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Abstract

The lattice of monotone triangles (Mn,6) ordered by entry-wise comparisons is
studied. Let τmin denote the unique minimal element in this lattice, and τmax the
unique maximum. The number of r-tuples of monotone triangles (τ1, . . . , τr) with
minimal infimum τmin (maximal supremum τmax, resp.) is shown to asymptotically
approach r|Mn|r−1 as n→∞. Thus, with high probability this event implies that
one of the τi is τmin (τmax, resp.). Higher-order error terms are also discussed.

Keywords: monotone triangles; permutations; square ice; alternating sign matri-
ces; meet; join

1 Introduction and statement of results

Let n > 1 be an integer and [n] := {1, 2, . . . , n}. A monotone triangle of size n (or
Gog triangle in the terminology of Doron Zeilberger [18]) is a triangular arrangement of
n(n + 1)/2 integers with i elements in row i (i ∈ [n]) taken from the set [n] so that if
a(i, j) denotes the jth entry in row i (counted from the top), then

1. a(i, j) < a(i, j + 1), 1 6 j < i, and

2. a(i, j) 6 a(i− 1, j) 6 a(i, j + 1), 1 6 j < i.
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Note that this definition forces the last row to be a(n, 1) = 1, a(n, 2) = 2, . . . , a(n, n) = n.
We let Mn denote the set of all monotone triangles of size n, and we let τ = (τ(i, j)) be
a generic element from this set. It is well-known that there is a bijection between Mn

and the set of all n × n alternating-sign matrices (ASMs), which are the n × n matrices
of 0s, 1s, and −1s so that the sum of the entries in each row and column is 1 and the
non-zero entries in each row and column alternate in sign. This bijection is often seen
via the column-sum matrix form of an ASM; an example of a monotone triangle of size
4, along with the corresponding column-sum matrix and ASM, is given in Figure 1.

3
2 4

1 3 4
1 2 3 4

⇐⇒


0 0 1 0
0 1 0 1
1 0 1 1
1 1 1 1

 ⇐⇒


0 0 1 0
0 1 -1 1
1 -1 1 0
0 1 0 0


Figure 1: A monotone triangle of size 4, along with the corresponding column-sum and
alternating-sign matrices.

The set Mn is also in bijection with the square ice configurations (or six-vertex con-
figurations) of order n in statistical mechanics; for descriptions of these bijections, along
with other sets in bijection with Mn, see the surveys of James Propp [15], David Bres-
soud and Propp [3], or the wonderful exposition by Bressoud about the proof of the ASM
conjecture [2], which concerns the number of monotone triangles, denoted A(n) := |Mn|
(as this was first framed for ASMs). Specifically, the ASM conjecture is simply that

A(n) =
n−1∏
k=0

(3k + 1)!

(n+ k)!
. (1)

The formula (1) was first proved by Zeilberger [18], with another proof (using square
ice) given by Greg Kuperberg [12]. Bressoud’s book [2] not only lays out this proof in
complete detail, but also delivers the historical narrative surrounding this triumph.

For the asymptotic value of A(n), Bleher and Fokin [1] found that

A(n) = c

(
3
√

3

4

)n2

× n−5/36 ×
(

1− 115

15552n2
+O

(
n−3
))

,

where c > 0 is a constant. Using Stirling’s approximation n! ∼ en logn−n
√

2πn it becomes
clear that A(n) and n! are far apart for large n. We shall not need this in our present
study, however. We simply need the fact that A(n) > n!, which we have already seen
is clear from permutation matrices being a subset of the ASMs, and can also be seen
directly from monotone triangles (by iteratively building a monotone triangle from the
top to the bottom, and for each new row adding one new number to the previous row).
Before departing from the question of enumerating objects related to monotone triangles,
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we also mention some recent work of Ilse Fischer [7, 8, 9] which has focused on finer enu-
merative questions regarding a looser definition of monotone triangles where the bottom
row is simply required to be a strictly increasing collection of n positive integers (rather
than the specific integers 1, 2, . . . , n), and also the enumeration of so-called monotone
trapezoids. Also, Jessica Striker [17] has recently settled the long-sought question of a
bijection between descending plane partitions and ASMs in the case where the ASM is
simply a permutation matrix. Striker’s bijection involves a particular weighting of per-
mutation inversions, a concept that we explore further in a forthcoming work extending
this present study.

