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Abstract

A t x n random matrix A can be formed by sampling n independent random
column vectors, each containing ¢t components. The random Gram matriz of size n,
G, = AT A, contains the dot products between all pairs of column vectors in the ran-
domly generated matrix A, and has characteristic roots coinciding with the singular
values of A. Furthermore, the sequences det (G;) and perm(G;) (for i =0,1,...,n)
are factors that comprise the expected coefficients of the characteristic and per-
manental polynomials of G,,. We prove theorems that relate the generating func-
tions and recursions for the traces of matrix powers, expected characteristic coeffi-
cients, expected determinants F(det (G,,)), and expected permanents E(perm(G,))
in terms of each other. Using the derived recursions, we exhibit the efficient com-
putation of the expected determinant and expected permanent of a random Gram
matrix G, formed according to any underlying distribution. These theoretical re-
sults may be used both to speed up numerical algorithms and to investigate the
numerical properties of the expected characteristic and permanental coefficients of
any matrix comprised of independently sampled columns.
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1 Introduction

Let w be a t-tall vector whose components w; are random variables (not necessarily
independent)

wy
Wa
w = )
Wy
Next, sample n independent vectors w®, ..., w™); creating a ¢ x n matrix A. Then, the
random Gram matriz of size n,
G,=ATA,

has a distribution that depends on the underlying distribution of the random vector w.
(The symbol T" as a superscript is used to denote transpose.)

Some general features and convergence properties of the eigenvalues of certain random
Gram matrices were derived by Fannes and Spincemaille [9]. Fyodorov formulated corre-
lation functions for permanental polynomials of certain random matrices and noted some
similarities and differences between their characteristic and permanental polynomials [10].
The paper’s main result, which treats the particular case of the Gaussian unitary ensem-
ble, is derived from an expression of an arbitrary n x n permanent as a 2n-dimensional
contour integral (see Lemma 2.1). The integrand in the latter formula is the exponential
of the trace of a certain tensor product. Likewise the exponential of the trace appears
also in our formulas. We present combinatorial theory and an efficient algorithm for cal-
culating E(det(G,)) and E(perm(G,,)), which are factors comprising the coefficients of
the expected characteristic and expected permanental polynomials of G,,.

The computation of the determinant is equivalent to matrix multiplication and is
therefore contained in the complexity class P (see Chapter 16 of [5]). Currently, the fastest
asymptotic algorithm for matrix multiplication is O(n*37) [8], with a recent unpublished
work [23] claiming an improvement to O(n?37™7). Some researchers have suggested that
group theoretic observations imply that O(n?) algorithms also exist [20].

At the other complexity extreme, even though the sign is the only difference between
the formula for the determinant,

det(A) = Z (—l)sgn(a) H Aioti), (1)
€Sy =1
and the formula for the permanent,
perm(A) = Z HAi,o(i)v (2)
o€ES, i=1
the computation of the permanent is #P-Complete [21, 3]. The standard reference for

properties of permanents is Minc [16]. The most efficient algorithm currently known for
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calculating the exact permanent has complexity O(2"n?), due to Ryser [18]. Jerrum,
Sinclair and Vigoda provided a fully-polynomial randomized approximation scheme for
approximating permanents of nonnegative matrices [13, 14]. Matrix permanents have
found applications in physics for calculating Bose-Einstein corrections [24] and in quantum
computing for encoding quantum circuit amplitudes [17, 4]. Permanental polynomials
have been used as invariants for chemical structures [6, 7, 15].

The rest of the paper is organized as follows: Section 2 is a statement of results, Section
3 contains all proofs, Section 4 reports on some numerical experiments, Section 5 points
out a connection to prior work involving the cycle index polynomial of the symmetric
group, and Section 6 presents summary and conclusions.

2 Statement of Results

Before stating our results, we explain all notation. Let w be a t-tall vector whose com-
ponents w; are random variables (not necessarily independent). Let A be a ¢ X n matrix

whose columns are a random sample of n vectors w™M, ..., w™. Let G, = ATA; we call
G, the random Gram matriz of size n, it being understood that the exact distribution of
G, depends on the underlying distribution on ¢-dimensional vectors w = (wy,...,w;)T.

