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Abstract

We obtain a very simple formula for the generating function of bipartite (resp.
quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which
generalizes certain expressions obtained by Eynard in a book to appear. The formula
is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with
a process (reminiscent of a construction of Pitman) of aggregating connected compo-
nents of a forest into a single tree. The formula naturally extends to p-constellations
and quasi-p-constellations with boundaries (the case p = 2 corresponding to bipar-
tite maps).

Keywords: bijections; planar maps; enumeration

1 Introduction

Planar maps, i.e., connected graphs embedded on the sphere, have attracted a lot of
attention since the seminal work of Tutte [21, 22]. By considering rooted maps (i.e., maps
where a corner is marked 1) and using a recursive approach, Tutte found beautiful counting
formulas for many families of maps (bipartite, triangulations,...). Several features occur
recurrently (see [3] for a unified treatment): the generating function y = y(x) is typically
algebraic, often lagrangean (i.e., there is a parametrization as {y = Q1(t), x = Q2(t)},
where Q1(.) and Q2(.) are explicit rational expressions), yielding simple (binomial-like)
formulas for the counting coefficients cn, and the asymptotics of the coefficients is in
c γnn−5/2 for some constants c > 0 and γ > 1. In this article we firstly focus on bipartite

1In the literature, rooted maps are often defined as maps with a marked oriented edge, which is
equivalent to marking a corner, e.g., the corner to the left of the origin of the marked edge.
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maps (all faces have even degree) and on quasi-bipartite maps (all faces have even degree
except for two, which have odd degree): see Figure 1. One of the first counting results
obtained by Tutte is a strikingly simple formula (called formula of slicings) for the number
A[`1, . . . , `r] of maps with r numbered faces f1, . . . , fr of respective degrees `1, . . . , `r, each
face having a marked corner (for simple parity reasons the number of odd `i must be even).

f1

f2

f3

f1

f2

(a) (b)

Figure 1: (a) A bipartite map with 2 boundaries f1, f2 of respective degree 4, 6. (b) A
quasi-bipartite map with 3 boundaries f1, f2, f3 of respective degree 5, 3, 4.

Solving a technically involved recurrence satisfied by these coefficients, he proved in [21]
that when none or only two of the `i are odd (bipartite and quasi-bipartite case, respec-
tively), then:

A[`1, . . . , `r] =
(e− 1)!

v!

r∏

i=1

α(`i), with α(`) :=
`!

b`/2c!b(`− 1)/2c! , (1)

where e =
∑r

i=1 `i/2 and v = e − r + 2 are the numbers of edges and vertices in such
maps. The formula was recovered by Cori [11, 12] (using a certain encoding procedure
for planar maps); and the formula in the bipartite case was rediscovered bijectively by
Schaeffer [19], based on a correspondence with so-called blossoming trees. Alternatively
one can use a more recent bijection by Bouttier, Di Francesco and Guitter [7] (based on a
correspondence with so-called mobiles) which itself extends earlier constructions by Cori
and Vauquelin [13] and by Schaeffer [18, Sec. 6.1] for quadrangulations. The bijection with
mobiles yields the following: if we denote by R ≡ R(t) ≡ R(t;x1, x2, . . .) the generating
function specified by

R = t+
∑

i>1

xi

(
2i− 1

i

)
Ri. (2)

and denote by M(t) ≡ M(t;x1, x2, . . .) the generating function of rooted bipartite maps,
where t marks the number of vertices and xi marks the number of faces of degree 2i
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for i > 1, then M ′(t) = 2R(t). And one easily recovers (1) in the bipartite case by an
application of the Lagrange inversion formula to extract the coefficients of R(t).

As we can see, maps might satisfy beautiful counting formulas, regarding counting
coefficients 2. Regarding generating functions, formulas can be very nice and compact
as well. In a book to be published [14], Eynard gives an iterative procedure (based on
residue calculations) to compute the generating function of maps of arbitrary genus and
with several marked faces, which we will call boundary-faces (or shortly boundaries). In
certain cases, this yields an explicit expression for the generating function. For example,
he obtains formulas for the (multivariate) generating functions of bipartite and quasi-
bipartite maps with two or three boundaries of arbitrary lengths `1, `2, `3 (in the quasi-
bipartite case two of these lengths are odd), where t marks the number of vertices and xi
marks the number of non-boundary faces of degree 2i:

G`1,`2 = γ`1+`2

b`2/2c∑

j=0

(`2 − 2j)
`1!`2!

j!( `1−`2
2

+ j)!( `1+`2
2
− j)!(`2 − j)!

, (3)

G`1,`2,`3 =
γ`1+`2+`3−1

y′(1)

(
3∏

i=1

`i!

b`i/2c! b(`i − 1)/2c!

)
. (4)

In these formulas the series γ and y′(1) are closely related to R(t), precisely γ2 = R(t)
and one can check that y′(1) = γ/R′(t).

In the first part of this article, we obtain new formulas which generalize Eynard’s ones
to any number of boundaries, both in the bipartite and the quasi-bipartite case. For r > 1
and `1, . . . , `r positive integers, an even map of type (`1, . . . , `r) is a map with r (numbered)
marked faces —called boundary-faces— f1, . . . , fr of degrees `1, . . . , `r, each boundary-face
having a marked corner, and with all the other faces of even degree. (Note that there is an
even number of odd `i by a simple parity argument.) Let G`1,...,`r := G`1,...,`r(t;x1, x2, . . .)
be the corresponding generating function where t marks the number of vertices and xi
marks the number of non-boundary faces of degree 2i. Our main result is:

Theorem 1. When none or only two of the `i are odd, then the following formula holds:

G`1,...,`r =
( r∏

i=1

α(`i)
)
· 1

s
· dr−2

dtr−2
Rs, (5)

with α(`) =
`!

b `
2
c!b `−1

2
c! , s =

`1 + · · ·+ `r
2

, where R is given by (2).

Our formula covers all parity cases for the `i when r 6 3. For r = 1, the formula reads
G2a

′ =
(
2a
a

)
Ra, which is a direct consequence of the bijection with mobiles. For r = 2

the formula reads G`1,`2 = α(`1)α(`2)R
s/s (which simplifies the constant in (3)). And for

2We also mention the work of Krikun [15] where a beautiful formula is proved for the number of
triangulations with multiple boundaries of prescribed lengths, a bijective proof of which is still to be
found.
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r = 3 the formula reads G`1,`2,`3 = α(`1)α(`2)α(`3)R
′Rs−1. Note that (5) also “contains”

the formula of slicings (1), by noticing that A[`1, . . . , `r] equals the evaluation of G`1,...,`r at

{t = 1;x1 = 0, x2 = 0, . . .}, which equals (
∏r

i=1 α(`i)) · (s−1)!
(s−r+2)!

