the bipartite graph induced by A in G is defined to be the graph
having the vertex set A ∪ N(A) and consisting of all edges {i, j} of G with i ∈ A and
j ∈ N(A). This graph will be denoted by G[A,N(A)].
When G is non-bipartite, we say that a subset ∅ 6= A ⊆ [n] is fundamental in G if
(i) A is independent in G and G[A,N(A)] is connected, and
(ii) G[[n]\(A ∪N(A))] has no bipartite components.

When G is bipartite, a subset ∅ 6= A ⊆ [n] is acceptable in G if
(i) A is independent in G and G[A,N(A)] is connected, and
(ii) G[[n]\(A ∪N(A))] is a connected graph with at least one edge.

Let A be an non-empty independent set of G. Denoted by H+
A the closed half-space

H+
A = {x ∈ R

n :
∑

i∈N(A)

xi −
∑

j∈A
xj > 0},
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and by HA the hyperplane

HA = {x ∈ R
n :

∑

i∈N(A)

xi −
∑

j∈A
xj = 0}.

If i ∈ [n], then we write H+
i for the closed half-space

H+
i = {x ∈ R

n : xi > 0},
and Hi for the hyperplane

Hi = {x ∈ R
n : xi = 0}.

Theorem 19 (Ohsugi & Hibi [25, Theorem 1.7]).
(i) Let G be a connected non-bipartite graph on the vertex set [n]. Let Ψ denote the

set of those hyperplanes Hi such that i is regular in G and of those hyperplanes HA

such that A is fundamental in G. Then the set of facets of the edge polytope P(G)
is {H ∩ P(G) : H ∈ Ψ}.

(ii) Let G be a connected bipartite graph on the vertex set V (G) = [n], and let V (G) =
V1 ∪ V2 be the partition of V (G). Let Ψ denote the set of those hyperplanes Hi such
that i is ordinary in G and of those hyperplanes HA such that A is acceptable in G
with A ⊂ V1. Then the set of facets of the edge polytope P(G) is {H∩P(G) : H ∈ Ψ}.

Let d ∈ N. We write f(d) for the maximal number of facets of P(G), where G ranges
over all connected graph such that dim (P(G)) = d.

Lemma 20. f(d) 6 2d + d for all d > 3.

Proof. Let G be a connected graph on [n] with dim (P(G)) = d > 3. Denote by fd−1 the
number of facets of P(G). It is sufficient to prove that fd−1 6 2d + d. We distinguish two
cases.

If G is bipartite, then d = n − 2. Let V1 ∪ V2 be the partition of V (G). We can
assume that |V1| 6 |V2|. Applying Theorem 19, we get fd−1 6 2|V1| + n 6 2⌊n/2⌋ + n 6

2⌊(d+2)/2⌋ + d+ 2 < 2d + d.
If G is non-bipartite, then d = n− 1. We denote by F the family of independent sets

in G. Let A ⊆ [n]. Since G is not bipartite, either A /∈ F or Ac /∈ F . It follows that
|F| 6 2n−1−1. By Theorem 19, we see that fd−1 6 |F|+n 6 (2n−1−1)+n = 2d+d.

Lemma 21. f(d) > 4⌊d/3⌋ for all d > 0.

s3k + 1

s1

s3s2

s6

s5s4

s

3i
s

3i− 1

s

3i− 2
s3k

s

3k − 1
s

3k − 2

Figure 3: The windmill graph Wd (4, k).
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Proof. Without restriction we can assume that d = 3k. Let G be the windmill graph
Wd (4, k) on the vertex set [3k + 1] with the edge set

E(G) =
{

{j, 3k + 1} : j = 1, . . . , 3k} ∪
{

{3i− 2, 3i− 1}, {3i− 2, 3i}, {3i− 1, 3i} : i = 1, . . . , k
}

.

As G is a connected non-bipartite graph, we have dim (P(G)) = (3k+1)−1 = d. We will
now determine all fundamental sets in G. Observe that a non-empty subset A ⊆ [3k + 1]
is independent in G if and only if
(i) A = {3k + 1}, or
(ii) 3k + 1 /∈ A, and |A ∩ {3i− 2, 3i− 1, 3i}| 6 1 for all i = 1, . . . , k.