Although G,, is an n X n matrix, its rank is at most ¢, and generally speaking we take
the viewpoint henceforth that n is much larger than ¢. One may even regard ¢ as fixed,
and n — oo, as we study the effect of taking larger and larger samples. We are especially
interested in two expected values, the determinant and the permanent of (G,,; these are
denoted a,, p, respectively:

a, = E(det(G,))
pn = E(perm(Gp)).

We define M to be the ¢ x t matrix of underlying second moments,
M;; = E(ww;), 1<1i,j<t,
and define the infinite sequence t, as the traces of the powers of M:
t, = trace(M™).

Finally, we define ¢;, 0 < ¢ < t, to be the sign-adjusted coefficients of the characteristic
polynomial of M, with the familiar indexing:

det(\ — M) = co\' — AN 4 - (=1 ey

Theorem 1 Let a,, p,, t, denote E(det(G,,)), E(perm(G,,)), trace(M™), respectively, as
giwen above. Then,

= "t tir  tor?  tga®
;Q"H_GXP{T_T+T_”' . (3)
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and
> " b  tex?  tsx?
n— = — 4+ — 4+ —+ ... ;. 4
nz:%p o exp{ 1 + 5 + 3 + (4)

The generating function identities in the previous theorem lead immediately to recursions
for the sequences a,, p, as given in the corollary:

Corollary 2 Let a,, p,, t, denote E(det(G,)), E(perm(G,)), trace(M™), respectively,
as given above. Then, we have the recursions

(l():l

s =3 () -V st 5)

7 J
and

po=1
ny
Pnt1 = Z j J'Pn—jtj+ (6)
J

The next theorem relates the expected values E(det(G,)), E(perm(G,,)) to the coefficients
¢; of the characteristic polynomial for M.

Theorem 3 Let G,,, M, ¢, be respectively the random Gram matriz of size n, the under-
lying t xt matrixz of second moments, and the sign-adjusted coefficients of the characteristic
polynomial,
det(\ — M) = co\' — AN 4 - (=1 ey
Then
E(det(G,)) = nle,.

and
E(perm(G)) =n! x [2"] (1 — c1x + cp2® — -~ )7L,

The last theorem concerns the expected values of the coefficients of the characteristic and
permanental polynomials of G,,.

Theorem 4 Let a,, p, denote E(det(G,)), E(perm(G,)), respectively, as given above.
Let b;,d; be the sign-adjusted coefficients of, respectively, the characteristic and perma-
nental polynomials G,,:

det( A\l — G,) = bop\" — by A" '+ (=1)"b,
perm(A — G,,) doA" — Nt - (=1,
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Then,

and

E(d:) = (") p. ®)

Remark. The characteristic polynomials det(A — AAT) and det(A — AT A) have exactly
(including multiplicity) the same nonzero roots. With A a ¢ X n matrix, and assuming
n > t, then, the latter characteristic polynomial has a factor of A"*, and so b; = 0 for
1 > t. This is consistent with the fact that the a; are nonzero for at most 0 < i < ¢.

3 Proofs

Proof of Theorem 1: The Leibniz formula for the determinant is

det(G,,) = Z (—1)*"@term, , 9)

oeSh

with N

term, = H(Gn)z,a(z) ’

i=1
where S, is the symmetric group on {1,2,...,n}, and sgn(o) signifies the sign of the

permutation . Similarly, for the permanent,
perm(G,,) = Z term, . (10)

UGSn

Since expectation is a linear operator, a, = FE(det(G,)) may be obtained by the

following strategy
1. Determine E(term,)

(*) { 2. Multiply by (—1)%"()
3. Sum over 0 € S,, .

Furthermore, p, = E(perm(G,,)) can be obtained in the same manner but omitting step
2.

Suppose the permutation o contains k; cycles of size ¢, where k; > 0 and n = k; +
2ky + - - -. The cycle structure of o alone is enough to determine its sign by the relation:
sgn(o) = ko + ky + ---. What can be said about the expected value E(term,), given
only the cycle structure of o 7 We claim that, like the sign, the latter expected value is
determined completely by the cycle structure, as given in the relation

E(term,) = [ J(t:)". (11)

=1
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Indeed, if (iy, s, ...,14;) is a cycle of o having length [, then the quantity product, defined
by

producte = (Gn)iyio(Gn)izsis - - - (Gn)iin
is a subproduct of term,. Moreover, it is seen that the various subproducts associated with
the different cycles comprising o have no rows or columns of the matrix G,, in common.
These subproducts are consequently independent, and we have

E(term,) = H E(product) .

