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Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a
pattern p over an alphabet ∆ if there is no factor f of w such that f = h(p) where
h : ∆∗ → Σ∗ is a non-erasing morphism. A pattern p is said to be k-avoidable
if there exists an infinite word over a k-letter alphabet that avoids p. We give a
positive answer to Problem 3.3.2 in Lothaire’s book “Algebraic combinatorics on
words”, that is, every pattern with k variables of length at least 2k (resp. 3× 2k−1)
is 3-avoidable (resp. 2-avoidable). This conjecture was first stated by Cassaigne
in his thesis in 1994. This improves previous bounds due to Bell and Goh, and
Rampersad.

Keywords: Word; Pattern avoidance.

1 Introduction

A pattern p is a non-empty word over an alphabet ∆ = {A,B,C, . . . } of capital letters
called variables. An occurrence of p in a word w is a non-erasing morphism h : ∆∗ → Σ∗

such that h(p) is a factor of w. The avoidability index λ(p) of a pattern p is the size
of the smallest alphabet Σ such that there exists an infinite word w over Σ containing
no occurrence of p. Bean, Ehrenfeucht, and McNulty [1] and Zimin [16] characterized
unavoidable patterns, i.e., such that λ(p) = ∞. We say that a pattern p is t-avoidable
if λ(p) 6 t. For more informations on pattern avoidability, we refer to Chapter 3 of
Lothaire’s book [8].

∗Second affiliation: Département MIAp, Université Paul-Valéry, Montpellier 3, Route de Mende, 34199
Montpellier, France.
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In this paper, we consider upper bounds on the avoidability index of long enough
patterns with k variables. Bell and Goh [2] and Rampersad [12] used a method based
on power series and obtained the following bounds. Let v(p) be the number of distinct
variables of the pattern p.

Theorem 1 ([2, 12]). Let p be a pattern.

(a) If p has length at least 2v(p) then λ(p) 6 4. [2]

(b) If p has length at least 3v(p) then λ(p) 6 3. [12]

(c) If p has length at least 4v(p) then λ(p) = 2. [12]

Our main result improves these bounds:

Theorem 2. Let p be a pattern.

(a) If p has length at least 2v(p) then λ(p) 6 3.

(b) If p has length at least 3× 2v(p)−1 then λ(p) = 2.

Theorem 2 gives a positive answer to Problem 3.3.2 of Lothaire’s book [8]. As noticed
by Cassaigne [5, 8], both bounds of Theorem 2 are tight. The bound 2v(p) in Theo-
rem 2.(a) is tight in the sense that the patterns p in the family {A,ABA,ABACABA,
ABACABADABACABA, . . . } have length 2v(p) − 1 and are unavoidable. Similarly,
the bound 3 × 2v(p)−1 in Theorem 2.(b) is tight in the sense that the patterns in the
family {AA,AABAA,AABAACAABAA,AABAACAABAADAABAACAABAA, . . . }
have length 3 × 2v(p)−1 − 1 and are not 2-avoidable. Hence, this shows that the upper
bound 3 of Theorem 2.(a) is best possible.

The avoidability index of every pattern with at most 3 variables is known, thanks to
various results in the literature. In particular, Theorem 2 is proved for every pattern p
with v(p) 6 3:

• For v(p) = 1, the famous results of Thue [14, 15] give λ(AA) = 3 and λ(AAA) = 2.

• For v(p) = 2, every binary pattern of length at least 4 contains a square, and is
thus 3-avoidable. Moreover, Roth [13] proved that every binary pattern of length
at least 6 is 2-avoidable.

• For v(p) = 3, Cassaigne [5] began and the first author [10] finished the determination
of the avoidability index of every pattern with at most 3 variables. Every ternary
pattern of length at least 8 is 3-avoidable and every binary pattern of length at least
12 is 2-avoidable.

So, there remains to prove Theorem 2 for every pattern p with v(p) > 4.

Section 2 is devoted to some preliminary results. We prove Theorem 2.(a) in Section 3
as a corollary of a result of Bell and Goh [2]. In Section 4, we prove Theorem 2.(b) using
the so-called entropy compression method.