We claim that such a set A is fundamental in G. There are two possible cases. If A =
{3k+1}, then G[A,N(A)] is the graph with vertex set [3k+1] and edge set

{

{j, 3k+1} :
j = 1, . . . , 3k

}

. Since A∪N(A) = [3k+1] and G[A,N(A)] is connected, we see that A is

fundamental in G. If 3k + 1 /∈ A and |A ∩ {3i − 2, 3i − 1, 3i}| 6 1 for i = 1, k, then we
can assume that A = {3, 6, . . . , 3ℓ} for some ℓ 6 k. In this case, we have

G[A,N(A)] =
{

{3s, 3s− 2}, {3s, 3s− 1}, {3s, 3k + 1} : s = 1, . . . , ℓ
}

,

G[A ∪N(A)] =
{

{3t− 2, 3t− 1}, {3t− 2, 3t}, {3t− 1, 3t} : t = ℓ+ 1, . . . , k
}

.

Since G[A,N(A)] is connected and G[A ∪N(A)] has no bipartite components, A is fun-
damental in G.

We next claim that i ∈ [3k + 1] is regular in G if and only if i 6= 3k + 1. Indeed, we
distinguish two cases. If i = 3k + 1, then the induced subgraph G[[3k + 1]\i] is a disjoint
union of k triangles. It follows that G[[3k + 1]\i] is not connected, and consequently i is
not regular in G.
If i 6= 3k+1, then we can assume that i = 1. In this case, G[[3k+1]\i] is the graph with
vertex set {2, 3, . . . , 3k + 1} and edge set

E =
{

{j, 3k + 1} : j = 4, . . . , 3k
}

∪
{

{2, 3}, {2, 3k + 1}, {3, 3k + 1}
}

∪
{

{3i− 2, 3i− 1}, {3i− 2, 3i}, {3i− 1, 3i} : i = 2, . . . , k
}

.

We can see that this graph is connected and non-bipartite. Hence i is a regular vertex
in G, as desired. Finally, applying Theorem 19 we conclude that the number of facets of
P(G) is

∑k
ℓ=1

(

k
ℓ

)

3ℓ + 3k = 4k + 3k − 1. Therefore, f(d) > 4k = 4⌊d/3⌋.

As a consequence of these lemmas, we obtain the following bounds on f(d).

Theorem 22. For all d > 3, the maximal number f(d) of facets of a d-dimensional edge
polytope satisfies

4⌊d/3⌋ < f(d) 6 2d + d.
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Appendix: Turán numbers

Here we give a tight asymptotic upper bound on the Turán number ex(n, Ceven
2k ∪ Ck),

where Ceven
2k = {C4, C6, . . . , C2k} and Ck = {C3, C4, . . . , Ck}. We also show that every

nearly extremal (Ceven
2k ∪ Ck)-free graph is pseudorandom.

The basic estimates for Turán numbers for even cycles are obtained by counting var-
ious types of walks in graphs: A non-returning walk of length k in G is a sequence
v0e0v1e1 . . . vk−1ek−1vk such that vi ∈ V (G), ei = {vi, vi+1} ∈ E(G), and ei 6= ei+1 for
0 6 i < k. Let νk(G) denote the average number of non-returning walks of length k in G.
If G is a d-regular graph on n vertices then clearly νk(G) = d(d − 1)k−1. For irregular
graphs, we have the following lower bound.

Proposition 23 (Alon, Hoory & Linial [3]). If G is a graph with minimum degree at
least 2 and average degree d, then νk(G) > d(d− 1)k−1.

The following simple result will be very useful for our investigation. It is probably
well-known, but we couldn’t find a reference for it.

Lemma 24. Suppose that P and Q are two different paths of length k > 2 with the same
endpoints. If P ∪ Q is Ck-free, then P = αP ′β and Q = αQ′β for some vertex-disjoint
paths α, β, P ′ and Q′.

Proof. The lemma is obviously true for k ∈ {2, 3}. So let k > 3 and proceed by induction.
Let x and y be endpoints of P and Q. We distinguish three cases.
Case 1: NP (y) = NQ(y) := v.
Let P1 and Q1 be the subpaths of P and Q from x to v, respectively. Then they are
two different paths of length k − 1 from x to v, and their union is Ck-free. By induction,
P1 = αP ′β and Q1 = αQ′β for some vertex-disjoint paths α, β, P ′, Q′ with x ∈ α and
v ∈ β. Hence P = αP ′βy and Q = αQ′βy.
Case 2: NP (y) 6= NQ(y) and NP (y) ∈ Q.
In this case, NP (y)Qy is a cycle of length at most k. This contradicts the assumption
that P ∪Q is Ck-free.
Case 3: NP (x), NP (y) /∈ Q and NQ(x), NQ(y) /∈ P .
We identify x,NP (x) and NQ(y) (resp. y,NP (y) and NQ(y)) as a new vertex x′ (resp. y′).
Let P2 and Q2 be the new paths corresponding to P and Q. Then they are two different
paths of length k−2 from x′ to y′. Since P∪Q is Ck-free, P2∪Q2 is Ck−2-free. By induction
P2 = α′P ′′β′ and Q2 = α′Q′′β′ for some disjoint paths α′, β′, P ′′ and Q′′. We claim that
x′ is the only vertex of α′. Otherwise, α′ = x′uα′′ for some vertex u and path α′′. In
this case, the vertices x,NP (x), u and NQ(x) form a cycle of length 4 in P ∪ Q, which
contradicts the fact that P ∪Q is Ck-free. Similarly, y′ is the only vertex of β′. From this
it follow that P and Q are two internally vertex-disjoint paths. Consequently, they have
the desired structures.