. Hence, (5) can be seen as
an “interpolation” between the two formulas of Eynard given above and Tutte’s formula
of slicings. In addition, (5) has the nice feature that the expression of G`1,...,`r splits into
two factors: (i) a constant factor which itself is a product of independent contributions
from every boundary, (ii) a series-factor that just depends on the number of boundaries
and the total length of the boundaries.

Even though the coefficients of G`1,...,`r have simple binomial-like expressions (easy
to obtain from (1)), it does not explain why at the level of generating functions the
expression (5) is so simple (and it would not be obvious to guess (5) by just looking
at (1)). Relying on the bijection with mobiles (recalled in Section 2), we give a transparent
proof of (5). In the bipartite case, our construction (described in Section 3) starts from
a forest of mobiles with some marked vertices, and then we aggregate the connected
components so as to obtain a single mobile with some marked black vertices of fixed
degrees (these black vertices correspond to the boundary-faces). The idea of aggregating
connected components as we do is reminiscent of a construction due to Pitman [17],
giving for instance a very simple proof (see [1, Chap. 26]) that the number of Cayley
trees with n nodes is nn−2. Then we show in Section 4 that the formula in the quasi-
bipartite case can be obtained by a reduction to the bipartite case 3 This reduction is done
bijectively with the help of auxiliary trees called blossoming trees. Let us mention that
these blossoming trees have been introduced in another bijection with bipartite maps [19].
We could alternatively use this bijection to prove Theorem 1 in the bipartite case (none
of the `i is odd). But in order to encode quasi-bipartite maps, one would have to use
extensions of this bijection [5, 6] in which the encoding would become rather involved.
This is the reason why we rely on bijections with mobiles, as given in [7].

In the second part of the article, we extend the formula of Theorem 1 to constellations
and quasi-constellations, families of maps which naturally generalize bipartite and quasi-
bipartite maps. Define an hypermap as an eulerian map (map with all faces of even
degree) whose faces are bicolored —there are dark faces and light faces— such that any
edge has a dark face on one side and a light face on the other side 4. Define a p-hypermap
as a hypermap whose dark faces are of degree p (note that classical maps correspond to
2-hypermaps, since each edge can be blown into a dark face of degree 2). Note that the
degrees of light faces in a p-hypermap add up to a multiple of p. A p-constellation is a p-
hypermap such that the degrees of light faces are multiples of p, and a quasi p-constellation
is a p-hypermap such that exactly two light faces have a degree not multiple of p. (See
Figure 2.) By the identification with maps, 2-constellations and quasi 2-constellations

3It would be interesting as a next step to search for a simple formula for G`1,...,`r when four or more
of the `i are odd (however, as noted by Tutte [21], the coefficients do not seem to be that simple, they
have large prime factors).

4Hypermaps have several equivalent definitions in the literature; our definition coincides with the one
of Walsh [16], by turning each dark face into a star centered at a dark vertex; and coincides with the
definitions of Cori and of James [20] where hypervertices are collapsed into vertices.
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correspond respectively to bipartite maps and quasi-bipartite maps.

(a) (b)

f1

f2
f1

f2

f3

Figure 2: (a) A 4-constellation with 2 boundaries f1, f2 of respective degree 8, 4. (b) A
quasi-3-constellation with 3 boundaries f1, f2, f3 of respective degree 4, 5, 6.

Bouttier, Di Francesco and Guitter [7] also described a bijection for hypermaps, in
correspondence with more involved mobiles (recalled in Section 5.1). When applied
to p-constellations, this bijection yields the following: if we denote by Rp = Rp(t) =
Rp(t;x1, x2, . . .) the generating function specified by

Rp = t+
∑

i>1

xi

(
pi− 1

i

)
R(p−1)i

p . (6)

and by Cp(t) = Cp(t;x1, x2, . . .) the generating function of rooted p-constellations (i.e.,
p-constellations with a marked corner incident to a light face) where t marks the number
of vertices and xi marks the number of light faces of degree pi for i > 1, then the bijection
of [7] ensures that C ′p(t) = p

p−1Rp(t).
We use this bijection and tools from Sections 3 and 4 to obtain the following formula for

the generating function of constellations (proved in Section 5.2) and quasi-constellations

(proved in Section 5.3). Let G
(p)
`1,...,`r

:= G
(p)
`1,...,`r

(t;x1, x2, . . .) be the generating function
of p-hypermaps with r (numbered) boundaries f1, . . . , fr of degrees `1, . . . , `r, whose non-
marked faces have degrees a multiple of p, where t marks the number of vertices and xi
marks the number of non-boundary faces of degree pi. Then:

Theorem 2. When none or only two of the `i are not multiple of p, then the following
formula holds:

G
(p)
`1,...,`r

=
( r∏

i=1

α(`i)
)
· c
s
· dr−2

dtr−2
Rs

p, (7)

where α(`) =
`!

b`/pc! (`− b`/pc − 1)!
, s =

p− 1

p
(`1 + · · ·+ `r), Rp is given by (6),

and c =

{
1, when every `i is a multiple of p,
p− 1, when exactly two `i are not multiple of p.
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First note that Theorem 1 is the direct application of Theorem 2 when p = 2. More-
over, this yields the following extension of Tutte’s slicing formula:

Corollary 3. For p > 2, let A(p)[`1, . . . , `r] be the number of p-hypermaps with exactly
r numbered light faces f1, . . . , fr of respective degrees `1, . . . , `r, each light face having a
marked corner.
When none or only two of the `i are not multiple of p (p-constellations and quasi-p-
constellations, respectively), then:

A(p)[`1, . . . , `r] = c
(ε− d− 1)!

v!

r∏

i=1

α(`i), with α(`) :=
`!

b`/pc!(`− b`/pc − 1)!
, (8)

where ε =
∑r

i=1 `i is the number of edges, d =

∑r
i=1 `i
p

is the number of dark faces, and

v = ε− d− r + 2 is the number of vertices,

and c =

{
1, when every `i is a multiple of p,
p− 1, when exactly two `i are not multiple of p.

One gets (8) out of (7) by taking the evaluation of G
(p)
`1,...,`r

at {t = 1; x1 = 0, x2 =

0, . . .}. The expression of the numbers A(p)[`1, . . . , `r] when all `i are multiples of p has
been discovered by Bousquet-Mélou and Schaeffer [4], but to our knowledge, the expression
for quasi-constellations has not been given before (though it could also be obtained from
Chapuy’s results [9], see the paragraphs after Lemma 10 and Lemma 22).

Note. This is the full version of a conference paper [10] entitled “A simple formula for the
series of bipartite and quasi-bipartite maps with boundaries” presented at the conference
FPSAC’12. In particular we extend here the formulas obtained in [10] to constellations and
quasi-constellations. We would like to mention that very recently Bouttier and Guitter [8]
have found extensions of the formulas from [10] in another direction, to so-called 2b-
irreducible bipartite maps (maps with all faces of degrees at least 2b and where all non-
facial cycles have length at least 2b+ 2).

