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Abstract

A partial Butson matrix is a matrix H ∈ MM×N (Zq) having its rows pairwise
orthogonal, where Zq ⊂ C× is the group of q-th roots of unity. We investigate here
the counting problem for these matrices in the “thin” regime, where M = 2, 3, . . .
is small, and where N → ∞ (subject to the condition N ∈ pN when q = pk > 2).
The proofs are inspired from the de Launey-Levin and Richmond-Shallit counting
results.

Introduction

A partial Hadamard matrix is a matrix H ∈ MM×N(±1) having its rows pairwise or-
thogonal. These matrices are quite interesting objects, appearing in connection with
various questions in combinatorics. The motivating examples are the Hadamard matrices
H ∈MN(±1), and their M ×N submatrices, with M 6 N . See [9].

A given partial Hadamard matrix H ∈ MM×N(±1) can complete or not into an

Hadamard matrix H̃ ∈ MN(±1). It is known since Hall [3] and Verheiden [11] that
this automatically happens when K = N −M is small, and more precisely when K 6 7.

The structure of such matrices is very simple up to M = 4, where, up to assuming
that the first row has 1 entries only, and then permuting the columns, the matrix is:

H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
a

−︸︷︷︸
b


Here a, b ∈ N are subject to the condition a+ b = N/4.
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At M > 5 no such result is available, and the partial Hadamard matrices give rise to
interesting combinatorial structures, related to the Hadamard Conjecture. See Ito [4].

In their breakthrough paper [7], following some previous work in [6], de Launey and
Levin proposed a whole new point of view on these matrices, in the asymptotic limit
N ∈ 4N, N →∞. Their main result is as follows:

Theorem (de Launey-Levin [7]). The probability for a random H ∈MM×N(±1) to be
partial Hadamard is

PM '
2(M−1)2√
(2πN)(

M
2 )

in the N ∈ 4N, N →∞ limit.

The proof in [7] uses a random walk interpretation of the partial Hadamard matrices,
then the Fourier inversion formula, and then some real analysis methods. Importantly, as
pointed out there, this method can be probably used for more general situations.

An interesting generalization of the Hadamard matrices are the complex Hadamard
matrices H ∈ MN(C) having as entries the roots of unity, introduced by Butson in [2].
The basic example here is the Fourier matrix, FN = (wij) with w = e2πi/N :

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

. . . . . . . . . . . . . . .

1 wN−1 w2(N−1) . . . w(N−1)2


In general, the theory of Butson matrices can be regarded as a “non-standard” branch

of discrete Fourier analysis. For a number of results on these matrices, see [10].
We can of course talk about partial Buston matrices:

Definition. A partial Butson matrix is a matrix H ∈MM×N(Zq) having its rows pairwise
orthogonal, where Zq ⊂ C× is the group of q-roots of unity.

Observe that at q = 2 we obtain the partial Hadamard matrices. In general, the
interest comes from the Butson matrices H ∈MN(Zq), and from their M×N submatrices.

Let us first discuss the case q = 2k. At M = 2, up to assuming that the first row has
1 entries only, and then permuting the columns, the matrix must be as follows:

H =

 1 1 . . . 1 1 1 . . . 1

1︸︷︷︸
a1

w︸︷︷︸
a2

. . . wq/2−1︸ ︷︷ ︸
aq/2

wq/2︸︷︷︸
a1

wq/2+1︸ ︷︷ ︸
a2

. . . wq−1︸︷︷︸
aq/2


Here w = e2πi/q and a1, . . . , aq/2 ∈ N are certain multiplicities, summing up to N/2.

Thus counting such objects is the same as counting abelian squares, i.e. length N words
of type xx′ where x′ is a permutation of x. According now to [8], we have:
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Theorem (cf. Richmond-Shallit [8]). For q = 2k the probability for a randomly
chosen H ∈M2×N(Zq) to be partial Butson is

P2 ' 2

√(
q/2

2πN

)q/2
in the N ∈ 2N, N →∞ limit.

There are actually several proofs of this result, but the one in [8] is remarkably beau-
tiful: based only on the Stirling formula, and on an old idea of Lagrange. Indeed:

P2 =
1

qN

(
N

N/2

) ∑
a1+...+aq/2=N/2

(
N/2

a1, . . . , aq/2

)2

The point now is that the sum on the right can be estimated by making a clever use
of the Stirling formula, and this gives the above result. See [8].