Using the previous lemmas we can determine the Turán number of the family Ceven
2k ∪Ck

up to a sublinear term.
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Theorem 25. Suppose k > 2 and n > 1. Then

ex (n, Ceven
2k ∪ Ck) 6 1

2
n1+1/k + k−1

2k
n+ n1−1/k.

Furthermore, if k ∈ {2, 3, 5}, then for infinitely many n

ex (n, Ceven
2k ∪ Ck) > 1

2
n1+1/k + k−1

2k
n− n1−1/k.

It is quite well known (Kővári et al. [17] and Reiman [27], cf. [1, Chap. 25]) that
ex(n,C4) 6 ⌊n

4
(1 +

√
4n− 3)⌋. On the other hand, Erdős & Rényi [9] and Brown [6]

proved that for infinitely many positive integer n there is a C4-free graph on n vertices
with n−1

4
(1+

√
4n− 3) edges. These results establish Theorem 25 in the case when k = 2.

It remains to handle the case when k > 3.

Proof of Theorem 25. As discussed above, it is enough to prove the theorem for k > 3.
Let G be a minimal counterexample to the theorem. Then G has minimum degree at
least 2 and average degree d > n1/k + k−1

k
+ 2n−1/k. We denote by Pk the family of paths

of length k in G. Since G is Ck-free, every non-returning walk of length k is nothing but
a path of length k. It now follows from Proposition 23 that |Pk| > nd(d − 1)k−1 > n2.
By Lemma 24, for any ordered pair of vertices u, v there is at most one path of length k
from u to v. Thus, the number of paths of length k is at most n2, a contradiction.

Let α ∈ N. Set q = 22α+1 if k = 3, and q = 32α+1 if k = 5. Lazebnik et al. [21]
constructed a (Ceven

2k ∪Ck)-free graph G on n = qk+ . . .+ q+1 vertices with 1
2

{

(q+1)(qk+

. . .+ q + 1)− (q⌊
k+1

2
⌋ + 1)

}

edges. We can verify that e(G) > 1
2
n1+1/k + k−1

2k
n− n1−1/k for

large n.

Another key ingredient in the proof of Corollary 17 is the notion of pseudorandomness.
We refer the reader to Krivelevich & Sudakov [18] for a survey. The following result
expresses the pseudorandomness property of a nearly extremal (Ceven

2k ∪ Ck)-free graph:
For any two large sets the number of ordered edges between them is close to what one
would expect in a random graph of the same edge density.

Theorem 26. Let k > 2 be a fixed integer. Suppose G is a (Ceven
2k ∪ Ck)-free graph on

n vertices with average degree d ∼ n1/k. Then eG(S, T ) = d
n
|S||T | + o(n1+1/k) for any

S, T ⊆ V (G).

Sketch. Our proof follows the lines of a remark of Keevash et al. [15, Section 9]. We
just sketch the argument, and refer to [15] for the omitted details. Suppose that G has
eigenvalues λ1 > λ2 > · · · > λn. Let w

◦
2k+2(G) denote the number of closed walks of length

2k+2 in G divided by n. Since G is (Ceven
2k ∪Ck)-free, Lemma 24 shows that there is at most

one path of length k between any pair of vertices of G. Using this property we control the
maximum degree as ∆ < (1 + ε)d by deleting o(n1+1/k) edges. Then the argument of [15,
Lemma 3.4] shows w◦

2k+2(G) < (1 + o(1))n∆2; the only difference is that there are n− 1
choices for u rather than n/2 + o(n). On the other hand, w◦

2k+2(G) = 1
n

∑

λ2k+2
i has a

contribution of d2k+2/n ∼ nd2 from the first eigenvalue, so the other eigenvalues are o(d)
as ε → 0. The pseudorandomness property now follows from the non-bipartite version of
[15, Lemma 5.4], which is provided in [18, Section 2.4].
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