Very recently, Blanchet-Sadri and Woodhouse [4] independently proved Theorem 2
using completely different methods.
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2 Preliminary results

Let p be a pattern over ∆ = {A,B,C, . . .}. An occurrence of p in a word w over the
alphabet Σ is a non-erasing morphism h : ∆∗ → Σ∗ such that h(p) is a factor of w. Note
that two distinct occurrences of p may form the same factor. For example, if p = ABA,
then the occurrence h = (A → 00;B → 1) of p forms the factor h(p) = h(ABA) =
h(A)h(B)h(A) = 00100; on the other hand, h′ = (A → 0;B → 010) is a distinct occur-
rence of p which forms the same factor h′(p) = h′(ABA) = h′(A)h′(B)h′(A) = 00100.

A pattern p is doubled if every variable of p appears at least twice in p. A pattern p is
balanced if it is doubled and every variable of p appears both in the prefix and the suffix

of length
⌊
|p|
2

⌋
of p. Note that if the pattern has odd length, then the variable X that

appears in the middle of p (i.e. in position
⌊
|p|
2

⌋
+ 1) must appear also in the prefix and

in the suffix in order to make p balanced.

Claim 3. For every integer f > 2, every pattern p with length at least f×2v(p)−1 contains
a balanced pattern p′ with length at least f × 2v(p

′)−1 as a factor.

Proof. We prove this claim by induction on v(p). If v(p) = 1, then p has size at least f > 2
and is clearly balanced. Suppose this is true for some v(p) = n, i.e. p with n variables
and length at least f ×2n−1 contains a balanced pattern p′ as a factor with length at least
f × 2v(p

′)−1. Let v(p) = n+ 1 and let p1 (resp. p2) be the prefix (resp. the suffix) of p of

size
⌊
|p|
2

⌋
. If p is not balanced, then there exists a variable X in p that does not occur in

pi for some i ∈ {1, 2}. Thus, we have v(pi) 6 v(p)−1 = n and |pi| > f ×2n−1. Therefore,
by induction hypothesis, p contains a balanced pattern p′ with length at least f × 2v(p

′)−1

as a factor.

In the following, we will only use the fact that the pattern p′ in Claim 3 is doubled
instead of balanced.

3 3-avoidable long patterns

We prove Theorem 2.(a) as a corollary of the following result of Bell and Goh [2]:

Lemma 4 ([2]). Every doubled pattern with at least 6 variables is 3-avoidable.

Proof of Theorem 2.(a). We want to prove that every pattern p with length at least 2v(p)

is 3-avoidable, or equivalently, that every pattern p with v(p) 6 k and length at least 2k

is 3-avoidable. By Claim 3, every such pattern contains a doubled pattern p′ as a factor
with length at least 2v(p

′). So there remains to show that every doubled pattern p with
v(p) 6 k and length at least 2k is 3-avoidable. As discussed in the introduction, the case
of patterns with at most 3 variables has been settled. Now, it is sufficient to prove that
doubled patterns of length at least 24 = 16 are 3-avoidable.

Suppose that p1 is a doubled pattern containing a variable X that appears at least 4
times. Replace 2 occurrences of X with a new variable to obtain a pattern p2. Example:
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We replace the first and third occurrence of B in p1 = ABBCDBCABDDCB by a new
variable E to obtain p2 = AEBCDECABDDCB. Then p2 is a doubled pattern such
that |p1| = |p2| and λ(p1) 6 λ(p2), since every occurrence of p1 is also an occurrence of
p2.

Given a doubled pattern p of length at least 16, we make such replacements as long as
we can. We thus obtain a doubled pattern p′ of length at least 16 such that λ(p) 6 λ(p′).
Moreover, every variable in p′ appears either 2 or 3 times and therefore p′ contains at
least d16/3e = 6 variables. So p′ is 3-avoidable by Lemma 4. Thus p is 3-avoidable, which
finishes the proof. �

4 2-avoidable long patterns

We want to prove that every pattern p with length at least 3 × 2v(p)−1 is 2-avoidable, or
equivalently, that every pattern p with v(p) 6 k variables and length at least 3 × 2k−1

is 2-avoidable. By Claim 3, every such pattern contains a doubled pattern p′ as a factor
with length at least 3 × 2v(p

′)−1. So there remains to show that every doubled pattern p
with v(p) 6 k and length at least 3× 2k−1 is 2-avoidable.