Our present work will focus exclusively on the lattice properties of (Mn,6), where
“6” in this poset is defined by entry-wise comparisons. That is, given monotone triangles
τ1 = (τ1(i, j)) and τ2 = (τ2(i, j)) in Mn, we define τ1 6 τ2 if and only if τ1(i, j) 6 τ2(i, j)
for 1 6 j 6 i 6 n. Of course, it is entirely possible that two monotone triangles may
not be comparable at all. For example, in the case n = 3 the following two monotone
triangles are incomparable:

τ1 :=
3

1 3
1 2 3

and τ2 :=
2

2 3
1 2 3

. (2)

Indeed, all entries in both monotone triangles are the same except for the first entries in
rows 1 and 2, and there we have τ1(1, 1) > τ2(1, 1) and yet τ1(2, 1) < τ2(2, 1). However,
this poset is indeed a lattice under the infimum and supremum operations

inf(τ1, τ2) := (min{τ1(i, j), τ2(i, j)}) and sup(τ1, τ2) := (max{τ1(i, j), τ2(i, j)}).

Infimums and supremums for r monotone triangles, where r > 2, are defined analogously.
It is left to the interested reader to check that these inf and sup operations do deliver
monotone triangles, and satisfy the requirements of an infimum or supremum.

Interestingly, if we restrict this ordering to the collection of order-n permutations
Sn ⊆ Mn with each permutation identified with its corresponding monotone triangle
(through the correspondence described above), we obtain a poset (Sn,6) referred to
as the Bruhat ordering on Sn (see, e.g., H. and Boris Pittel’s work [11] or [10] for an
exposition on the comparability properties of (Sn,6)). It was C. Ehresmann [6] who
first discovered this connection between Sn under Bruhat ordering and their monotone
triangle counterparts under entry-wise comparisons. It is worth mentioning here that the
infimum of two elements of Sn, when viewed as elements of Mn, need not lie in Sn;
indeed, consider the n = 3 example above in (2). There we have

inf(τ1, τ2) =
2

1 3
1 2 3

,

and it is easy to see that this is not a monotone triangle arising from any permutation
in S3 even though both τ1 and τ2 do (they correspond to the permutations 312 and 231,
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respectively; a monotone triangle coming from a permutation will necessarily have the
property that each row is a subset of the very next row). Moreover, when the permutations
312 and 231 are viewed as elements of the Bruhat poset (S3,6) there are two potential
infimums, namely 132 and 213. However, these two permutations are incomparable in
this poset and thus (S3,6) is not a lattice. This is a general feature of the Bruhat
permutation-poset embedded within the monotone triangle lattice: the lattice property
enjoyed by (Mn,6) is not inherited by (Sn,6). In fact, Richard Stanley notes in exercise
7.103 of [16] that (Mn,6) is the unique MacNeille completion of (Sn,6) to a lattice. A.
Lascoux and M. P. Schützenberger [13] were the first to prove this fact. We now focus
exclusively on a particular feature of this lattice.

Let τmin denote the (unique) minimal element in the monotone triangle lattice. That
is,

τmin :=

1
1 2

1 2 3

. .
.

. .
. . . .

. . .

1 2 · · · n− 1 n

.

Similarly, let τmax denote the (unique) maximal element:

τmax :=

n
n− 1 n

n− 2 n− 1 n

. .
.

. .
. . . .

. . .

1 2 · · · n− 1 n

.

In this paper, we are interested in two questions. How likely is it that r indepen-
dent and uniformly random monotone triangles τ1, . . . , τr ∈ Mn will have trivial meet,
i.e. inf(τ1, . . . , τr) = τmin, and how likely are they to have trivial join, i.e. sup(τ1, . . . , τr) =
τmax? Namely, we want sharp estimates on the probabilities

1. pmin := P (inf(τ1, . . . , τr) = τmin), and

2. pmax := P (sup(τ1, . . . , τr) = τmax).

These questions have previously been studied for the lattice of set partitions ordered by
refinement (see Canfield [4] and Pittel [14]), the lattice of set partitions of type B (see
Chen and Wang [5]), and the lattice of permutations under weak ordering (see H. [10]).