C:C is a cycle of o

The entry (G,,);; of the Gram matrix is the dot product w® w9 of columns in the sample
matrix A, and so

From this we observe that the expectation E(product) depends only on the length of the
cycle C'; and not on the particular columns of A which are involved. That the common
value of F(product,) over all cycles C' of length [ is equal to ¢;, the trace of the power
M* is seen as follows

B[ w®) (@ w®) (0" w®)]

:E{(wgl)wf)+...+w§1)w§2)) y <w§2)w§3)+-~-+w§2)w§3)> "

X (w§"’w§” +- 4 w,gn)w,gl))]

=F Z wgll)wg)wg)wg) CwMw
(i1y0mnsin) €41t}

S Y B () B (we®) B () B () )
(il,...,in)e{l,...,t}n

= Z MilinMiligMigig cee MZ
(i1eensin) E{Leerst}™

= trace(M")

=1, .

Thus the claim (11) is justified.
Continuing the proof, we introduce the sign of the permutation to obtain

(~1)) B(term,) = (—1)k+* T ()" (12)

1>1

n—1%n

We are now in position to carry out the three-step strategy (*) proposed above. The
number of permutations ¢ which have a given cycle structure (kq, ko, ...) is

n!
1k12k2 k?llk?g' o
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If we multiply the right side of (12) by the latter multiplicity and by x™/n! — note the
resulting cancellation of n! — and then sum over all sequences (k, ko, ... ) of nonnegative
integers which are zero from some point on, we obtain the desired exponential generating
function. Hence,

o0
:L,n
Dty
n!
n=0

ki
— E (_1)k2+k4+---xk‘1+2k2+---H ti

LA

ki,

(kl,kg,...) 1>1
~1I i (=Dt /)"
N k!

i>1 k;=0
. tl.T tQ.TQ

as was to be shown. This completes the proof of the first part of Theorem 1. The
second part of the theorem, equation (4) giving the exponential generating function of
the sequence of permanents p,, is proven in a similar manner. i

Proof of Corollary 2: These are proven in the standard manner by comparing the
coefficients of 2™ on both sides of the identities obtained from (3) and (4) by differentiating
with respect to x. i

In the next proof of Theorem 3 we use the identity
det(exp(B)) = exp(trace(B)), (13)

valid for any complex square matrix B. See, for example, Section 1.1.10, item 7, page 11
of [[12]], where the identity is attributed to Jacobi.

Proof of Theorem 3: We start with the expected determinant,

Fn ] . tox2 tard
Blae(G) = | 5] e {10 - 2 B0,
NEQ M'z  M?z> M2
__H_exp trace | —— ——5—+—5—— -
_ v e ex _ ..
| n! | P 1 2 3
— x_' det (exp {log (I + zM)})
n!
0]
= |—|det (I +xM)
_n!_
] (o)t det (M — 2D
n! g
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= |— (1+clx+02x2+03x3+---)
=nle, .

The first equality comes from (3), the third from (13), and the rest are straightforward
manipulations. The proof for the expected permanent is similar:

" t tax®
E(perm(G,,)) = = exp{ 1x+%+ 3; +. }

[ 2™ 1ZL‘ M?z?  M3a3
= | —| exp « trace + + ...
n! 2 3

x| ]\41 M2 2 M3a3
= |— | det | ex + 4.
| n! | 2 3

= % det (exp{log(]—xM)_l})

. _ -1
= | det (I —xM)

[ 2™ 1
| n!| det (I —xzM)

o )
| n!| (2)t-det (M — M)|,_1

" 1 )
@ (@) e ()7 )
" 1

n! | 1—cax+ca?—czad+---

This time the first equality follows from (4), the third again is from (13), and, as was the
case with the determinant, the rest are straightforward manipulations. B

Remark. The function .

) = T =Tw)’
where T' is Hashimoto’s edge adjacency operator, is called the [hara zeta-function of the
graph G, see [22], [19].

Proof of Theorem 4: For simplicity, let us assume the probability distribution on
vectors w is discrete; say, v, vg, ... with probabilities p(vq), p(v2), .... In order to
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obtain a term A\"~! in the expansion of det(A — AT A), we choose the n —t \’s from the
main diagonal, and then expand the remaining principal submatrix of size t. Since the
remaining submatrix is that of —AT A, we obtain the sign-adjustment (—1)! and find

b, = Z det(a) .