Notation. We will often use the following notation: for A and B two (typically infinite)
combinatorial classes and a and b two integers, write a · A ' b · B if there is a “natural”
a-to-b correspondence between A and B (the correspondence will be explicit each time
the notation is used) that preserves several parameters (which will be listed when the
notation is used, typically the correspondence will preserve the face-degree distribution).

2 Bijection between vertex-pointed maps and mo-

biles

We recall here a well-known bijection due to Bouttier, Di Francesco and Guitter [7]
between vertex-pointed planar maps and a certain family of decorated trees called mobiles.
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We actually follow a slight reformulation of the bijection given in [2]. A mobile is a plane
tree (i.e., a planar map with one face) with vertices either black or white, with dangling
half-edges —called buds— at black vertices, such that there is no white-white edge, and
such that each black vertex has as many buds as white neighbours.The degree of a black
vertex v is the total number of incident half-edges (including the buds) incident to v.
Starting from a planar map G with a pointed vertex v0, and where the vertices of G are
considered as white, one obtains a mobile M as follows (see Figure 3):

• Endow G with its geodesic orientation from v0 (i.e., an edge {v, v′} is oriented from
v to v′ if v′ is one unit further than v from v0, and is left unoriented if v and v′ are
at the same distance from v0).

• Put a new black vertex in each face of G.

• Apply the following local rules to each edge (one rule for oriented edges and one
rule for unoriented edges) of G:

• Delete the edges of G and the vertex v0.

(a) (b) (c)

Figure 3: (a) A vertex-pointed map endowed with the geodesic orientation (with respect
to the marked vertex). (b) The local rule is applied to each edge of the map. (c) The
resulting mobile.

Theorem 4 (Bouttier, Di Francesco and Guitter [7]). The above construction is a bijec-
tion between vertex-pointed maps and mobiles. Each non-root vertex in the map corre-
sponds to a white vertex in the mobile. Each face of degree i in the map corresponds to a
black vertex of degree i in the mobile.
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A mobile is called bipartite when all black vertices have even degree, and is called
quasi-bipartite when all black vertices have even degree except for two which have odd
degree. Note that bipartite (resp. quasi-bipartite) mobiles correspond to bipartite (resp.
quasi-bipartite) vertex-pointed maps.

Claim 5. A mobile is bipartite iff it has no black-black edge. A mobile is quasi-bipartite
iff the set of black-black edges forms a non-empty path whose extremities are the two black
vertices of odd degrees.

Proof. Let T be a mobile and F the forest formed by the black vertices and black-black
edges of T . Note that for each black vertex of T , the degree and the number of incident
black-black edges have same parity. Hence if T is bipartite, F has only vertices of even
degree, so F is empty; while if T is quasi-bipartite, F has two vertices of odd degree, so
the only possibility is that the edges of F form a non-empty path.

A bipartite mobile is called rooted if it has a marked corner at a white vertex. Let
R := R(t;x1, x2, . . .) be the generating function of rooted bipartite mobiles, where t marks
the number of white vertices and xi marks the number of black vertices of degree 2i for
i > 1. As shown in [7], a decomposition at the root ensures that R is given by Equa-
tion (2); indeed if we denote by S the generating function of bipartite mobiles rooted at
a white leaf, then R = t+RS and S =

∑
i>1 xi

(
2i−1
i

)
Ri−1.

For a mobile γ with marked black vertices b1, . . . , br of degrees 2a1, . . . , 2ar, the as-
sociated pruned mobile γ̂ obtained from γ by deleting the buds at the marked vertices
(thus the marked vertices get degrees a1, . . . , ar). Conversely, such a pruned mobile yields∏r

i=1

(
2ai−1
ai

)
mobiles (because of the number of ways to place the buds around the marked

black vertices). Hence, if we denote by B2a1,...,2ar the family of bipartite mobiles with r

marked black vertices of respective degree 2a1, . . . , 2ar, and denote by B̂2a1,...,2ar the family
of pruned bipartite mobiles with r marked black vertices of respective degree a1, . . . , ar,
we have:

B2a1,...,2ar '
r∏

i=1

(
2ai − 1

ai

)
B̂2a1,...,2ar .

3 Bipartite case

In this section, we consider the two following families:

• M̂2a1,...,2ar is the family of pruned bipartite mobiles with r marked black vertices
of respective degrees a1, . . . , ar, the mobile being rooted at a corner of one of the
marked vertices,

• Fs is the family of forests made of s :=
∑r

i=1 ai rooted bipartite mobiles, and where
additionnally r − 1 white vertices w1, . . . , wr−1 are marked.
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Proposition 6. There is an (r−1)!-to-(r−1)! correspondence between the family M̂2a1,...,2ar

and the family Fs. If γ ∈ M̂2a1,...,2ar corresponds to γ′ ∈ Fs, then each white vertex in
γ corresponds to a white vertex in γ′, and each unmarked black vertex of degree 2i in γ
corresponds to a black vertex of degree 2i in γ′.

. . .R R R R R R R R R

a1︷ ︸︸ ︷
a2︷ ︸︸ ︷

ar︷ ︸︸ ︷

b1 b2 br

r3

wk

r0 r1 r2

bj

bi

bi

wk

r3

r1 r2

r0

merge

bj

(a)

(b)

⇒

Figure 4: (a) From a forest with s =
∑r

i=1 ai mobiles to r components rooted at black
vertices b1, . . . , br. (b) Merging the component rooted at bj with the distinct component
rooted at bi containing the marked white vertex wk.

Proof. We will describe the correspondence in both ways (see Figure 4). First, one can
go from the forest to the pruned mobile through the following operations:

1. Group the first a1 mobiles and bind them to a new black vertex b1, then bind the
next a2 mobiles to a new black vertex b2, and so on, to get a forest with r connected
components rooted at b1, . . . , br, see Figure 4(a).

2. The r − 1 marked white vertices w1, . . . , wr−1 are ordered, pick one of the r − 1
components which do not contain wr−1. Bind this component to wr−1 by merging
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wr−1 with the rightmost white neighbour of bi, see Figure 4(b). Repeat the operation
for each wr−i to reduce the number of components to one (r − i possibilities in
the choice of the connected component at the ith step), thus getting a decorated
bipartite tree rooted at a corner incident to some bj, and having r black vertices
b1, . . . , br without buds.

Conversely, one can go from the pruned mobile to the forest through the following
operations:

1. Pick one marked black vertex bk, but the root, and separate it as in Figure 4(b)
read from right to left. This creates a new connected component, rooted at bk.

2. Repeat this operation, choosing at each step (r − i possibilites at the ith step) a
marked black vertex that is not the root in its connected component, until one gets
r connected components, each being rooted at one of the marked black vertices
{b1, . . . , br} of respective degrees a1, . . . , ar.