First of all, we show that
pmin = pmax, (3)

reducing our problem to the consideration of pmin only.

Proof of (3). Given a monotone triangle τ = (τ(i, j)) ∈Mn, introduce the rank-reversed
monotone triangle τ̄ ∈Mn obtained by the transformation of entries

τ(i, j) 7→ n− τ(i, j) + 1
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and then reversing the order of each row. For example (n = 4)

τ =

3
2 3

1 2 4
1 2 3 4

7→ τ̄ =

2
2 3

1 3 4
1 2 3 4

.

Certainly if τ1, . . . , τr ∈ Mn are uniformly random and independent, the same is true of
τ̄1, . . . , τ̄r ∈Mn. Moreover, it is easy to check that

inf(τ1, . . . , τr) = τmin ⇐⇒ sup(τ̄1, . . . , τ̄r) = τmax.

But this means that pmin = pmax.

We are ready to state our main result.

Theorem 1. Fix an integer r > 1. Given r independent and uniformly random monotone
triangles τ1, . . . , τr ∈Mn, we have

pmin ∼
r

A(n)
, n→∞.

Notice that the theorem is obvious when r = 1, since in this case pmin = 1/A(n). Because
of this, we assume that r > 2 for the remainder of the paper; this theorem says that
essentially nothing changes for these r: almost all ways of obtaining τmin occur when
some τi = τmin!

It is possible to extend the proof of Theorem 1 to higher-order terms. In particular,
we will describe the modifications needed to obtain the following refinement.

Theorem 2. Fix an integer r > 1. Given r independent and uniformly random monotone
triangles τ1, . . . , τr ∈Mn, we have

pmin =
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2 + Θ(A(n− 2)A(n)r−2)

A(n)r
.

Theorem 1 is a simple corollary of Theorem 2 (as A(n − 1) = o(A(n)) and A(n − 2) =
o(A(n − 1)) from Lemma 4), but we leave them in the paper as separate results. This
is because the fundamental insights that give rise to Theorem 1 are obfuscated when
refined for the proof of Theorem 2. Also, the careful reader will notice that the proof of
Theorem 2 could in theory be extended to deliver further higher-order terms. However,
the argument becomes more complex and involves a much finer case-by-case treatment.
We hope that perhaps there is another method of proof that quickly gives all terms of
pmin. In particular, other proofs of similar statements (e.g. those in [4, 10, 14]) proceed
via generating functions, and it would be nice to find a different proof along these lines.

The remainder of the paper is laid out as follows. In Section 2, we first prove some
introductory lemmas about the values A(n) and then use these lemmas to prove Theorem
1. Section 3 describes how to modify this proof to obtain Theorem 2.
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2 Proof of Theorem 1

2.1 Lemmas

Before starting the proof of Theorem 1, we begin with several lemmas that help us un-
derstand how the values A(n) relate to one another. Throughout we use the convention
that A(0) = 1.

Lemma 3. Let i1 > i2 > 1. Then A(i1 + 1)A(i2 − 1) > A(i1)A(i2).

Proof. From (1) we have A(n)/A(n− 1) = (3n−2)!(n−1)!
(2n−1)!(2n−2)! . As this is an increasing function

of n for n > 1, the lemma follows; we leave the details to the reader.

Lemma 4. For all n > 1 and any constant c ∈ [n], we have

A(n− c)
A(n)

6

(
2

3

)(n
2)−(n−c

2 )
=

(
2

3

)c(2n−c−1)/2

.

Proof. First of all, for t > 1 we have

A(t− 1)

A(t)
=

(2t− 1)!(2t− 2)!

(3t− 2)!(t− 1)!
=

(2t− 2)(2t− 3) · · · (t)
(3t− 2)(3t− 3) · · · (2t)

and so
A(t− 1)

A(t)
6

(
2(t− 1)

3(t− 1) + 1

)t−1

6

(
2

3

)t−1

. (4)

But then
A(n− c)
A(n)

=
A(n− c)

A(n− c+ 1)
· A(n− c+ 1)

A(n− c+ 2)
· · · · · A(n− 1)

A(n)
,

and the result follows from using (4) on each term.

Remark 5. The bound given in Lemma 4 can be significantly sharpened using either
Stirling-type estimates or the asymptotic formula for A(n), but we will only need this
simple bound here.