Summarizing, there are several techniques for dealing with the counting problem for
partial Butson matrices. In this paper we will try to use and mix these techniques. Our
first result here will be an extension of the Richmond-Shallit count:

Theorem A. When q = pk is a prime power, the probability for a randomly chosen
H ∈M2×N(Zq), with N ∈ pN, N →∞, to be partial Butson is:

P2 '

√
p2− q

p qq−
q
p

(2πN)q−
q
p

In particular, for q = p prime, P2 '
√

pp

(2πN)p−1 .

When q ∈ N is not a prime power the combinatorics is much more complicated, as
shown by Lam and Leung in [5]. Particularly problematic is the case where q has 3 prime
factors, because the vanishing sums of q-roots of unity won’t necessarily decompose as
sums of cycles. Here is such a “tricky” vanishing sum, with w = e2πi/30:

w5 + w6 + w12 + w18 + w24 + w25 = 0

Our second result will concern the case where q has two prime factors. If we call
“dephased” the matrices having the first row consisting of 1 entries only, we have:

Theorem B. For q = pk11 p
k2
2 with p1, p2 distinct primes, the dephased partial Butson

matrices H ∈ M2×N(Zq) are indexed by matrices A ∈ M
p
k1
1 ×p

k2
2

(N) of the following form,

with indices i ∈ Zp1, j ∈ Z
p
k1−1
1

, x ∈ Zp2, y ∈ Z
p
k2−1
2

, and with Bijy, Cjxy ∈ N:

Aij,xy = Bijy + Cjxy

In particular at q = 2p with p > 3 prime, P2 equals the probability for a random walk on
Zp to end up on the diagonal, i.e. at a position of type (t, . . . , t), with t ∈ Z.
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As already mentioned, the general case q = pk11 . . . pkss is certainly more complicated.
One way of avoiding the difficulties would be by imposing the “regularity” assumption
from [1]. But the matrices A as above will become s-arrays, and we have no results.

Finally, at M = 3, and when q = p is prime, the partial Butson matrices are related
to the matrices A ∈ Mp(N) which are “tristochastic”, in the sense that the sums on the
rows, columns and diagonals are all equal. We will prove the following result:

Theorem C. At q = p prime, the dephased partial Butson matrices H ∈ M3×N(Zq) are
indexed by the tristochastic matrices A ∈ Mp(N), with sum N/p. In particular at p = 3

we have P3 ' 243
√

3
(2πN)3

, in the N ∈ 3N, N →∞ limit.

We can see from the above results that the counting problem depends a lot on q,M .
We believe that an extension of [7] should require assuming that q = p is prime.

The paper is organized as follows: 1 is a preliminary section, in 2-4 we state and prove
our main results, and 5 contains some further results, and a few concluding remarks.

1 Partial Hadamard matrices

Let H ∈ MM×N(±1) be a partial Hadamard matrix (PHM). We will usually dephase H,
i.e. assume that the first row consists of 1 entries only, then put it in “standard form”,
with the + entries moved to the left as much as possible, by proceeding from top to
bottom. Here are some examples, at small values of M :

Proposition 1.1. The standard form of dephased PHM at M = 2, 3, 4 is

H =

 + +
+︸︷︷︸
N/2

−︸︷︷︸
N/2

 H =


+ + + +
+ + − −
+︸︷︷︸
N/4

−︸︷︷︸
N/4

+︸︷︷︸
N/4

−︸︷︷︸
N/4



H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
a

−︸︷︷︸
b


where at M = 4 the numbers a, b ∈ N satisfy a+ b = N/4.

Proof. All the results follow by putting the matrix in standard form, and then writing
down the orthogonality equations in terms of the block entries in the last row.

Let us try now to count the partial Hadamard matrices H ∈ MM×N(±1). This is an
easy task at M = 2, 3, 4, where the answer is:

Proposition 1.2. The number of PHM at M = 2, 3, 4 is

#PHM2×N = 2N
(
N

N/2

)
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#PHM3×N = 2N
(

N

N/4, N/4, N/4, N/4

)
#PHM4×N = 2N

∑
a+b=N/4

(
N

a, b, b, a, b, a, a, b

)
where the quantities on the right are multinomial coefficients.

