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Abstract

For a fixed graph H with t vertices, an H-factor of a graph G with n vertices,
where t divides n, is a collection of vertex disjoint (not necessarily induced) copies of
H in G covering all vertices of G. We prove that for a fixed tree T on t vertices and
ε > 0, the random graph Gn,p, with n a multiple of t, with high probability contains
a family of edge-disjoint T -factors covering all but an ε-fraction of its edges, as long
as ε4np � log2 n. Assuming stronger divisibility conditions, the edge probability
can be taken down to p > C logn

n . A similar packing result is proved also for pseudo-
random graphs, defined in terms of their degrees and co-degrees.
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1 Introduction

Let H be a graph with t vertices and let n be divisible by t. We say that a graph
G = (V,E) with n vertices has an H-factor if there exist vertex disjoint subgraphs (not
necessarily induced) of G, H1, . . . , Hn/t, which are all isomorphic to H. Note that the
vertex disjointness implies that the vertex set of the H-factor, H1 ∪ · · · ∪Hn/t, is equal to
V . H-factors have been an important object in the study of random graphs. Indeed, the
most basic instance, a K2-factor, corresponds to a perfect matching. Erdős and Rényi [3]
proved in 1966 that if p = logn+ω

n
, with ω →∞ and n even, then the Erdős-Rényi-Gilbert

random graph, Gn,p has a perfect matching whp1. In 1981, Shamir and Upfal [17] proved a

general result which implies that if p = logn+(r−1) log logn+ω
n

, with ω →∞ arbitrarily slowly,
and n even, then Gn,p contains r edge-disjoint perfect matchings whp. In this range of
p, the minimum degree of Gn,p is r whp, so the result is optimal.  Luczak and Ruciński
[15], as a corollary of a more technical result, proved that for any tree T , if p = logn+ω

n

with ω →∞, and n is divisible by |T |, then Gn,p has a T -factor whp. As an analogue to

the theorem of Shamir and Upfal, Kurkowiak [14] proved that if p = logn+(r−1) log logn+ω
n

with ω →∞, then Gn,p contains r edge-disjoint T -factors whp.
The study of optimal and near-optimal packings of spanning objects in graphs and

hypergraphs is an area of much active research. Recently, the case of Hamilton cycles (sim-

ple spanning cycles) has been the subject of many papers. When p = logn+(2r−1) log logn+ω
n

where ω → ∞, Bollobás and Frieze [2] proved in 1985 that Gn,p contains r edge-disjoint
Hamilton cycles whp. In [4], Frieze and Krivelevich conjectured that for any 0 < p =
p(n) 6 1, Gn,p contains bδ/2c edge-disjoint Hamilton cycles whp, where δ represents the
minimum degree. The conjecture was solved in the series of papers [5],[11],[12] and [13].
In intermediate papers such as [4] and [10], the notion of approximate or almost optimal
packings was studied. The results in these papers state that for certain ranges for p, all
but a vanishing fraction of the edges of Gn,p can be covered with edge-disjoint Hamilton
cycles.

In this work, we investigate when all but a vanishing fraction of the edges of random
and pseudo-random graphs be covered with edge-disjoint T -factors, for a fixed tree T . We
begin by introducing the notion of pseudo-randomness which we will use in this paper.

Definition 1.1. Let G = (V,E) be a graph with n vertices. We say G is (ε, p)-regular
if the following 2 conditions hold:

• d(v) > (1− ε)np for every vertex v.

• d(u, v) 6 (1 + ε)np2 for every pair of distinct vertices u and v.

Here, d(v) denotes the degree of vertex v, and d(u, v) denotes the co-degree of u and v, i.e.,
the number of neighbors common to both u and v. We will also write dS(v) and dS(v, w)
to refer to the degree and the co-degree into a set S of vertices. Our pseudo-randomness
conditions are localized, and this is in part necessary because we are packing spanning
structures. Nevertheless, these conditions are satisfied whp by Gn,p, for appropriately

1An event En occurs with high probability, or whp, if limn→∞ P [En] = 1.
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chosen ε. Indeed, by the standard Chernoff bound, stated as Theorem 2.1 in the next
section:

P [Gn,p is not (ε, p)-regular]

< nP [Bin [n− 1, p] < (1− ε)np] + n2P
[
Bin

[
n− 2, p2

]
> (1 + ε)np2

]
= o(1) ,

as long as ε2np2 � log n. (In this paper, we will write An � Bn when An/Bn →∞ with
n.) Our theorem for (ε, p)-regular graphs is then as follows.