X1
principal
submatrices a

Since expectation is a linear operator, the expected value of the ¢'th coefficient of the
characteristic polynomial of AT A is

Eb;)=F E det(a)
X1
principle
submatrices «

(01 v1) (vi-v2) -+ (v1-vg)
_ (7;) Z det (vg v1) (vg vg) - (vg v;) D). p(v)
(V1 ,..,03) (vi-v1) (v va) o (v vy)

- (TZ’) E(det(Gy)) .

This proves the first assertion of the theorem, and the second assertion regarding the
permanental polynomial is demonstrated in a similar manner. B

4 Experimental results

We wrote a Matlab program to compare the expected characteristic and permanental
polynomials given by Theorem 4 to those of randomly sampled matrices of various sizes.
We computed all permanents using a programmatic link with Maple via the Maple Tool-
box for Matlab, and all characteristic polynomials using the Matlab command poly.

There are, of course, infinitely many different distributions which might underly the
vectors w. We chose to use one based on sample counts. This is an easily understood
distribution, and of interest for possible applications. The idea is to assume a set X of
size t, {x1,...,2;}, with probabilities py, ..., p;, where 2521 p; = 1. We take a sample,
with replacement, from X of size ¢, and record w; as the number of times that the element
x; is chosen. Then, each of our t-tall vectors w is integral, satisfies 22:1 w; = £, and the
distribution on these vectors is the familiar multinomial distribution:

w1 by
wWao b2 )

Prob =1 = <61 | ”bt)plil e
Wy by
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The corresponding matrix M of second moments is found to be

0—1)p2+tp; if i=7

M;: = E(ww;) =
y = Bluww) {é(f—mpipj it i)

We have derived the matrix M for several other scenarios which seem natural for appli-
cations, but do not report any of these results in the present paper, with one exception.
Namely, suppose that the random vectors w are generated as counts, much as above,
except the sample size ¢ is also a random quantity. That is, the w come about by a
compound process. If we assume the sample size ¢ to be given by a distribution prob(¢),

then
)22 (U= 1)pi + bpi) prob(¢), i=j
Y2, (€ = 1)pip;) prob(0), i F ]

In our experiments, we used the above multinomial distribution to generate random vec-
tors with £ =10, ¢t =4 and p = [3/8,1/4,1/4,1/8].

We know, theoretically, that a; = 0 for ¢ > t. However, we computed these for
confirmation. Thus, we computed ¢; for ¢ up to 7.

l;
565/16
210825 /256
93917125,/4096
42581180625 /65536
19338382478125/1048576
8784040432265625/16777216
3990026079685703125 /268435456

O U W N |

Then, from recursion (5), we compute a;. We also generated 1000 matrices Gygpo = AT A
at random (by sampling 4000 random vectors from the counting distribution described
above to form A) and computed the mean and standard deviation of the appropriate
coefficient in det(A] — Gapo0), divided by a binomial coefficient as given in equation (7).
The exact values and the sample values were then compared. Here are the results:

1 | a;, recursion a;, sample std dev
1 35.31 35.32 0.12
2 423.44 423.59 5.91
3 2648.44 2649.99 67.54
4 7031.25 7035.47  263.93
5 0.0 0.0 0.0

6 0.0 0.0 0.0

Furthermore, boxplots of the sample coefficient distributions as the sample size increases
are depicted in Figure 1. These plots show that, for this distribution, the standard
deviation decreases according to a power law.
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Figure 1: Experimental results of the coefficients of characteristic polynomials of 1000
matrices for particular sample sizes (columns) with the model [ = 10, ¢ = 4 and p =
(3/8,1/4,1/4,1/8]. To normalize the results, each coefficient of (=)~ was divided by
(") before plotting. Green line represents E(det(G;)) as computed by the recursion (5).