Proof. Indeed, the multinomial coefficients at right count the matrices having the first
row consisting of 1 entries only, and the 2N factor comes from this.

At M > 5 no such simple formula is available, and estimating rather than exactly
computing looks like a more reasonable objective. First, we have:

Proposition 1.3. The probability for a random H ∈MM×N(±1) to be PHM is

P2 '
2√

2πN
, P3 '

16√
(2πN)3

, P4 '
512

(2πN)3

in the N ∈ 2N (resp. N ∈ 4N, N ∈ 4N), N →∞ limit.

Proof. Since there are 2MN sign matrices of size N × M , the probability PM in the
statement is given by:

PM =
1

2MN
#PHMM×N

With this formula in hand, the result follows from Proposition 1.2, by using standard
estimates for sums of binomial coefficients (see Lemma 2.4 below).

In general, we have the following result, due to de Launey and Levin:

Theorem 1.4 ([7]). The probability for a random H ∈MM×N(±1) to be PHM is

PM '
2(M−1)2√
(2πN)(

M
2 )

in the N ∈ 4N, N →∞ limit.

Proof. The proof in [7] uses a random walk interpretation of the PHM, then the Fourier
inversion formula, and finally a number of quite technical real analysis estimates.

2 Butson matrices, abelian squares

As mentioned in [7], the method there should apply to more general situations. We discuss
in what follows a potential extension to the partial Butson matrices:

Definition 2.1. A partial Butson matrix (PBM) is a matrix H ∈ MM×N(Zq) having its
rows pairwise orthogonal, where Zq ⊂ C× is the group of q-roots of unity.
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Observe that at q = 2 we obtain the PHM. In general, the interest comes from the
Butson matrices H ∈MN(Zq), and from their M ×N submatrices. See [2], [10].

Two PBM are called “equivalent” if one can pass from one to the other by permuting
the rows and columns, or by multiplying the rows and columns by numbers in Zq.

Up to this equivalence, we can assume that H is dephased, in the sense that its first
row consists of 1 entries only. We can also put H in “standard form”, as follows:

Definition 2.2. We say that H ∈ MM×N(Zq) is in standard form if the low powers of
w = e2πi/q are moved to the left as much as possible, by proceeding from top to bottom.

Let us first try to understand the case M = 2. Here a dephased partial Butson matrix
H ∈M2×N(Zq) must look as follows, with λi ∈ Zq satisfying λ1 + . . .+ λN = 0:

H =

(
1 . . . 1
λ1 . . . λN

)
With q = pk11 . . . pkss , we must have, according to Lam and Leung [5], N ∈ p1N + . . .+

psN. Observe however that at s > 2 this obstruction dissapears at N > p1p2.
In this section we restrict attention to the prime power case. First, we have:

Proposition 2.3. When q = pk is a prime power, the standard form of the dephased
partial Butson matrices at M = 2 is

H =

 1 1 . . . 1 . . . . . . 1 1 . . . 1

1︸︷︷︸
a1

w︸︷︷︸
a2

. . . wq/p−1︸ ︷︷ ︸
aq/p

. . . . . . wq−q/p︸ ︷︷ ︸
a1

wq−q/p+1︸ ︷︷ ︸
a2

. . . wq−1︸︷︷︸
aq/p


where w = e2πi/q and where a1, . . . , aq/p ∈ N are multiplicities, summing up to N/p.

Proof. Indeed, it is well-known that for q = pk the solutions of λ1 + . . . + λN = 0 with
λi ∈ Zq are, up to permutations of the terms, exactly those in the statement.

Our next objective will be to count the matrices in Proposition 2.3. We use:

Lemma 2.4. We have the estimate

∑
a1+...+as=n

(
n

a1, . . . , as

)p
' spn

√
ss(p−1)

ps−1(2πn)(s−1)(p−1)

in the n→∞ limit.