As discussed in the introduction, the case of patterns with at most 3 variables has
been settled. Now, it is sufficient to prove Theorem 2.(b) for doubled patterns with at
least 4 variables.

Let Σ = {0, 1} be the alphabet. For the remaining of this section, let k > 4 and
q(k) = 3× 2k−1.

Suppose by contradiction that there exists a doubled pattern p on k variables and
length at least q(k) that is not 2-avoidable. Then there exists an integer n such that
every word w ∈ Σn contains p. We put an arbitrary order on the k variables of p and call
Aj the j-th variable of p.

4.1 The algorithm AvoidP

Let V ∈ {0, 1}t be a vector of length t. The algorithm AvoidP takes the vector V as
input and returns a word w avoiding p and a data structure R that is called a record in
the remaining of the paper.

The way we encode information inR at lines 5 and 7 will be explained in Subsection 4.2.
In the algorithm AvoidP, let wi be the word w after i steps. Clearly, wi avoids p

at each step. By contradiction hypothesis, the resulting word w of the algorithm (that
is wt) has length less than n. We will prove that each output of the algorithm allows
to determine the input. Then we obtain a contradiction by showing that the number of
possible outputs is strictly smaller than the number of possible inputs when t is chosen
large enough compared to n. This implies that every pattern p with at most k variables
and length at least q(k) is 2-avoidable.

To analyze the algorithm, we borrow ideas from graph coloring problems [6, 7]. These
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Algorithm 1: AvoidP

Input : V .
Output: w (a word avoiding p) and R (a data structure).

w ← ε1

R← ∅2

for i← 1 to t do3

Append V [i] (the i-th letter of V ) to w4

Encode in R that a letter has been appended to w5

if w contains a factor of length ` corresponding to an occurrence of p then6

Encode in R the occurrence of p7

Erase the suffix of length ` of w8

return R, w9

results are based on the Moser-Tardos [9] entropy-compression method which is an algo-
rithmic proof of the Lovász Local Lemma.

4.2 The record R

An important part of the algorithm is to update the record R at each step of the algorithm.
Let Ri be the record after i steps of the algorithm AvoidP. On one hand, given V as
input of the algorithm, this produces a pair (Rt, wt). On the other hand, given a pair
(Rt, wt), we will show in Lemma 6 that we can recover the entire input vector V . So, each
input vector V produces a distinct pair (Rt, wt).

Let V be the set of input vectors V of size t, let R be the set of records R produced
by the algorithm AvoidP and let O be the set of different outputs (Rt, wt). After the
execution of the algorithm (t steps), wt avoids p by definition and therefore |wt| < n by
contradiction hypothesis. Hence, the number of possible final words wt is independent
from t (it is at most 2n). We then clearly have |O| 6 2n×|R|. We will prove that |V| 6 |O|
and that |R| = o(2t) to obtain the contradiction 2t = |V| 6 |O| 6 2n × |R| = o(2t).

The record R is a triplet R = (D,L,X) where D is a binary word (each element is 0
or 1), L is a vector of (k − 1)-sets of non-zero integers and X is a binary word. At the
beginning, D, L and X are empty. At step i of the algorithm, we append V [i] to wi−1 to
get w′i.

If w′i contains no occurrence of p, then we append 0 to D to get Ri and we set wi = w′i.
Otherwise, suppose that w′i contains an occurrence h of p that forms a factor h(p) of
length `, that is, the suffix of length ` of w′i is h(p). Recall that Aj is the j-th variable of
p. For 1 6 j 6 k − 1, let zj = |h(A1 . . . Aj)|. Let L′ = {z1, z2, . . . , zk−1} be a (k − 1)-set
of non-zero integers. To get Ri, we append the factor 01` to D; we add L′ as the last
element of L; and we append the factor h(A1A2 . . . Ak) to X.
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Example 5.