Theorem 1. Let T be a fixed tree with t vertices, and let G be an (ε, p)-regular graph on n
vertices, with n a multiple of t. If ε, n and p satisfy ε6np4 � log3 n then for n sufficiently
large, G contains a collection of edge-disjoint T -factors covering all but 2ε1/3-fraction of
its edges.

For random graphs, we have two results. Let P(ε) be the graph property that all but
an O(ε)-fraction of the edges of a graph may be np is above a certain power of n, random
graphs Gn,p can be almost packed with tree-factors. That initial range is not optimal, and
resembles the barrier which was hit during the investigation of Hamilton cycle packing in
random structures (see, e.g., [1], [4], and [7]). Using additional properties of Gn,p, we are
able to push the result to smaller p.

Theorem 2. Let T be a fixed tree with t vertices. If ε, n, and p satisfy ε4np � log2 n,
then Gn,p, with n a multiple of t, satisfies P(ε) whp.

This range of p (� log2 n
n

) is still probably not optimal, and in the context of Hamilton
cycle packing, it took further developments to remove the last logarithmic factors. For
tree-factor packing, however, it turns out that we can circumvent this obstacle. In the
following theorem, we improve the range of p to asymptotically best possible, subject to
an additional divisibility condition on n, which we suspect to be an artifact of our proof
technique.

Theorem 3. Given any t-vertex tree T and any positive real ε, there exists an integer τ0
such that for any τ > τ0 satisfying t | τ , there is a real constant C such that for p > C logn

n
,

the random graph Gn,p satisfies P(ε) whp for τ | n.

The complexity of the above result stems from the fact that it is stated in greater
generality. Indeed, note that if one applies it with the particular choice τ = τ0, then the
conclusion is that there is a real C0 such that Gn,p satisfies P(ε) whp for τ0 | n, when
p > C0 logn

n
. This is within a factor (C0) of the best possible result, and the divisibility

condition is also off by a factor (ideally, it would only require t | n). Although it may be
more challenging to eliminate C0, we conjecture that perhaps it may not be as difficult to
relax the divisibility condition.

Conjecture 1. Given any t-vertex tree T and any positive real ε, there exists a real
constant C such that for p > C logn

n
, the random graph Gn,p satisfies P(ε) whp for t | n.
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Throughout our exposition, we will implicitly assume that ε is sufficiently small and n
is sufficiently large. The following (standard) asymptotic notation will be utilized exten-
sively. For two functions f(n) and g(n), we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0,
and f(n) = O(g(n)) if there exists a constant M such that |f(n)| 6M |g(n)| for all suffi-
ciently large n. We also write f(n) = Θ(g(n)) if both f(n) = O(g(n)) and g(n) = O(f(n))
are satisfied. We also write A = (1±ε)B to mean (1−ε)B 6 A 6 (1+ε)B. All logarithms
will be in base e ≈ 2.718.

2 Concentration inequalities

For the reader’s convenience, we record in this section the two large-deviation bounds
which we will use in this paper. We will appeal to the following version of the Chernoff
bound, which can be found, for example, as Corollary 2.3 in the book by Janson,  Luczak,
and Ruciński [9].

Theorem 2.1. Let X be a binomial random variable with mean µ, and let 0 < ε < 1.
Then

P [|X − µ| > εµ] 6 2e−ε
2µ/3 .

The previous result establishes concentration of a random variable defined over a
product space. In this paper, we will also encounter a particular non-product space.
For that, we use the following concentration bound which applies in the setting where
the probability space is the uniform distribution over permutations of n elements. For a
proof, we refer the reader to [8] or [16].

Theorem 2.2. Let X be a random variable determined by a uniformly random permuta-
tion on n elements, and let C be a real number. Suppose that whenever σ, σ′ ∈ Sn differ
by a single transposition, |X(σ)−X(σ′)| 6 C. Then,

P [|X − E [X]| > t] 6 2 exp

{
− 2t2

C2n

}
.

3 Proof of Theorem 1

Let G = (V,E) be a graph on vertex set V = [n], and suppose t divides n with ν = n/t.
Let T = (VT , ET ) be a fixed tree on vertex set VT = [t]. Let σ be a permutation of [n].
Let Gσ = (Vσ, Eσ) be the t-partite subgraph of G with vertex set

Vσ = Vσ,1 ∪̇Vσ,2 ∪̇ · · · ∪̇Vσ,t

where Vσ,i = {σ((i− 1)ν + 1), . . . , σ(iν)} for i = 1, . . . , t. The edge set is defined as

Eσ = {(u, v) ∈ E : ∃i, j ∈ [t], with (i, j) ∈ ET and u ∈ Vσ,i, v ∈ Vσ,j} .