Proof. This is proved by Richmond and Shallit in [8] at p = 2, and the proof in the general
case, p ∈ N, is similar. More precisely, let us denote by csp the sum on the left. By setting
ai = n

s
+ xi
√
n and then by using the various formulae in [8], we obtain:

csp ' spn(2πn)
(1−s)p

2 s
sp
2 exp

(
−sp

2

s∑
i=1

x2
i

)
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' spn(2πn)
(1−s)p

2 s
sp
2

∫ n

0

. . .

∫ n

0︸ ︷︷ ︸
s−1

exp

(
−sp

2

s∑
i=1

x2
i

)
da1 . . . das−1

= spn(2πn)
(1−s)p

2 s
sp
2 n

s−1
2

∫ n

0

. . .

∫ n

0︸ ︷︷ ︸
s−1

exp

−sp
2

s−1∑
i=1

x2
i −

sp

2

(
s−1∑
i=1

xi

)2
 dx1 . . . dxs−1

= spn(2πn)
(1−s)p

2 s
sp
2 n

s−1
2 × π

s−1
2 s−

1
2

(sp
2

) 1−s
2

= spn(2πn)
(1−s)p

2 s
sp
2
− 1

2
+ 1−s

2

( p

2πn

) 1−s
2

= spn(2πn)
(1−s)(p−1)

2 s
sp−s

2 p
1−s
2

Thus we have obtained the formula in the statement, and we are done.

Now with Lemma 2.4 in hand, we can now prove:

Theorem 2.5. When q = pk is a prime power, the probability for a randomly chosen
M ∈M2×N(Zq), with N ∈ pN, N →∞, to be partial Butson is:

P2 '

√
p2− q

p qq−
q
p

(2πN)q−
q
p

In particular, for q = p prime, P2 '
√

pp

(2πN)p−1 . Also, for q = 2k, P2 ' 2

√(
q/2
2πN

)q/2
.

Proof. First, the probability PM for a random M ∈MM×N(Zq) to be PBM is:

PM =
1

qMN
#PBMM×N

Thus, according to Proposition 2.3, we have the following formula:

P2 =
1

qN

∑
a1+...+aq/p=N/p

(
N

a1 . . . a1︸ ︷︷ ︸
p

. . . . . . aq/p . . . aq/p︸ ︷︷ ︸
p

)

=
1

qN

(
N

N/p . . . N/p︸ ︷︷ ︸
p

) ∑
a1+...+aq/p=N/p

(
N/p

a1 . . . aq/p

)p

=
1

pN

(
N

N/p . . . N/p︸ ︷︷ ︸
p

)
× 1

(q/p)N

∑
a1+...+aq/p=N/p

(
N/p

a1 . . . aq/p

)p
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Now by using the Stirling formula for the left term, and Lemma 2.4 with s = q/p and
n = N/p for the right term, we obtain:

P2 =

√
pp

(2πN)p−1
×

√
(q/p)

q
p

(p−1)

p
q
p
−1(2πN/p)( q

p
−1)(p−1)

=

√
pp−

q
p

(p−1)− q
p

+1+( q
p
−1)(p−1)q

q
p

(p−1)

(2πN)p−1+( q
p
−1)(p−1)

=

√
p2− q

p qq−
q
p

(2πN)q−
q
p

Thus we have obtained the formula in the statement, and we are done.

3 Two prime factors, random walks

In this section we discuss the case where M = 2 and q = pk11 p
k2
2 has two prime factors.

Let us first examine the simplest such case, namely q = p1p2, with p1, p2 primes:

Proposition 3.1. When q = p1p2 is a product of distinct primes, the standard form of
the dephased partial Butson matrices at M = 2 is

H =

 1 1 . . . 1 . . . . . . 1 1 . . . 1
1︸︷︷︸
A11

w︸︷︷︸
A12

. . . wp2−1︸ ︷︷ ︸
A1p2

. . . . . . wq−p2︸ ︷︷ ︸
Ap11

wq−p2+1︸ ︷︷ ︸
Ap12

. . . wq−1︸︷︷︸
Ap1p2


where w = e2πi/q, and A ∈Mp1×p2(N) is of the form Aij = Bi + Cj, with Bi, Cj ∈ N.