3. Remove all marked black vertices b1, . . . , br and their incident edges; this yields a
forest of s rooted bipartite mobiles.

In both ways, there are
∏r−1

i=1 (r− i) = (r−1)! possibilities, that is, the correspondence
is (r − 1)!-to-(r − 1)!.

As a corollary we obtain the formula of Theorem 1 in the bipartite case:

Corollary 7. For r > 1 and a1, . . . , ar positive integers, the generating function G2a1,...,2ar

satisfies (5), i.e.,

G2a1,...,2ar =

(
r∏

i=1

(2ai)!

ai!(ai − 1)!

)
· 1

s
· dr−2

dtr−2
Rs, where s =

r∑

i=1

ai. (9)

Proof. As mentioned in the introduction, for r = 1 the expression reads G2a
′ =

(
2a
a

)
Ra,

which is a direct consequence of the bijection with mobiles (indeed G2a
′ is the series of

mobiles with a marked black vertex v of degree 2a, with a marked corner incident to v). So
we now assume r > 2. Let B2a1,...,2ar = B2a1,...,2ar(t;x1, x2, . . .) be the generating function
of B2a1,...,2ar , where t marks the number of white vertices and xi marks the number of black

vertices of degree 2i. Let M̂2a1,...,2ar = M̂2a1,...,2ar(t;x1, x2, . . .) be the generating function

of M̂2a1,...,2ar , where again t marks the number of white vertices and xi marks the number

of black vertices of degree 2i. By definition of M̂2a1,...,2ar , we have:

s ·B2a1,...,2ar =

(
r∏

i=1

(
2ai − 1

ai

))
· M̂2a1,...,2ar

where the factor s is due to the number of ways to place the root (i.e., mark a corner at
one of the marked black vertices), and the binomial product is due to the number of ways
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to place the buds around the marked black vertices. Moreover, Theorem 4 ensures that:

G2a1,...,2ar
′ =

(
r∏

i=1

2ai

)
·B2a1,...,2ar

where the multiplicative constant is the consequence of a corner being marked in every
boundary face, and where the derivative (according to t) is the consequence of a vertex
being marked in the bipartite map. Next, Proposition 6 yields:

M̂2a1,...,2ar =
dr−1

dtr−1
Rs

hence we conclude that:

G2a1,...,2ar
′ =

1

s

(
r∏

i=1

2ai

(
2ai − 1

ai

))
· dr−1

dtr−1
Rs,

which, upon integration according to t, gives the claimed formula.

4 Quasi-bipartite case

So far we have obtained an expression for the generating function G`1,...,`r when all `i are
even. In general, by definition of even maps of type (`1, . . . , `r), there is an even number
of `i of odd degree. We deal here with the case where exactly two of the `i are odd.
This is done by a reduction to the bipartite case, using so-called blossoming trees (already
considered in [19]) as auxililary structures, see Figure 5(a) for an example.

(a) (b)

Figure 5: (a) A blossoming tree. (b) The corresponding rooted bipartite mobile.

Definition 8 (Blossoming trees). A planted plane tree is a plane tree with a marked leaf;
classically it is drawn in a top-down way; each vertex v (different from the root-leaf) has
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i (ordered) children, and the integer i is called the arity of v. Vertices that are not leaves
are colored black (so a black vertex means a vertex that is not a leaf). A blossoming tree
is a rooted plane tree where each black vertex v, of arity i > 1, carries additionally i− 1
dangling half-edges called buds (leaves carry no bud). The degree of such a black vertex
v is considered to be 2i.

By a decomposition at the root, the generating function T := T (t;x1, x2, . . . ) of blos-
soming trees, where t marks the number of non-root leaves and xi marks the number of
black vertices of degree 2i, is given by:

T = t+
∑

i>1

xi

(
2i− 1

i

)
T i. (10)

Claim 9. There is a bijection between the family T of blossoming trees and the family R
of rooted bipartite mobiles. For γ ∈ T and γ′ ∈ R the associated rooted bipartite mobile,
each non-root leaf of γ corresponds to a white vertex of γ′, and each black vertex of degree
2i in γ corresponds to a black vertex of degree 2i in γ′.

Proof. Note that the decomposition-equation (10) satisfied by T is exactly the same as
the decomposition-equation (2) satisfied by R. Hence T = R, and one can easily produce
recursively a bijection between T and R that sends black vertices of degree 2i to black
vertices of degree 2i, and sends leaves to white vertices, for instance Figure 5 shows a
blossoming tree and the corresponding rooted bipartite mobile.

The bijection between T and R will be used in order to get rid of the black path
(between the two black vertices of odd degrees) which appears in a quasi-bipartite mobile.
Note that, if we denote by R′ the family of rooted mobiles with a marked white vertex
(which does not contribute to the number of white vertices), and by T ′ the family of
blossoming trees with a marked non-root leaf (which does not contribute to the number
of non-root leaves), then T ′ ' R′.

Let τ be a mobile with two marked black vertices v1, v2. Let P = (e1, . . . , ek) be the
path between v1 and v2 in τ . If we untie e1 from v1 and ek from v2, we obtain 3 connected
components: the one containing P is called the middle-part τ ′ of τ ; the edges e1 and ek
are called respectively the first end and the second end of τ ′ in τ . The vertices v1 and v2
are called extremal.

Let H be the family of structures that can be obtained as middle-parts of quasi-
bipartite mobiles where v1 and v2 are the two black vertices of odd degree (hence the path
between v1 and v2 contains only black vertices). And let K be the family of structures
that can be obtained as middle-parts of bipartite mobiles with two marked black vertices
v1, v2.

Lemma 10. We have the following bijections:

H ' T ′ ' R′ K ' R′ ×R
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Hence K ' H×R.

In these bijections each non-extremal black vertex of degree 2i in an object on the left-
hand side corresponds to a non-extremal black vertex of degree 2i in the corresponding
object on the right-hand side.

Proof. Note that any τ ∈ H consists of a path P of black vertices, and each vertex of
degree 2i in P carries (outside of P ) i − 1 buds and i − 1 rooted mobiles (in R), as
illustrated in Figure 6(b). Let τ ′ be τ where each rooted mobile attached to P is replaced

R

R

R

R

R

R

R

R R R R

R

RR

R R

R

R

(a)

(b)

R

R′

R

R

R

R

Figure 6: Middle-parts in the bipartite case (a) and in the quasi-bipartite case (b).

by the corresponding blossoming tree (using the isomorphism of Claim 9), and where the
ends of γ are considered as two marked leaves (respectively the root-leaf and a marked
non-root leaf). We clearly have τ ′ ∈ T ′. Conversely, starting from τ ′ ∈ T ′, let P be the
path between the root-leaf and the non-root marked leaf. Each vertex of degree 2i on P
carries (outside of P ) i − 1 buds and i − 1 blossoming trees. Replacing each blossoming
tree attached to P by the corresponding rooted mobile, and seeing the two marked leaves
as the first and second end of P , one gets a structure in H. So we have H ' T ′.