In words, we use σ to define a partition of V into t parts, corresponding to the vertices of
T , and we keep the edges of G which connect two parts corresponding to the endpoints
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of an edge of T . We also separately define G′σ as the subgraph of G where we keep edges
between all pairs (Vσ,i, Vσ,j), but still delete the edges within the Vσ,i.

The resulting Gσ looks like a “blown-up” version of T . We call a pair (Vσ,i, Vσ,j) a
super-edge if (i, j) ∈ ET , and we say that it is an (ε, p)-regular pair if

• for all v ∈ Vσ,i and w ∈ Vσ,j, dVσ,j(v), dVσ,i(w) > (1− ε)νp, and

• for all v, w ∈ Vσ,i and v′, w′ ∈ Vσ,j, dVσ,j(v, w), dVσ,i(v
′, w′) 6 (1 + ε)νp2.

We say that Gσ is an (ε, p)-regular blow up of T if every super-edge is an (ε, p)-regular
pair. Conveniently, if we take an (ε, p)-regular graph G, and uniformly sample a random
permutation σ of [n], then we typically preserve the regularity across super-edges in Gσ.
Formally, we have:

Lemma 3.1. Let G be an (ε, p)-regular graph on n vertices with n divisible by t and
ν = n/t. Suppose that ε2np4 � log n. Let σ be a uniformly random permutation on n
elements, and define Gσ as above. Then with probability 1−o(n−1), Gσ is a (2ε, p)-regular
blow up of T .

Proof. We will show that all pairs (Vσ,i, Vσ,j) in G′σ are (2ε, p)-regular pairs, which obvi-
ously implies the result for Gσ since Gσ and G′σ agree on super-edges. We first show that
all degrees are typically correct. Let v be an arbitrary vertex and expose only the position
of v under σ. Suppose this reveals that v ∈ Vσ,i. Consider the pair (Vσ,i, Vσ,j) in G′σ for
any j 6= i. Let Nv := dVσ,j(v) and note that this is a random variable whose randomness
comes from the permutation σ. Conditioned on the position of v, σ is a uniform random
permutation on the n − 1 remaining vertices and so every other vertex has probability
n/t
n−1 = ν

n−1 of being in Vσ,j. We also know that dG(v) > (1 − ε)np by (ε, p)-regularity, so
E [Nv] > (1− 1.5ε)νp.

For concentration we apply Theorem 2.2 to Nv. Note that transposing two elements
of σ can only change Nv by at most 1. So the probability that Nv differs from its mean
by more than .5ενp is bounded above by

2 exp

{
−2 (.5ενp)2

n− 1

}
= o(n−K)

for any positive constant K as long as ε2np2 � log n. So taking a union bound over all
vertices and choices of j for Vσ,j, we have the degree conclusion of the lemma.

For co-degrees, we proceed similarly. Let v and w be arbitrary vertices and expose the
positions of these two vertices under σ. Suppose this reveals that v ∈ Vσ,i and w ∈ Vσ,j.
Let k ∈ [t] be distinct from i and j. Note that we are really only concerned with the
case when i = j and (Vσ,i, Vσ,k) is a super-edge, but this does not matter much. Let Nv,w

be the co-degree of v and w into Vσ,k in G′σ. Conditioned on the positions of v and w, σ
is a uniform random permutation on the n − 2 remaining vertices, so every other vertex
has probability ν

n−2 of being in Vσ,k. Also dG(v, w) 6 (1 + ε)np2 by (ε, p)-regularity, so
E [Nv,w] 6 (1 + 1.5ε)νp2.
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Applying Theorem 2.2, we have Nv,w 6 (1+2ε)νp2 with probability at least 1−o(n−K)
for any positive constant K as long as ε2np4 � log n. Taking a union bound over pairs of
vertices and choices of k for Vσ,k, we have the co-degree conclusion of the lemma.

We now define a procedure for generating edge-disjoint subgraphs of an (ε, p)-regular
graph G, each of which looks something like a Gσ.

Procedure 1. This procedure takes as input a graph G = (V,E) on n vertices with n
divisible by t. Let

r =
30

ε2
t2

t− 1
log n,

and perform the following steps.