Proof. We use the fact that for q = p1p2 any vanishing sum of q-roots of unity decomposes
as a sum of cycles. See [5]. Now if we denote by Bi, Cj ∈ N the multiplicities of the various
p2-cycles and p1-cycles, then we must have Aij = Bi + Cj, as claimed.

Regarding the matrices of type Aij = Bi+Cj, when taking them over integers, Bi, Cj ∈
Z, these form a vector space of dimension p1 + p2 − 1. Given A ∈ Mp1×p2(Z), the “test”
for deciding if we have Aij = Bi + Cj or not is Aij + Akl = Ail + Ajk.

The problem comes of course from the assumption Bi, Cj > 0, which is quite a subtle
one. In what follows we restrict attention to the case p1 = 2. Here we have:

Theorem 3.2. For q = 2p with p > 3 prime, P2 equals the probability for a random walk
on Zp to end up on the diagonal, i.e. at a position of type (t, . . . , t), with t ∈ Z.

Proof. According to Proposition 3.1, we must understand the matrices A ∈ M2×p(N)
which decompose as Aij = Bi + Cj, with Bi, Cj > 0. But this is an easy task, because
depending on A11 vs. A21 we have 3 types of solutions, as follows:(

a1 . . . ap
a1 . . . ap

)
,

(
a1 . . . ap

a1 + t . . . ap + t

)
,

(
a1 + t . . . ap + t
a1 . . . ap

)
the electronic journal of combinatorics 21(3) (2014), #P3.12 8



Here ai > 0 and t > 1. Now since cases 2,3 contribute in the same way, we obtain:

P2 =
1

(2p)N

∑
2Σai=N

(
N

a1, a1, . . . , ap, ap

)
+

2

(2p)N

∑
t>1

∑
2Σai+pt=N

(
N

a1, a1 + t, . . . , ap, ap + t

)
We can write this formula in a more compact way, as follows:

P2 =
1

(2p)N

∑
t∈Z

∑
2Σai+p|t|=N

(
N

a1, a1 + |t|, . . . , ap, ap + |t|

)
Now since the sum on the right, when rescaled by 1

(2p)N
, is exactly the probability for

a random walk on Zp to end up at (t, . . . , t), this gives the result.

According to the above result we have P2 =
∑

t∈Z P
(t)
2 , where P

(t)
2 with t ∈ Z is the

probability for a random walk on Zp to end up at (t, . . . , t). Observe that, by using Lemma
2.4 above with s, p, n equal respectively to p, 2, N/2, we obtain:

P
(0)
2 =

1

(2p)N

(
N

N/2

) ∑
a1+...+ap=N/2

(
N/2

a1, . . . , ap

)2

'
√

2

πN
×
√

pp

2p−1(πN)p−1
= 2

√( p

2πN

)p
Regarding now the probability P

(t)
2 of ending up at (t, . . . , t), in principle for small t

this can be estimated by using a modification of the method in [8]. However, it is not
clear on how to compute the full diagonal return probability in Theorem 3.2.

Let us discuss now the exponents q = 3p. The same method as in the proof of Theorem
3.2 works, with the “generic” solution for A being as follows:

A =

 a1 . . . ap
a1 + t . . . ap + t

a1 + s+ t . . . ap + s+ t


More precisely, this type of solution, with s, t > 1, must be counted 6 times, then its

s = 0, t > 1 and s > 1, t = 0 particular cases must be counted 3 times each, and finally
the s = t = 0 case must be counted once. Observe that the s = t = 0 contribution is:

P
(0,0)
3 =

1

(3p)N

(
N

N/3, N/3, N/3

) ∑
a1+...+ap=N/3

(
N/3

a1, . . . , ap

)3

'

√
27

(2πN)2
×

√
p2p

3p−1(2πN/3)2(p−1)

= 3
√

3p
( p

2πN

)p
Finally, regarding arbitrary exponents with two prime factors, we have:
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Proposition 3.3. When q = pk11 p
k2
2 has exactly two prime factors, the dephased partial

Butson matrices at M = 2 are indexed by the solutions of

Aij,xy = Bijy + Cjxy

with Bijy, Cjxy ∈ N, with i ∈ Zp1, j ∈ Z
p
k1−1
1

, x ∈ Zp2, y ∈ Z
p
k2−1
2

.