Let us give an example with k = 3, p = ACBBCBBABCAB and
V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]. The variables of p were
initially ordered as (A,B,C). For the first 24 steps, no occurrence of p appeared, so at
each step i 6 24, we append V [i] to wi−1 and we append one 0 to D. Hence, at step
24, we have:

• w24 = 001001100111001101110001

• R24 =


D = 000000000000000000000000 = 024

L = [ ]
X = ε

Now, at step 25, we first append V [25] = 1 to w24 to get w′25. The word w′25 contains
an occurrence h = (A → 01;B → 1;C → 100) of p which forms a factor of length 21
(the 21 last letters of w′25). Then we set L′ = {|h(A)|, |h(AB)|} = {2, 3}. We obtain
w25 from w′25 by erasing its suffix of length 21. To get R25, we append the factor 0121

to D, we add L′ as the last element of L, and we append the factor h(ABC) = 011100
to X. This gives:

• w25 = 0010

• R25 =


D = 0000000000000000000000000111111111111111111111 = 025121

L = [{2, 3}]
X = 011100

Let Vi be the vector V restricted to its i first elements. We will show that the pair
(Ri, wi) at some step i allows to recover Vi.

Lemma 6. After i steps of the algorithm AvoidP, the pair (Ri, wi) permits to recover
Vi.

Proof. Before step 1, we have w0 = ε, R0 = (ε, [ ], ε), and V0 = ε. Let Ri = (D,L,X) be
the record after step i, with 1 6 i 6 t.

Suppose that 0 is a suffix of D. This means that at step i, no occurrence of p was
found: the algorithm appended V [i] to wi−1 to get wi. Therefore V [i] is the last letter
of wi, say x. Then the word wi−1 is obtained from wi by erasing the last letter and the
record Ri−1 is obtained from Ri by removing the suffix 0 of D. We recover Vi−1 from
(Ri−1, wi−1) by induction hypothesis and we obtain Vi = Vi−1 · x.

Suppose now that 01` is a suffix of D. This means that an occurrence h of p has
been created during step i such that |h(p)| = `. Let L′ be the last element of L which
is a (k − 1)-set L′ = {z1, z2, . . . , zk−1}. By construction of L′, we have |h(A1)| = z1 and
|h(As)| = zs − zs−1 for 2 6 s 6 k − 1. We know the pattern p, the total length of the
factor h(p) (that is `) and the lengths of the k − 1 first variables of p in h(p), so we are
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able to compute |h(Ak)|. Now, we can parse the suffix of length
∑

16j6k |h(Aj)| of X,
which is the factor h(A1 . . . Ak), to obtain the factors h(A1), . . . , h(Ak). Thus, we have
recovered the occurrence h of p.

Now, wi−1 is obtained by removing the last letter x of wi · h(p). This letter x is V [i],
the letter appended to wi−1 at step i to get w′i. The record Ri−1 is obtained from Ri

as follows: remove the suffix 01` from D, remove the last element of L, and remove the
suffix h(A1 . . . Ak) of X. We recover Vi−1 from (Ri−1, wi−1) by induction hypothesis and
we obtain Vi = Vi−1 · x.

The previous lemma proves that distinct input vectors cannot correspond to the same
pair (Rt, wt). So we get |V| 6 |O|.

4.3 Analysis of R
Now we compute |R|. Let R = Rt = (D,L,X) be a given record produced by an execution
of AvoidP. Let D be the set of such binary words D. For a given D ∈ D, let LD be the
set of such vectors of (k − 1)-sets of non-zero integers L compatible with D. Let X be
the set of such binary words X.

We thus have |R| 6 |D| ×maxD∈D |LD| × |X |.
Let us give some useful information in order to get upper bounds on |D|, |X |, and

|LD|. The algorithm runs in t steps. At each step, one letter is appended to w, so t letters
have been appended and therefore the number of erased letters during the execution of
the algorithm is t− |wt|. At some steps, an occurrence h of p appears and the factor h(p)
is immediately erased. Let m be the number of erased factors during the execution of the
algorithm. Let hi(p), 1 6 i 6 m, be the m erased factors. We have |hi(p)| > q(k) since
each variable of p is a non-empty word and p has length at least q(k). Moreover, we have∑

16i6m |hi(p)| = t − |wt| 6 t. Each time a factor hi(p) is erased, we add an element to
L, so |L| = m.