P1 Generate r independent uniformly random permutations σ1, . . . , σr of [n]. Construct
G1 = Gσ1 , . . . , Gr = Gσr as described above.

P2 For each edge e ∈ E, let Le = {i : e ∈ Gi}. If Le 6= ∅, select a uniformly random
element i of Le, and label e with i.

P3 Let Ĝi = (V̂i, Êi) be the subgraph of Gi consisting of all edges which received label i.

Note that the Ĝi’s are now edge-disjoint by construction. Our goal will be to prove
that the Ĝi’s have regularity properties similar to those of the Gi’s, but with larger ε and
smaller p.

Lemma 3.2. Run Procedure 1 on an (ε, p)-regular graph G with n vertices, where n is
divisible by t. Then with probability 1 − o(n−1), each edge e ∈ G appears in (1 ± ε)κ of
the Gi’s, where

κ =
60

ε2
log n =

2(t− 1)

t2
r.

Proof. We first compute the probability q that an edge e = (v, w) appears in Gσ, when σ
is a uniformly random permutation. Then if we let Xe be the random variable counting
the number of Gi’s which contain e, by the independence of the permutations σ1, . . . , σr,
we have that Xe is distributed as Bin[r, q].

The edge e appears in Gσ if and only if e is part of a super-edge. Let (i, j) be a fixed
edge of T . The probability that e crosses (Vσ,i, Vσ,j) is 2

t2
n
n−1 . To see this, expose the

position of v under σ. Then v lies in Vσ,i or Vσ,j with probability 2 · n/t
n

. Conditioning, on

this, the probability that w lands in the other set is n/t
n−1 . There are t− 1 edges of T , and

the events corresponding to e belonging to different super-edges are mutually disjoint. So
we have

q =
2(t− 1)

t2

(
1 +

1

n− 1

)
,

which implies that

E [Xe] = rq =
60

ε2
log n

(
1 +

1

n− 1

)
,
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and by Theorem 2.1, the probability that Xe differs from its mean by more than .5εrq is
bounded above by

exp

{
−(.5ε)2

3
rq

}
= o(n−3).

Hence with probability at least 1 − o(n−1), every edge is contained in (1 ± ε)60
ε2

log n of
the Gi’s.

Lemma 3.3. Suppose that ε6np4 � log3 n. Then after Step P3 of Procedure 1, with
probability 1− o(1), each Ĝi is a (7ε, p

κ
)-regular blow up of T .

Proof. Since r = Θ(log n/ε2) = o(n), by our assumptions on n, p and ε, we may assume
that at the beginning of step P3, each of G1, . . . , Gr is a (2ε, p)-regular blow up of T and
each edge of G appears in (1± ε)κ of the Gi’s.

Now consider a single Ĝi. We will show that with sufficiently high probability, this
is a (7ε, p

κ
)-regular blow up of T . This means we must show that across super-edges, all

degrees and co-degrees are very typically correct. The super-edges of Ĝi are the same as
those in Gi, but the edge density is lower by a factor of approximately κ since each edge
of Gi chose to be in Ĝi with probability approximately 1/κ.

Let v be an arbitrary vertex of Ĝi, and let N̂v represent the degree of v across a super-
edge in Ĝi. If we let Zv represent the degree of v across this super-edge in Gi, then since
Gi is a (2ε, p)-regular blow up of T , we have that Zv > (1− 2ε)νp. Each of these Zv edges

is included in Ĝi independently with probability 1
(1±ε)κ . So N̂v stochastically dominates

the distribution

Bin

[
Zv,

1

(1 + ε)κ

]
.

Thus
E
[
N̂v

]
> (1− 4ε)ν

p

κ
,

and Theorem 2.1 tells us that
N̂v > (1− 6ε)ν

p

κ

with probability 1− o(n−K) for any positive constant K as long as

ε2n
p

κ
� log n ⇐⇒ ε4np� log2 n.

Now for co-degrees, we let v, w be vertices in Ĝi and let N̂v,w represent the co-degree of

v and w across a super-edge in Ĝi. We let Zv,w represent the co-degree of v and w across
this super-edge in Gi. Applying (2ε, p)-regularity of Gi, we have that Zv,w 6 (1 + 2ε)νp2.

Each of these vertices remains a common neighbor of v and w in Ĝi with probability(
1

(1±ε)κ

)2
, so N̂v,w is stochastically dominated by

Bin

[
Zv,w,

(
1

(1− ε)κ

)2
]
.
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Thus

E
[
N̂v,w

]
6 (1 + 5ε)ν

(p
κ

)2
and Theorem 2.1 gives that

N̂v,w 6 (1 + 7ε)ν
(p
κ

)2
with probability 1− o(n−K) for any positive constant K as long as

ε2n
(p
κ

)2
� log n ⇐⇒ ε6np2 � log3 n.