Using the same t,, as above, we used the permanental coefficient recursion (6) to
compute the exact values of p, = E(perm(G,)). We also computed the coefficients of
permanental polynomials of 1000 random gram matrices Gz = AT A (created by sampling
18 random vectors from the distribution) and subsequently compared the sampled results
with those provided by the recursion. We computed the mean and standard deviation
after division by the binomial coefficient as given in (8). The exact and sampled values
were then compared. Due to the intractable computational complexity of computing the
exact permanent, we were computationally limited to computing only matrices with 18
randomly sampled columns. Here are the results (see Figure 2 for boxplots):

11
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) p;, recursion pi, sample std dev
1 35.31 35.27 1.921
2 2070.51 2071.54 206.63
3 177134.95 177679.22 26299.36
4 20126988.14 20245985.44 4037955.48
51 2857210195.90 2882490271.36 729446452.08
6 | 486697830067.95 492457249647.11 151888811726.52
Coefficient of (-A)'"2 «10  Coefficient of (-\)"™*
7000 Ff
10f
6000 |
5000} : : 8[
c|,4ooo—ii; o 6f, i
= N . S |iiiiog
Saoo0f 1t b biiftigg > 3 I IR B S ‘
i;!ii 4*1 31 3§§'x':,1
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600 [ 8
% 500 % 7
g s
2 400} 26
g g
& 300t 85
7] 9]
200} 4
1005 = 10 15 18 % s 10 15 18
Samples Samples

Figure 2: Experimental results of the permanental coefficients from 1000 matrices for
particular sample sizes (columns) with the model [ = 10, ¢ =4 and p = [3/8,1/4,1/4,1/8].
To normalize the results, each coefficient of (=)~ was divided by (") before plotting.
Green line represents E(perm(G;)) as computed by the recursion (6).
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5 Connection to the cycle index polynomial

For a permutation o € S, belonging to the symmetric group of order n, let V;(c) denote
the number of cycles in ¢ of size 7. Let X, X5,... be a countably infinite sequence of
variables, and define the polynomial P,(X, ..., X,,) by

Py(Xy.. X)) = ﬁxj“(‘”.
o€eS, i=1

Then the quotient P, (X7, ..., X,)/n!is called the cycle index polynomial of the symmetric
group. The generating function identity

ZPn(Xl”Xn)Q:L_T = exp (Z X;ul>
n=0

i=1

was observed in [2]. The latter paper was devoted to proving that assigning nonnegative
real values to the variables X; subject to certain inequalities would result in the real val-
ues P, (X, ..., X,) satisfying similar inequalities. Coincidentally, the pairs of quantities
(—=1)""1,,a, and t,, p, studied in this paper satisfy identical generating function identi-
ties. In particular, the sequence of expected permanents p, = E(perm(AT A)) are hereby
identified as evaluations of the cycle index polynomials at certain weights ¢;.

6 Summary and conclusion

We have introduced the notion of a random Gram matrix, and provided theory enabling
the efficient computation of the expected determinant and expected permanent of it. The
random Gram matrix consists of dot products of vectors taken from various distributions.
We further proved generating function identities and recursions relating these expectations
to the traces of powers of a second moment matrix. The expected coefficients of the
characteristic and permanental polynomials have also been studied, with some numerical
experiments checking on the theory. Some of the formulas found are the same as those
studied in earlier work in an entirely different context [2].

We have observed empirically that as the number of columns in the sample matrix A
increases, the standard deviation of the normalized expected coefficients of the determi-
nantal and permanental polynomials decreases according to a power law. Although the
empirical data presented in this paper was limited to the multinomial counting model, the
theoretical relationships between the different quantities remain no matter which repre-
sentation is used. In future work, the theoretical rate of convergence should be formulated
according to the representation and probability model used to generate the matrix A (e.g.
trivially, when A=0, the truth converges immediately to the expected value).

Can the probabilistic results presented in this work be of any help in managing the
complexity of computing the permanent? Already, [1], there is a polynomial time algo-
rithm for computing the permanent of an n x n matrix of rank ¢, ¢ being fixed. One way
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for our probabilistic methods to impact complexity considerations would be via finding
a distribution on t-vectors (¢ small) such that a given n x n permanent per(H) is equal
to or well approximated by the expected value of per(ATA). We have no ideas in this
direction.

It is hoped that the theoretical observations we have made will prove useful in pro-
cessing and comparing large amounts of numerical data, such as those algorithms that
use permanental polynomials of large chemical graphs [6, 7]. Moreover, the combinato-
rial relationships between traces of matrix powers, characteristic coefficients, expected
permanents, and expected determinants will help us better understand how to use these
quantities, create bounds for them, and illuminate what has made them so especially
useful in applied numerical science.
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