4.3.1 Analysis of D

In the binary word D, each 0 corresponds to an appended letter during the execution
of the algorithm and each 1 corresponds to an erased letter. Therefore, D has length
2t − |wt|. Observe that every prefix in D contains at least as many 0’s as 1’s. Indeed,
since a 1 corresponds to an erased letter x, this letter x had to be added first and thus
there is a 0 before that corresponds to this 1. The word D is therefore a partial Dyck
word. Since any erased factor hi(p) has length at least q(k), any maximal sequence of 1’s
(which is called a descent in the sequel) in D has length at least q(k). So D is a partial
Dyck words with t 0’s such that each descent has length at least q(k).

Let Ct,r,d (resp. Ct,d) be the number of partial Dyck words with t 0’s and t − r 1’s
(resp. Dyck words of length 2t) such that all descents have length at least d.

Lemma 7. Ct,r,d 6 Ct+d,d.
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Proof. We map every partial Dyck word y with t 0’s and t − r 1’s to the Dyck word
y0d1d+r, which has t+ d 0’s and t+ d 1’s. Since d is fixed, this mapping is injective. This
proves the lemma.

If q(k) > d, then we have |D| 6 Ct,|wt|,q(k) 6 Ct,|wt|,d 6 Ct+d,d by Lemma 7. Let

φd(x) = 1 +
∑

j>d x
j = 1 + xd

1−x . The radius of convergence of φd is 1. The following
lemma comes from a more general statement of Esperet and Parreau [7] and gives an
upper bound on |D|.

Lemma 8. [7] Let d be an integer such that the equation φd(x)−xφ′d(x) = 0 has a solution
τ with 0 < τ < 1. Then τ is the unique solution of the equation in the open interval (0, 1).

Moreover, there exists a constant cd such that Ct,d 6 cdγ
t
dt
− 3

2 where γd = φ′d(τ) = φd(τ)
τ

.

The equation φd(x) − xφ′d(x) = 0 is equivalent to P (x) = (1 − x)2 + (1 − d)xd +
(d − 2)xd+1 = 0. Since P (0) = 1 and P (1) = −1, P (x) = 0 has a solution τ in the
open interval (0, 1). By Lemma 8, this solution is unique and, for some constant cd, we

have Ct+d,d 6 cdγ
t+d
d (t+ d)−

3
2 with γd = φ′d(τ). We clearly have Ct+d,d = o(γtd). So,

we can compute γd for d fixed. We will use the following bounds: γ24 6 1.27575 and
γ48 6 1.15685.

So, by Lemmas 7 and 8, when t is large enough, we have |D| < 1.27575t (resp.
|D| < 1.15685t) if the length of any descent is at least 24 (resp. 48).

4.3.2 Analysis of X

Each erased factor hi(p) adds |hi(A1 . . . Ak)| letters to X. Since p is doubled, we have
|hi(p)| > 2|hi(A1 . . . Ak)| + q(k) − 2k > 2|hi(A1 . . . Ak)| + 24 − 2 × 4. This gives

|hi(A1 . . . Ak)| 6 |hi(p)|
2
−8. Since

∑
16i6m |hi(p)| 6 t, we have |X| =

∑
16i6m |hi(A1 . . . Ak)|

6
∑

16i6m

(
|hi(p)|

2
− 8
)
6 t

2
− 8m. Therefore |X | 6 2

t
2
−8m+1 6 (

√
2)t.

4.3.3 Analysis of LD

For a given R = (D,L,X), the vector L is dependent on the partial Dyck word D. Indeed,
by construction, the i-th element of L is a (k − 1)-set of integers smaller than `

2
where `

is the length of the i-th descent of D. In this subsection, we compute an upper bound on
the number of vectors L compatible with D for a given D ∈ D and thus we give an upper
bound on |LD|.