The bijection K ' R′ × R is simpler. Indeed, any τ ∈ K can be seen as a rooted
mobile γ with a secondary marked corner at a white vertex (see Figure 6(a)). Let w (resp.
w′) be the white vertex at the root (resp. at the secondary marked corner) and let P be
the path between w and w′. Each white vertex on P can be seen as carrying two rooted
mobiles (in R), one on each side of P . Let r, r′ be the two rooted mobiles attached at
w′ (say, r is the one on the left of w′ when looking toward w). If we untie r from the
rest of γ, then w′ now just acts as a marked white vertex in γ, so the pair (γ, r) is in
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R′ ×R. The mapping from (γ, r) ∈ R′ ×R to τ ∈ K processes in the reverse way. We
get K ' R′ ×R.

At the level of generating function expressions, Lemma 10 has been proved by Cha-
puy [9, Prop.7.5] in an even more precise form (which keeps track of a certain distance-
parameter between the two extremities). We include our own proof to make the paper
self-contained, and because the new idea of using blossoming trees as auxiliary tools yields
a short bijective proof.

Now from Lemma 10 we can deduce a reduction from the quasi-bipartite to the bipar-
tite case (in Lemma 11 thereafter, see also Figure 6). Let a1 and a2 be positive integers.
Define B2a1,2a2 as the family of bipartite mobiles with two marked black vertices v1, v2 of
respective degrees 2a1, 2a2. Similarly, define Q2a1−1,2a2+1 as the family of quasi-bipartite
mobiles with two marked black vertices v1, v2 of respective degrees 2a1 − 1, 2a2 + 1 (i.e.,

the marked vertices are the two black vertices of odd degree). Let B̂2a1,2a2 be the family
of pruned mobiles (recall that “pruned” means “where buds at marked black vertices are

taken out”) obtained from mobiles in B2a1,2a2 , and let Q̂2a1−1,2a2+1 be the family of pruned
mobiles obtained from mobiles in Q2a1−1,2a2+1.

Lemma 11. For a1, a2 two positive integers:

B̂2a1,2a2 ' Q̂2a1−1,2a2+1.

In addition, if γ ∈ B̂2a1,2a2 corresponds to γ′ ∈ Q̂2a1−1,2a2+1, then each non-marked black
vertex of degree 2i (resp. each white vertex) in γ corresponds to a non-marked black vertex
of degree 2i (resp. to a white vertex) in γ′.

Proof. Let γ ∈ Q̂2a1−1,2a2+1, and let τ be the middle-part of γ. We construct γ′ ∈ B̂2a1,2a2
as follows. Note that v2 has a black neighbour b (along the branch from v2 to v1) and
has otherwise a2 white neighbours. Let w be next neighbour after b in counter-clockwise
order around v2, and let r be the mobile (in R) hanging from w. According to Lemma 10,
the pair (τ, r) corresponds to some τ ′ ∈ K. If we replace the middle-part τ by τ ′ and take

out the edge {v2, w} and the mobile r, we obtain some γ′ ∈ B̂2a1,2a2 . The inverse process

is easy to describe, so we obtain a bijection between Q̂2a1−1,2a2+1 and B̂2a1,2a2 .

Lemma 11 (in an equivalent form) has first been shown by Cori [11, Theo.VI p.75]
(again we have provided our own short proof to be self-contained).

As a corollary of Lemma 11, we obtain the formula of Theorem 1 in the quasi-bipartite
case, with the exception of the case where the two odd boundaries are of length 1 (this
case will be treated later, in Lemma 13).

Corollary 12. For r > 2 and a1, . . . , ar positive integers, the series G2a1−1,2a2+1,2a3,...,2ar

satisfies (5).

Proof. We first consider the case r = 2. Let B̂2a1,2a2 = B̂2a1,2a2(t;x1, x2, . . .) (resp.

B2a1,2a2 = B2a1,2a2(t;x1, x2, . . .)) be the generating function of B̂2a1,2a2 (resp. of B2a1,2a2)
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where t marks the number of white vertices and xi marks the number of non-marked
black vertices of degree 2i. There are

(
2ai−1
ai

)
ways to place the buds at each marked black

vertex vi (i ∈ {1, 2}), hence:

B2a1,2a2 =

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2 .

In addition Theorem 4 ensures that G2a1,2a2
′ = 2a12a2B2a1,2a2 (the multiplicative factor

being due to the choice of a marked corner in each boundary-face). Hence:

G2a1,2a2
′ = 4a1a2

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2 .

Similarly, if we denote by Q̂2a1−1,2a2+1 = Q̂2a1−1,2a2+1(t;x1, x2, . . .) the generating function

of the family Q̂2a1−1,2a2+1 where t marks the number of white vertices and xi marks the
number of non-marked black vertices of degree 2i, then we have:

G2a1−1,2a2+1
′ = (2a1 − 1)(2a2 + 1)

(
2a1 − 2

a1 − 1

)(
2a2
a2

)
Q̂2a1−1,2a2+1.

Since B̂2a1,2a2 = Q̂2a1−1,2a2+1 by Lemma 11, we get (with the notation α(`) = `!
b`/2c!b(`−1)/2c!):

α(2a1 − 1) · α(2a2 + 1) ·G2a1,2a2 = α(2a1) · α(2a2) ·G2a1−1,2a2+1.

In a very similar way (by the isomorphism of Lemma 11), we have for r > 2:

α(2a1 − 1) · α(2a2 + 1) ·G2a1,2a2,2a3,...,2ar = α(2a1) · α(2a2) ·G2a1−1,2a2+1,2a3,...,2ar .

Hence the fact that G2a1−1,2a2+1,2a3,...,2ar satisfies (5) follows from the fact (already proved
in Corollary 7) that G2a1,2a2,2a3,...,2ar satisfies (5).

It remains to show the fomula when the two odd boundary-faces have length 1. For
that case, we have the following counterpart of Lemma 11:

Lemma 13. Let B2 be the family of bipartite mobiles with a marked black vertex of degree
2, and let B′2 be the family of objects from B2 where a white vertex is marked. Then

Q1,1 ' B′2.
In addition, if γ ∈ B′2 corresponds to γ′ ∈ Q1,1, then each white vertex of γ corresponds
to a white vertex of γ′, and each non-marked black vertex of degree 2i in γ corresponds to
a non-marked black vertex of degree 2i in γ′.