Proof. We follow the method in the proof of Proposition 3.1. First, according to [5], for
q = pk11 p

k2
2 any vanishing sum of q-roots of unity decomposes as a sum of cycles.

Let us first work out a simple particular case, namely q = 4p. Here the multiplicity
matrices A ∈M4×p(N) appear as follows:

A =


B1 . . . B1

B2 . . . B2

B3 . . . B3

B4 . . . B4

+


C1 . . . Cp
D1 . . . Dp

C1 . . . Cp
D1 . . . Dp


Thus, if we use double binary indices for the elements of {1, 2, 3, 4}, the condition is:

Aij,x = Bij + Cjx

The same method works for any exponent of type q = pk11 p
k2
2 , the formula being:

Ai1...ik1 ,x1...xk2 = Bi1...ik1 ,x2...xk2
+ Ci2...ik1 ,x1...xk2

But this gives the formula in the statement, and we are done.

4 Three rows: tristochastic matrices

At M = 3 now, we first restrict attention to the case where q = p is prime. In this case,
Proposition 2.3 becomes simply:

H =

 1 1 . . . 1
1︸︷︷︸
a

w︸︷︷︸
a

. . . wp−1︸︷︷︸
a


We call a matrix A ∈ Mp(N) “tristochastic” if the sums on its rows, columns and

diagonals are all equal. Here, and in what follows, we call “diagonals” the main diagonal,
and its p− 1 translates to the right, obtained by using modulo p indices.

With this notation, here is now the result at M = 3:

Proposition 4.1. For p prime, the standard form of the dephased PBM at M = 3 is

H =


1 1 . . . 1 . . . . . . 1 1 . . . 1
1 1 . . . 1 . . . . . . wp−1 wp−1 . . . wp−1

1︸︷︷︸
A11

w︸︷︷︸
A12

. . . wp−1︸︷︷︸
A1p

. . . . . . 1︸︷︷︸
Ap1

w︸︷︷︸
Ap2

. . . wp−1︸︷︷︸
App


where w = e2πi/p and where A ∈Mp(N) is tristochastic, with sums N/p.
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Proof. Consider a dephased matrix H ∈ M3×N(Zp), written in standard form as in the
statement. Then the orthogonality conditions between the rows are as follows:

1 ⊥ 2 means A11 + . . .+ A1p = A21 + . . .+ A2p = . . . . . . = Ap1 + . . .+ App.
1 ⊥ 3 means A11 + . . .+ Ap1 = A12 + . . .+ Ap2 = . . . . . . = A1p + . . .+ App.
2 ⊥ 3 means A11 + . . .+ App = A12 + . . .+ Ap1 = . . . . . . = A1p + . . .+ Ap,p−1.
Thus A must have constant sums on rows, columns and diagonals, as claimed.

It is quite unobvious on how to deal with the tristochastic matrices with bare hands.
For the moment, let us just record a few elementary results:

Proposition 4.2. For p = 2, 3, the standard form of the dephased PBM at M = 3 is
respectively as follows, with w = e2πi/3 and a+ b+ c = N/3 at p = 3:

H =


+ + + +
+ + − −
+︸︷︷︸
N/4

−︸︷︷︸
N/4

+︸︷︷︸
N/4

−︸︷︷︸
N/4



H =

 1 1 1 1 1 1 1 1 1
1 1 1 w w w w2 w2 w2

1︸︷︷︸
a

w︸︷︷︸
b

w2︸︷︷︸
c

1︸︷︷︸
b

w︸︷︷︸
c

w2︸︷︷︸
a

1︸︷︷︸
c

w︸︷︷︸
a

w2︸︷︷︸
b


Also, for p > 3 prime and N ∈ pN, there is at least one Butson matrix H ∈M3×N(Zp).