Taking a union bound over choices of vertices, super-edges and Ĝi, we conclude that with
probability 1− o(1) each Ĝi is a (7ε, p

κ
)-regular blow-up of T .

To prove Theorem 1, we will apply the following result of Frieze and Krivelevich, which
shows that any (ε, p)-regular pair can have almost all of its edges covered by edge-disjoint
perfect matchings.

Lemma 3.4 (Frieze, Krivelevich [6]). Suppose (A,B) is an (η, d)-regular pair with |A| =
|B| = ν and η4/3d2ν � 1 for some small value η � 1. Then (A,B) contains a collection
of (1− η1/3)dν edge-disjoint perfect matchings.

Proof of Theorem 1. Let G be an (ε, p)-regular graph on n vertices with ε6np4 � log3 n.
Apply Procedure 1. Our conditions on ε, p, and n allow us to apply Lemma 3.3 and to
conclude that at the end of Step P3 of Procedure 1, every Ĝi is a (7ε, p

κ
)-regular blow up

of T . We also have that each edge of G appears in exactly one of the Ĝi.
Consider one of the Ĝi, and call its t− 1 super-edges Q1, . . . , Qt−1. On each of these

super-edges, we apply Lemma 3.4 with ν = n/t, η = 7ε and d = p
κ
. Then we have that

each Qj contains a collection of edge-disjoint perfect matchings Mj of size at least

s := (1− (7ε)1/3)
p

κ

n

t
.

Now select arbitrary matchings M1 ∈M1,M2 ∈M2, . . . ,Mt−1 ∈Mt−1. Observe that

M1 ∪M2 ∪ · · · ∪Mt−1

is a T factor since the super-edge structure of Ĝi is isomorphic to T . We may thus extract
at least s edge-disjoint T -factors from Ĝi. Indeed, we may do this for each of Ĝ1, . . . , Ĝr.
Tree factors extracted from distinct Ĝi are edge-disjoint.

In total, the number of edges covered by these tree factors is at least

s · n
t
· (t− 1) · r = (1− (7ε)1/3)

n2

2
p ,

while the (ε, p)-regularity of G tells us that G had at most (1 + ε)n
2

2
p edges total. So, the

total fraction covered is at least

1− (7ε)1/3

1 + ε
> 1− 2ε1/3 ,

as long as ε is sufficiently small.
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4 Proof of Theorem 2

Direct application of Theorem 1 for pseudo-random graphs gives a packing result for
random graphs with p � n−1/4 log3/4 n. In this section, we use additional properties

of random graphs to improve the range of p to p � log2 n
n

. For this, we will apply the
following result, which is an analogue of Lemma 3.4 for the fully random graph setting.

Lemma 4.1 (Frieze, Krivelevich [6]). Let G be a random bipartite graph with sides A,B
of size |A| = |B| = ν, where each edge appears independently with probability at least
p = p(ν). Assume that p(ν) � log ν

ν
. Then with probability 1 − o(ν−1), G contains a

family of (1− δ)νp edge-disjoint perfect matchings, where

δ =

(
16 log ν

νp

)1/2

.

Proof of Theorem 2. The proof of this theorem is essentially identical to that in the pre-
vious section. Run Procedure 1 on a random graph G = Gn,p with n a multiple of t,
and let ν = n/t. Since G is random, after Step P1, each super-edge of each Gi is a copy
of Bν,ν,p, the random bipartite graph with parts of size ν and edge probability p. The
proof of Lemma 3.2 applied to Gn,p instead of an (ε, p)-regular graph gives us that with
probability 1− o(n−1), each edge appears in (1± ε)κ of the Gi’s where κ = 60

ε2
log n.

Conditioning on this, we see that after Step P3 of Procedure 1, in a particular Ĝi,
across a super-edge (A,B), each pair (a, b), a ∈ A, b ∈ B is an edge of Ĝi with probability
at least

q := p · 1

(1 + ε)κ
� log n

n
= Θ

(
log ν

ν

)
.

So, we may apply Lemma 4.1 to each of the (t − 1)r super-edges in the Ĝi’s. Since
(t− 1)r � ν, we have that whp, each of the (t− 1)r super-edges satisfies the conclusion
of the lemma.