Proof. A mobile in Q1,1 is completely reduced to its middle-part, so we have

Q1,1 ' H ' T ′ ' R′.
Consider a mobile in R′, i.e., a bipartite mobile where a corner incident to a white vertex
is marked, and a secondary white vertex is marked. At the marked corner we can attach
an edge connected to a new marked black vertex b of degree 2 (the other incident half-
edge of b being a bud). We thus obtain a mobile in B′2, and the mapping is clearly a
bijection.
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By Lemma 13 we have 2G1,1 = G′2, and similarly 2G1,1,2a3,...,2ar = G2,2a3,...,2ar
′. Hence,

again the fact that G1,1,2a3,...,2ar satisfies (5) follows from the fact that G2,2a3,...,2ar satis-
fies (5), which has been shown in Corollary 7.

5 Extending the formula to p-constellations and quasi

p-constellations

We show in this next section that the formula obtained for bipartite and quasi-bipartite
maps (Theorem 1) naturally extends to a formula (Theorem 2) for p-constellations and
quasi p-constellations. The ingredients are the same (bijection with mobiles and aggre-
gation process to get the formula for p-constellations, and then use blossoming trees to
reduce the formula for quasi p-constellations to the formula for p-constellations).

5.1 Bijection between vertex-pointed hypermaps and hypermo-
biles

Hypermaps admit a natural orientation by orienting each edge so as to have its incident
dark face to its left. The following bijection is again a reformulation of the bijection in
[7] between vertex-pointed eulerian maps and mobiles. Starting from a hypermap G with
a pointed vertex v0, and where the vertices of G are considered as round vertices, one
obtains a mobile M as follows:

• Endow G with its natural orientation.

• Endow G with its geodesic orientation by keeping oriented edges which belong to a
geodesic oriented path from v0.

• Label vertices of G by their distance from v0.

• Put a light (resp. dark) square in each light (resp. dark) face of G.

• Apply the following rules to each edge (oriented or not) of G:

i i

j +i 1

−i j+1w =

• Forget labels on vertices.

This bijection is illustrated in Figure 7.
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Figure 7: (a) A vertex-pointed hypermap endowed with its geodesic orientation (with
respect to the marked vertex). (b) The local rule is applied to each edge of the hypermap.
(c) The resulting hypermobile.

Definition 14 (Hypermobiles). A hypermobile is a tree with three types of vertices
(round, dark square, and light square) and positive integers (called weights) on some
edges, such that:

• there are two types of edges: between a round vertex and a light square vertex,
or between a dark square vertex and a light square vertex (these edges are called
dark-light edges),

• dark square vertices possibly carry buds,

• dark-light edges carry a strictly positive weight, such that, for each square vertex
(dark or light), the sum of weights on its incident edges equals the degree of the
vertex.

Theorem 15 (Bouttier, Di Francesco and Guitter [7]). The above construction is a bi-
jection between vertex-pointed hypermaps and hypermobiles. Each non-pointed vertex in
the hypermap corresponds to a round vertex in the associated hypermobile, and each dark
(resp. light) face corresponds to a dark (resp. light) square vertex of the same degree in
the associated hypermobile.

5.2 Proof of Theorem 2 for p-constellations

For p > 2, hypermobiles corresponding to vertex-pointed p-constellations are called p-
mobiles. (See Figure 8.)

Claim 16 (Characterization of p-mobiles [7]). A p-mobile satisfies the following proper-
ties:
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• dark-light edges have weight p,

• each dark square vertex, of degree p, has one light square neighbour and p− 1 buds
(thus can be seen as a “big bud” attached to the light square neighbour),

• each light square vertex, of degree pi for some i > 1, has i dark square neighbours
(i.e., carries i big buds) and (p− 1)i round neighbours.

Proof. The first assertion is proved as follows. Let T be a p-mobile and F the forest
formed by the edges whose weight is not a multiple of p, and their incident vertices. By
construction, for each vertex of T , the degree and the sum of weights are multiple of p.
Assume F is non-empty. Then F has a leaf v. Hence v has a unique incident edge whose
weight is not a multiple of p, which implies that the degree of p is not a multiple of p, a
contradiction. Hence F is empty and each weight in T is a multiple of p. Moreover, dark
square vertices have degree p, which implies that weights are at most equal to p. Hence
all weights are equal to p. Then the second and third assertion follow directly from the
first one.

Since the weights are always p they can be omitted, and seeing dark square vertices
as “big buds” it is clear that in the case p = 2 we recover the mobiles for bipartite
maps. A rooted p-mobile is a p-mobile with a marked corner at a round vertex. Let
Rp ≡ Rp(t) ≡ Rp(t;x1, x2, . . .) be the generating function of rooted p-mobiles where t
marks the number of white vertices and, for i > 1, xi marks the number of light square
vertices of degree pi. By a decomposition at the root (see [7]), Rp satisfies (6).

(a) (b) (c)

Figure 8: (a) A vertex-pointed p-constellation, p = 4, endowed with its geodesic orien-
tation (with respect to the marked vertex). (b) The local rule is applied to each edge of
the map. (c) The resulting p-mobile (weights on dark-light edges, which all equal p, are
omitted).

One can now use the same process as in Section 3 to describe p-constellations with
r boundaries. For a p-mobile γ with marked light square vertices b1, . . . , br of degrees
pa1, . . . , par, the associated pruned p-mobile γ̂ is obtained from γ by deleting the (big)
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buds at the marked vertices (thus the marked vertices get degrees (p−1)a1, . . . , (p−1)ar).
Conversely, such a pruned mobile yields

∏r
i=1

(
pai−1
ai

)
mobiles (because of the number of

ways to place the big buds around the marked light square vertices). Hence, if we denote by

B(p)
pa1,...,par the family of p-mobiles with r marked light square vertices of respective degrees

pa1, . . . , par, and denote by B̂(p)
pa1,...,par the family of pruned p-mobiles with r marked light

square vertices of respective degree (p− 1)a1, . . . , (p− 1)ar, we have:

B(p)
pa1,...,par

'
r∏

i=1

(
pai − 1

ai

)
B̂(p)
pa1,...,par

We consider the two following families:

• M̂(p)
pa1,...,par is the family of pruned p-mobiles with r marked light square vertices

v1, . . . , vr of respective degrees (p − 1)a1, . . . , (p − 1)ar, the mobile being rooted at
a corner of one of the marked vertices,

• F (p)
s is the family of forests made of s := (p−1)

∑r
i=1 ai rooted p-mobiles, and where

additionnally r − 1 round vertices w1, . . . , wr−1 are marked.

Proposition 17. There is an (r − 1)!-to-(r − 1)! correspondence between the family

M̂(p)
pa1,...,par and the family F (p)

s . If γ ∈ M̂(p)
pa1,...,par corresponds to γ′ ∈ F (p)

s , then each
round vertex in γ corresponds to a round vertex in γ′, and each light square vertex of
degree pi in γ corresponds to a light square vertex of degree pi in γ′.

Proof. This correspondence works in the same way as in Theorem 6, where light square
vertices act as black vertices and round vertices act as white vertices, and where one groups
the first (p− 1)a1 components of the forest, then the following (p− 1)a2 components, and
so on, and then uses the same aggregation process as in the bipartite case.