Each element Li = {z1, z2, . . . , zk−1} of L corresponds to the erased factor hi(p) and
by construction we have |hi(A1 . . . Aj)| = zj. By construction of D, |hi(p)| is the length
of the i-th descent of D. Since D is fixed, |hi(p)| is fixed for every 1 6 i 6 m.

Let sk(`) be the number of such (k − 1)-sets Li that correspond to factors of length
`. Recall that |hi(p)| > q(k), so sk(`) is defined for k > 4 and ` > q(k). Each of the
m elements of L corresponds to an erased factor, so |LD| 6 sk(|h1(p)|) × sk(|h2(p)|) ×
. . . × sk(|hm(p)|). Let gk(`) = sk(`)

1
` be defined for k > 4 and ` > q(k). Then |LD| 6
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gk(|h1(p)|)|h1(p)| × gk(|h2(p)|)|h2(p)| × . . . × gk(|hm(p)|)|hm(p)|. So, if we are able to upper-
bound gk(`) by some constant c for all ` > q(k), then we get |LD| 6 c|h1(p)| × c|h2(p)| ×
. . .× c|hm(p)| 6 ct.

Now we bound gk(`) using two different methods depending on the number k of vari-
ables in p and the length q(k) of p.

4.3.3.1 Bound on gk(`) for k = 4, ` > 96 or k > 5, ` > q(k)

As shown in Section 4.3.2, we have |hi(A1 . . . Ak)| 6 |hi(p)|
2
− 8. For a given Li =

{z1, z2, . . . , zk−1} that corresponds to hi(p), we thus have zk−1 = |hi(A1 . . . Ak−1)| 6
|hi(p)|

2
− 9. Therefore, Li is a set of (k − 1) distinct integers between 1 and |hi(p)|

2
− 9.

So sk(`) 6
(b`/2c
k−1

)
and gk(`) 6

(b`/2c
k−1

) 1
` . We can upper-bound gk(`) by gk(`) =

(
(`/2)k−1

(k−1)!

) 1
`

for ` > q(k).
Let us show that when k is fixed, gk(`) is a decreasing function of ` for ` > q(k).

The derivative (gk(`))
′ = gk(`) × 1

`2
×
(
k − 1− ln

(
(`/2)k−1

(k−1)!

))
is negative if and only if

k − 1 < ln
(

(`/2)k−1

(k−1)!

)
, that is, if and only if (k − 1)!ek−1 < (`/2)k−1. This inequality holds

since (k − 1)!ek−1 < ((k − 1)e)k−1 <
(
3× 2k−2

)k−1
6 (`/2)k−1.

We also have that gk(q(k)) is a decreasing function of k for k > 4 since we have checked
using Maple that the only zero of its derivative is at k ≈ 3.37 and that its derivative is
negative for k > 3.38.

Thus, we get gk(`) < gk(`) 6 gk(q(k)) 6 g5(48) < 1.21973 for all k > 5 and ` > q(k),
and we get g4(`) < g4(`) 6 g4(96) < 1.10773 for all ` > 96. We chose the value 96 to
distinguish between the cases, because it is the smallest value such that the argument
holds.

4.3.3.2 Bound on g4(`) for 24 6 ` 6 95

The second method to bound the size of g4(`) is based on ordinary generating functions
(OGF). Here, k = 4, so let A1, A2, A3, A4 be the four variables of p and let ai be the
number of instances of Ai in p. Therefore, a1 + a2 + a3 + a4 = |p|. Recall that each
variable appears at least twice in p since p is doubled, so ai > 2. Moreover, a factor of
length `, with 24 6 ` 6 95, necessarily corresponds to an occurrence of a pattern of length
between 24 and 95. So we just have to consider patterns p with 24 6 |p| 6 95.