Consider one of the Ĝi’s and suppose that we call its t− 1 super-edges Q1, . . . , Qt−1.
Then we have that each Qj contains a collection of edge-disjoint perfect matchings Mj

of size at least
s := (1− δ)qν.

Note that δ is bounded by (
16 log ν

ν p
(1+ε)κ

)1/2

= O(ε).

As before, selecting arbitrary matchings M1 ∈ M1,M2 ∈ M2, . . . ,Mt−1 ∈ Mt−1 gives a
T -factor

M1 ∪M2 ∪ · · · ∪Mt−1.

We may thus extract at least s edge-disjoint T -factors from Ĝi and do this for each of
Ĝ1, . . . , Ĝr. In total, the number of edges covered will be at least

s · ν · (t− 1) · r = (1−O(ε))
n2

2
p
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which is the desired number of edges since the graph has at most (1 + ε)
(
n
2

)
p edges total

whp by Theorem 2.1.

5 Proof of Theorem 3

We conclude by introducing a different argument which “bootstraps” Theorem 1 to drive
the range of p all the way down to about logn

n
. Note that this is essentially the limit, be-

cause for p below logn
n

, the random graph typically contains isolated vertices, and therefore
finding even a single T -factor would be impossible.

Proof of Theorem 3. Let τ1 be the smallest value of τ for which Theorem 1 applies for
(ε3, 1)-regular graphs on τ vertices. Let τ0 = max{τ1, ε−3}, and assume that τ > τ0, with
t | τ . Define C = τε−2. The idea of the proof is to first split the vertex set of G ∼ Gn,p

into τ parts V1 ∪ · · · ∪ Vτ of size ` each. We then think of these parts as vertices of the
complete graph on τ vertices and note that the complete graph Kτ is a (δ, 1)-regular graph
for any δ > 1/τ . We apply Theorem 1 to find a collection of edge-disjoint T -factors which
cover almost all the edges of Kτ . Each edge appearing in a T -factor of Kτ corresponds to
a random bipartite graph B`,`,p in G. To each such bipartite graph we apply Lemma 4.1.
We must show that the total number of edges covered is at least (1−O(ε))

(
n
2

)
p since by

Theorem 2.1, Gn,p has at most (1 + ε)
(
n
2

)
p edges total whp.

We now analyze this procedure quantitatively. We fail to cover edges in three ways:
when they are within a single Vi, when they are between a pair (Vi, Vj) which is not
covered by a T -factor, and when they are within a T -factor edge, but missed by Lemma
4.1. We must ensure that the total fraction missed is O(ε). To this end, note that the
first omission loses only at most 1

τ
-fraction of the edges, while the second loses at most

2δ1/3-fraction of the edges by Theorem 1. Therefore, as long as τ > τ0 = ε−3 (which
implies that Kτ is (δ, 1)-regular with δ = ε3), the total loss from the first two types is only
O(ε). Note that this bounded loss is completely deterministic.

We control the third type of omission using the randomness in Gn,p. The bipartite
graph between every pair (Vi, Vj) covered by a T -factor in Kτ is a copy of the random
bipartite graph B`,`,p. If we apply Lemma 4.1 to such a graph, we obtain a collectionMi,j

of at least

(
1−

(
16 log `
`p

)1/2)
`p edge-disjoint matchings with probability 1−o(`−1). Since

we are proving that Gn,p satisfies P(ε) whp, τ is a constant while n→∞, and therefore
τ 2 � `; a union bound then implies that whp, every pair (Vi, Vj) from the T -factor of Kτ

contains such a collection Mi,j. As in the proofs of our other two results, these perfect
matchings combine to form T -factors of the full n-vertex graph. It therefore remains only
to show that the fractional loss can be kept below O(ε). For this, we use p > C logn

n
, and

simplify: (
16 log `

`p

)1/2

<

(
16 log `

`C log(τ`)
τ`

)1/2

= O

(( τ
C

)1/2)
= O(ε) ,

since C = τε−2.
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[15] Tomasz  Luczak and Andrzej Ruciński. Tree-matchings in graph processes. SIAM J.
Discrete Math., 4(1):107–120, 1991.

[16] Colin McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete
Mathematics, volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin,
1998.

[17] E. Shamir and E. Upfal. On factors in random graphs. Israel J. Math., 39(4):296–302,
1981.

the electronic journal of combinatorics 21(2) (2014), #P2.8 11

http://dx.doi.org/10.1002/rsa.20510

	Introduction
	Concentration inequalities
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