As a corollary we obtain the formula of Theorem 2 in the case of p-constellations:

Corollary 18. For r > 1 and a1, . . . , ar positive integers, the generating function G
(p)
pa1,...,par

satisfies:

G(p)
pa1,...,par

=

(
r∏

i=1

(pai)!

((p− 1)ai − 1)!ai!

)
· 1

s
· dr−2

dtr−2
Rs

p, where s = (p− 1)
r∑

i=1

ai. (11)

Proof. In the case r = 1, the expression reads G
(p)
pa
′ =
(
pa
a

)
Ra

p, which is a direct consequence

of the bijection with p-mobiles (indeed G
(p)
pa
′ is the series of p-mobiles with a marked light

square vertex v of degree pa, with a marked corner incident to v). So we now assume
r > 2. The formula derives (as formula (9)) by combining the bijection of Theorem 15 and
the correspondence of Proposition 17, upon consistent rooting and placing of the buds,
and a final integration.
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5.3 Proof of Theorem 2 for quasi p-constellations

In a similar way as for quasi bipartite maps, we prove Theorem 2 in the case of quasi
p-constellations (two boundaries have length not a multiple of p) by a reduction to p-
constellations, with some more technical details. We call quasi p-mobiles the hypermobiles
associated to quasi p-constellations by the bijection of Section 5.1, see Figure 9 for an
example. In the following, we will refer to vertices whose degree is not a multiple of p as
non-regular vertices and edges whose weight is not a multiple of p as non-regular edges.
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Figure 9: (a) A vertex-pointed quasi-3-constellation endowed with the geodesic orienta-
tion. (b) The local rule is applied to each edge of the map. (c) The resulting quasi-3-
mobile, where the weights on the alternating path are (1, 2, 1, 2).

Claim 19 (Alternating path in a quasi-p-mobile). In a quasi-p-mobile, all weights of edges
are at most p (so regular edges have weight p) and the set of non-regular edges forms a non-
empty path whose extremities are the two non-regular vertices. Moreover, if the degrees of
the non-regular vertices v1, v2 are pi−d = p(i−1)+p−d and pj+d, i, j > 1, 1 6 d 6 p−1
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(the sum of the two degrees must be a multiple of p), the weights along the path from v1
to v2 start with p− d, alternate between p− d and d, and end with d.

Proof. The fact that the weights are at most p just follows from the fact that dark square
vertices have degree p. Let T be a quasi-p-mobile, and let F be the forest formed by the
non-regular edges of T . Leaves of F are necessarily non-regular, hence F has only two
leaves which are v1, v2, so F is reduced to a path P connecting v1 and v2. Starting from
v1, the first edge of P must have weight p − d. This edge is incident to a black square
vertex of degree p, so the following edge of P must have weight d. The next vertex on P
is either v2 or is a regular light square vertex, in which case the next edge along P must
have weight p− d. The alternation continues the same way until reaching v2 (necessarily
using an edge of weight d).

As for p-mobiles, weights on regular edges (always equal to p) can be omitted, and
dark square vertices not on the alternating path can be seen as “big buds” (those on
the alternating path are considered as “intermediate” dark square vertices). It is easy
to check that regular light square vertices of degree pi are adjacent to i big buds, and
non-regular light square vertices of degree pi+ d (for some 1 6 d 6 p− 1) are adjacent to
i big buds.

Definition 20 (Blossoming p-trees [4]). For p > 2, a planted p-tree is a planted tree
(non-leaf vertices are light square, leaves are round) where the arity of internal vertices
is of the form (p− 1)i. A blossoming p-tree is a structure obtained from a planted p-tree
where:

• on each edge going down to a light square vertex, a dark square vertex (called
intermediate) is inserted that additionally carries p− 2 buds,

• at each light square vertex of arity (p − 1)i one further attaches i − 1 new dark
square vertices (called big buds), each such dark square vertex carrying additionally
p− 1 buds. (After these attachments, the light square vertex is considered to have
degree pi.)

(See Figure 10.)

Note that in a blossoming p-tree, dark square vertices have degree p. When p = 2,
dark square vertices can be erased, and we obtain the description of a standard blossoming
tree. By a decomposition at the root [4], the generating function Tp := Tp(t;x1, x2, . . . )
of rooted blossoming p-trees, where t marks the number of non-root (round) leaves and
xi marks the number of light square vertices of degree pi, is given by:

Tp = t+
∑

i>1

(p− 1) · xi
(
pi− 1

i− 1

)
T (p−1)i
p = t+

∑

i>1

xi

(
pi− 1

i

)
T (p−1)i
p , (12)

where the factor (p − 1) in the sum represents the number of ways to place the (p − 2)
buds at the dark square vertex adjacent to the root.
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Figure 10: A blossoming 4-tree.

Claim 21. There is a bijection between the family Tp of blossoming p-trees and the family
Rp of rooted p-mobiles. For γ ∈ Tp and γ′ ∈ Rp the associated rooted p-mobile, each
non-root round leaf of γ corresponds to a round vertex of γ′, each light square vertex of
degree pi in γ corresponds to a light square vertex of degree pi in γ′.

Proof. Note that the decomposition-equation (12) satisfied by Tp is exactly the same as the
decomposition-equation (6) satisfied by Rp. Hence Tp = Rp, and one can easily produce
recursively a bijection between Tp and Rp that sends light square vertices of degree pi to
light square vertices of degree pi, and sends non-root round leaves to round vertices.

The bijection between Tp and Rp will be used in order to get rid of the alternating
path between the non-regular two light square vertices that appear in a quasi-p-mobile.
Note that, if we denote by R′p the family of rooted p-mobiles with a marked round vertex
(which does not contribute to the number of round vertices), and by T ′p the family of
blossoming p-trees with a marked round leaf (which does not contribute to the number of
round leaves), then T ′p ' R′p.

As in the (quasi-) bipartite case, for a hypermobile with two marked light-square
vertices v1, v2, we can consider the operation of untying the two ends of the path P
connecting v1 and v2. The obtained structure (taking away the connected components
not containing P ) is called the middle-part of the hypermobile. Let Hp be the family
of structures that can be obtained as middle-parts of quasi-p-mobiles, where v1 and v2
are the two (ordered) non-regular vertices (thus P is the alternating path of the quasi
p-mobile). And let Kp be the family of structures that can be obtained as middle-parts
of p-mobiles with two marked light square vertices v1, v2. In the case of Hp, note that,
according to Claim 21, the weights along the alternating path only depend on the degrees
(modulo p) of the end vertices. In particular, the shape of the middle-part and the labels
along the path are independent. Hence, from now on the weights can be omitted when
considering middle-parts from Hp.
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Figure 11: Middle-parts in a quasi-4-mobile (a), and in a 4-mobile (b).