Given Li = {z1, z2, z3} an element of L corresponding to hi(p), we have |hi(A1)| = z1,

|hi(A2)| = z2−z1, |hi(A3)| = z3−z2 and |hi(A4)| = |hi(p)|−(a1|hi(A1)|+a2|hi(A2)|+a3|hi(A3)|)
a4

. Let

Ap =
∑

j>|p| bj x
j be the OGF of such sets L′, i.e. bj is the number of 3-sets {z1, z2, z3}

that corresponds to a factor of length j formed by an occurrence of p. In other words, bj
is the number of 4-tuples (`1, `2, `3, `4) such that a1×`1+a2×`2+a3×`3+a4×`4 = j and
with `i > 1 (since each variable of p corresponds to a non-empty word). So by definition

of h4, we have h4(`) = b` and thus g4(`) = b
1
`
` .

This kind of OGF has been studied and is similar to the well-known problem of
counting the number of ways you can change a dollar [11]: you have only five types
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of coins (pennies, nickels, dimes, quarters, and half dollars) and you want to count the
number of ways you can change any amount of cents. So, let C =

∑
j>1 cj x

j be the
OGF of the problem and thus any cj is the number of ways you can change j cents.
Then, for example, c100 corresponds to the number of ways you can change a dollar. Here,
C = 1

1−x ×
1

1−x5 ×
1

1−x10 ×
1

1−x25 ×
1

1−x50 .
In our case, we have four coins with value a1, a2, a3, and a4 respectively (so we can

have different types of coins with the same value) and each type of coins appears at least
once (since `i > 1). Thus we get Ap =

∑
j>|p| bj x

j = xa1
1−xa1 ×

xa2
1−xa2 ×

xa3
1−xa3 ×

xa4
1−xa4 . We

use Maple for our computation. For each 24 6 |p| 6 95, for each 4-tuple (a1, a2, a3, a4)
such that

∑
ai = |p|, we consider the associated OGF Ap and we compute, using Maple,

the truncated series expansion up to the order 95, that gives Ap = b24x
24 + b25x

25 + . . .+
b95x

95 + O(x96) with explicit values for the coefficients bj. So, for any 24 6 ` 6 95, g4(`)

is upper-bounded by the maximum of b
1
`
` taken over all Ap. Maple gives that b

1
`
` is

maximal for |p| = 24, (a1, a2, a3, a4) = (2, 2, 2, 18), and ` = 46: in this case, b46 = 84 (i.e.
there exist 84 distinct 3-sets Li that correspond to some factor of length 46 formed by an
occurrence of a pattern of length 24 where three variables appear twice and one variable
appears 18 times). So, g4(`) 6 84

1
46 < 1.10112 for all 24 6 ` 6 95.

4.3.3.3 Bound on gk(`) for all k > 4

We can deduce from Paragraphs 4.3.3.1 and 4.3.3.2 the following.
If k = 4, then g4(`) < 1.10112 for 24 6 ` 6 95 and g4(`) < 1.10773 for ` > 96. So for

k = 4, we have |LD| < (1.10773)t.
If k > 5, then gk(`) < 1.21973 for ` > q(k). So for k > 5, we have |LD| < (1.21973)t.

4.4 End of the proof

The bounds on |LD| obtained in Subsection 4.3.3 hold for any fixed D ∈ D. So they also
hold for maxD∈D |LD|.

Aggregating the above analysis, we get the following. For k > 5, we have q(k) > 48:
then |R| 6 |D| ×maxD∈D |LD| × |X | 6 (1.15685× 1.21973×

√
2)t = o(2t). For k = 4, we

have q(k) > 24: then |R| 6 |D|×maxD∈D |LD|×|X | 6 (1.27575×1.10773×
√

2)t = o(2t).
Thus for all k > 4, |R| = o(2t) and so we obtain the desired contradiction:

2t = |V| 6 |O| 6 2n × |R| = 2n × o(2t) = o(2t).

5 Conclusion

In our results, we heavily use the fact that the patterns are doubled. The fact that the
patterns are long is convenient for our proofs but does not seem so important. So we
ask whether every doubled pattern is 3-avoidable. By the remarks in Section 1 and by
Lemma 4, the only remaining cases are doubled patterns with 4 and 5 variables. Also,
does there exist a finite k such that every doubled pattern with at least k variables is
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2-avoidable ? Using the standard backtracking algorithm, we have checked by computer
that ABCCBADD is not 2-avoidable. So we know that such a k is at least 5.
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