Proof. The p = 2, 3 assertions follow from Proposition 4.1, and from the fact that the
2× 2 and 3× 3 tristochastic matrices are respectively as follows:

A =

(
a a
a a

)
, A =

a b c
b c a
c a b


Indeed, the p = 2 assertion is clear. Regarding now the p = 3 assertion, consider an

arbitary 3× 3 bistochastic matrix, written as follows:

A =

 a b n− a− b
d c n− c− d

n− a− d n− b− c ∗


Here ∗ = a+ b+ c+ d− n, but we won’t use this value, because one of the 3 diagonal

equations is redundant anyway. With these notations in hand, the conditions are:

b+ (n− c− d) + (n− a− d) = n

(n− a− b) + d+ (n− b− c) = n

Now since substracting these equations gives b = d, we obtain the result.
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Regarding now the last assertion, consider the following p× p permutation matrix:

A =


1

1
1

. .
.

1


Since this matrix is tristochastic, for any p > 3 odd, this gives the result.

As already mentioned, it is not clear on how to understand the tristochastic matrices
at p > 5. Such matrices make sense of course at any p > 2, not necessarily prime, so we
can try to first study them at p = 4. But, the situation at p = 4 is not clear either.

Regarding now the asymptotic count, we have here:

Theorem 4.3. For p = 2, 3, the probability for a randomly chosen M ∈M3×N(Zp), with
N ∈ pN, N →∞, to be partial Butson is respectively:

P
(2)
3 '

{
16√

(2πN)3
if N ∈ 4N

0 if N /∈ 4N
P

(3)
3 ' 243

√
3

(2πN)3

In addition, we have P
(p)
3 > 0 for any N ∈ pN, for any p > 3 prime.

Proof. According to Proposition 4.2, and then to the Stirling formula, we have:

P
(2)
3 =

1

4N

(
N

N/4, N/4, N/4, N/4

)
' 16√

(2πN)3

Also, by using Proposition 4.2, and then Lemma 2.4 with s = p = 3, n = N/3:

P
(3)
3 =

1

9N

∑
a+b+c=N/3

(
N

a, b, c, b, c, a, c, a, b

)

=
1

3N

(
N

N/3, N/3, N/3

)
× 1

3N

∑
a+b+c=N/3

(
N/3

a, b, c

)3

' 3
√

3

2πN
·

√
81

(2πN/3)4
=

243
√

3

(2πN)3

Finally, the last assertion is clear from the last assertion in Proposition 4.2.

For exponents of type q = pk with k > 2, we obtain as well some kind of tristochastic
matrices, but with the tristochastic condition taken blockwise. However, finding a good
parametrization of these matrices is quite unobvious, even at q = 4.
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5 Further results, conclusion

We have the following question, which emerges from the above results:

Question 5.1. Is there any de Launey-Levin type formula for PM , with M ∈ N arbitrary,
at least in the case where q = p is prime?

As a first observation, the beginning of the proof in [7] applies to the general situation
q ∈ N. Indeed, by following the idea there, we have:

Theorem 5.2. The probability PM for a random H ∈ MM×N(Zq) to be partial Butson
equals the probability for a length N random walk with increments drawn from

E =
{

(eiēj)i<j

∣∣∣e ∈ ZMq
}

regarded as a subset Z(M
2 )

q , to return at the origin.

Proof. Indeed, with T (e) = (eiēj)i<j, a matrix X = [e1, . . . , eN ] ∈ MM×N(Zq) is partial
Butson if and only if T (e1) + . . .+ T (eN) = 0, and this gives the result.

Observe now that, according to the above result, we have:

PM =
1

q(M−1)N
#

{
ξ1, . . . , ξN ∈ E

∣∣∣∑
i

ξi = 0

}
=

1

q(M−1)N

∑
ξ1,...,ξN∈E

δΣξi,0

The problem is to continue the computation in the proof of the inversion formula.
More precisely, the next step at q = 2, which is the key one, is as follows:

δΣξi,0 =
1

(2π)D

∫
[−π,π]D

ei<λ,Σξi>dλ

Here D =
(
M
2

)
. The problem is that this formula works when Σξi is real, as is the case

in [7], but not when Σξi is complex, as is the case in Theorem 5.2.
Yet another problem comes from the fact that the exponent p = 2 used in [7] is quite

special, because it forces N ∈ p2N, instead of just N ∈ pN. Thus, regardless of the
above-mentioned real vs. complex issue, the combinatorics in [7] is probably not exactly
the p = 2 instance of a “generic” combinatorics, because the generic case would probably
require the assumption p 6= 2. We have no answer so far to these questions.
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