Lemma 22. We have the following bijections:

Hp ' (p− 1) · T ′p ' (p− 1) · R′p Kp ' R′p ×Rp

Hence:

(p− 1) · Kp ' Hp ×Rp.

In these bijections, each light square vertex of degree pi in an object on the left-hand
side corresponds to a light square vertex of degree pi in the corresponding object on the
right-hand side.

Proof. For Kp ' R′p ×Rp, the proof is similar to Lemma 10, see Figure 11(b). To prove
Hp ' (p− 1) · T ′p (see also Figure 11(a)), we start similarly as in the proof of Lemma 10,
replacing each rooted p-mobile “adjacent” to the alternating path P by the corresponding
blossoming p-tree. Let b be the (intermediate) dark square vertex adjacent to v2 on P .
If we erase the p − 2 buds at b, then we naturally obtain a structure in T ′p (b acts as a
secondary marked leaf once its incident buds are taken out). Conversely there are p − 1
ways to distribute the buds at b, which gives a factor p− 1.

Again, at the level of generating function expressions, an even more precise statement
(keeping track of a certain distance parameter between the two marked vertices) is given
by Chapuy [9, Prop.7.5] (we include our quite shorter and completely bijective proof to
make the paper self-contained).
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Now from Lemma 22 we reduce pruned quasi-p-mobiles to pruned p-mobiles (pruned
means: big buds at the marked light square vertices are taken out). Let a1, a2 be positive

integers, and 1 6 d 6 p − 1. Define B̂(p)
pa1,pa2 as the family of pruned p-mobiles with two

marked black vertices v1, v2 of respective degrees (p − 1)a1, (p − 1)a2. Similarly define

Q̂(p)
pa1−d,pa2+d as the family of pruned quasi-p-mobiles with two marked black vertices v1, v2

of respective degrees (p− 1)a1− d+ 1, (p− 1)a2 + d (the two marked light square vertices
are the non-regular ones).

Lemma 23. For a1, a2 two positive integers, and 1 6 d 6 p− 1:

(p− 1) · B̂(p)
pa1,pa2

' Q̂(p)
pa1−d,pa2+d.

In addition, if γ ∈ B̂(p)
pa1,pa2 corresponds to γ′ ∈ Q̂(p)

pa1−d,pa2+d, then each non-marked light
square vertex of degree pi in γ corresponds to a non-marked light square vertex of degree
pi in γ′.

Proof. The proof is similar to Lemma 11, where we additionally have to transfer a part
of the degree contribution from one end of the alternating path to the other, in order to
obtain a well-formed pruned p-mobile. Let γ ∈ Q̂(p)

pa1−d,pa2+d, and let τ be the middle-part

of γ. We construct γ′ ∈ B̂(p)
pa1,pa2 as follows. Note that v2 has a dark square neighbour b

(along the path from v2 to v1) and has otherwise (p− 1)a2 + d− 1 white neighbours. Let
w0, . . . , wd−1 be the d next neighbourd after b in counter-clockwise order around v2, and let
r0, . . . , rd−1 be the mobiles (in Rp) hanging from w0, . . . , wd−1. According to Lemma 10,
the pair (τ, r0) corresponds to some pair (i, τ ′), where 1 6 i 6 p − 1 and τ ′ ∈ Kp. If
we replace the middle-part τ by τ ′ and take out the edge {v2, w0} and the mobile r0,

then transfer r1, . . . , rd−1 from v2 to v1, we obtain some γ′ ∈ B̂(p)
pa1,pa2 . We associate to γ

the pair (i, γ′). The inverse process is easy to describe, so we obtain a bijection between

Q̂(p)
pa1−d,pa2+d and (p− 1) · B̂(p)

pa1,pa2 .

Denote by Qpa1−d1,pa2+d,pa3,...,par the family of quasi p-constellations where the marked
light faces are of degrees pa1 − d, pa2 + d, pa3, . . . , par. As a corollary of Lemma 23 (the
additionnal factors correspond to the number of ways to place the big buds at the pruned
marked vertices), we obtain

(
pa1 − 1

a1

)(
pa2 − 1

a2

)
Q(p)

pa1−d,pa2+d ' (p− 1) ·
(
pa1 − d− 1

a1 − 1

)(
pa2 + d− 1

a2

)
B(p)
pa1,pa2

,

and very similarly (since the isomorphism of Lemma 23 preserves light square vertex
degrees):

(
pa1 − 1

a1

)(
pa2 − 1

a2

)
Q(p)

pa1−d,pa2+d,pa3,...,par
'

(p− 1) ·
(
pa1 − d− 1

a1 − 1

)(
pa2 + d− 1

a2

)
B(p)
pa1,pa2,pa3,...,par

,
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which yields Theorem 2 in the case where at least one of the two non-regular (degree not
multiple of p) light faces is of degree larger than p. In the remaining we show the formula
of Theorem 2 when the two non-regular light faces are of degree smaller than p.

Lemma 24. Let Bp be the family of p-mobiles with a marked light square vertex of degree
p, and let B′p be the family of objects from Bp where a round vertex is marked. Then, for
any d ∈ [1..p− 1],

Q(p)
d,p−d ' B′p.

In addition, if γ ∈ B′p corresponds to γ′ ∈ Q(p)
d,p−d, then each non-marked light square

vertex of degree pi in γ corresponds to a non-marked light square vertex of degree pi in γ′.

Proof. A mobile in Q(p)
d,p−d can be decomposed as follows: two marked light squares v1, v2,

their incident rooted p-mobiles (one for each round neighbour) and the middle-part. Hence
we have:

Q(p)
d,p−d ' Rd−1

p ×Hp ×Rp−d−1
p

' (p− 1) · T ′p ×Rp−2
p

' (p− 1) · R′p ×Rp−2
p .

If we now consider an object γ′ ∈ B′p, the marked light square vertex (of degree p) carries
one big bud, and has p − 1 white neighbours w1, . . . , wp−1. From each white neighbour
wi hangs a rooted p-mobile ri, and one of these rooted p-mobiles has a secondary marked
round vertex (the secondary marked vertex of γ′). Thus

B′p ' (p− 1) · R′p ×Rp−2
p ,

where the factor p− 1 is due to the choice of which of the mobiles r1, . . . , rp−1 carries the
secondary marked round vertex.

By Lemma 24 we have:

pG
(p)
d,p−d = d(p− d) (G(p)

p )′,

(the additional factors are due to marking a corner in each marked light face), and simi-
larly:

pG
(p)
d,p−d,pa3,...,par = d(p− d) G(p)

p,pa3,...,par
′.

Hence, again the fact thatG
(p)
d,p−d,pa3,...,par satisfies (7) follows from the fact (already proved)

that G
(p)
p,pa3,...,par satisfies (7). This concludes the proof of Theorem 2.
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