Definition 6. Call row i0 in a monotone triangle τ = (τ(i, j)) ∈ Mn distinguished if it
consists of the smallest possible entries 1, 2, 3, . . ., i0, i.e.,

τ(i0, j) = j for 1 6 j 6 i0.

Notice that row n is distinguished for any monotone triangle τ ∈Mn.

Notation 1. Let D(τ) denote the set of distinguished rows for a given monotone triangle
τ ∈ Mn. Given a collection of row indices I = {i1, i2, . . . , ik} ⊆ [n − 1], let ηn(I) =
ηn(i1, i2, . . . , ik) denote the number of monotone triangles τ ∈ Mn such that I ∪ {n} ⊆
D(τ). When applicable, we will assume that i1 < i2 < · · · < ik. If no distinguished rows
are specified outside of the (bottom) n-th row, we adopt the notation ηn(∅). That is,
ηn(∅) is the number of monotone triangles τ ∈Mn such that ∅ ∪ {n} ⊆ D(τ); clearly we
have ηn(∅) = A(n).
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Lemma 7. For any row indices i1, i2, . . . , ik ∈ [n− 1], we have

ηn(i1, i2, . . . , ik) = A(i1)A(i2 − i1) · · ·A(ik − ik−1)A(n− ik).

Proof. We first claim that

ηn(i1, i2, . . . , ik) = A(i1)ηn−i1(i2 − i1, . . . , ik − i1). (5)

Indeed, if row i1 is distinguished then the top i1 rows form a monotone triangle of size i1,
hence the first factor of A(i1). The bottom n − i1 rows must all start with the numbers
1, 2, 3, . . ., i1 in their first i1 entries; the remaining entries in these rows are in bijective
correspondence with a monotone triangle of size n− i1 given by subtracting i1 from each
of these entries, and row i among the last n − i1 rows in the original monotone triangle
corresponds to row i − i1 in this bijective element. As the rows i2, . . ., ik, and n are
distinguished in the original monotone triangle, this means rows with transformed indices
i2 − i1, . . ., ik − i1, and n − i1 are distinguished in the corresponding monotone triangle
of size n− i1. Thus we get the second factor ηn−i1(i2 − i1, . . . , ik − i1).

The result now follows from (5) by induction on k.

Corollary 8. For any row indices i1, i2, . . . , ik ∈ [n− 1], we have

ηn(i1, i2, . . . , ik) 6 A(n− k).

Proof. Using Lemmas 3 and 7, we have

ηn(i1, i2, . . . , ik) = A(i1)A(i2 − i1)A(i3 − i2) · · ·A(ik − ik−1)A(n− ik)

6 A(1)A(1)A(1) · · ·A(1)A(n− k).

Remark 9. We should be careful to point out here that Corollary 8 will be of particular
utility. It says that the number of monotone triangles containing a prescribed collection
of k distinguished rows (not including the very last n-th row) is at most

ηn(1, 2, . . . , k) = ηn(n− k, n− k + 1, . . . , n− 1) = A(n− k).

Said another way, the count of monotone triangles containing k prescribed distinguished
rows outside of row n is no more than the count of monotone triangles with at least the
top k rows distinguished in addition to row n, or similarly the count of monotone triangle
with at least the bottom k + 1 rows distinguished (as both these counts are A(n− k) by
Lemma 7).
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2.2 The proof

By considering all (τ1, . . . , τr) such that exactly one of them is τmin, we have

pmin >
r(A(n)− 1)r−1

A(n)r
=
r(1− o(1))

A(n)
. (6)

We will now produce a matching upper bound. Throughout the proof, we assume that n
is large enough to support our assertions.

Recall that row i in a monotone triangle τ is distinguished if it consists of entries 1, 2,
. . ., i. Notice that in order for inf(τ1, . . . , τr) = τmin, we must have each row distinguished
in at least one of τ1, . . . , τr. This observation leads us to focus on the locations of the
distinguished rows among the τj.

For an r-tuple (τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin, let D1, . . . , Dr be subsets of [n]
so that Dj = D(τj) is the set of distinguished rows of τj. Then the conditions

D1 ∪ · · · ∪Dr = [n] (7)

and
n ∈ D1 ∩ · · · ∩Dn (8)

must both hold. Using a trivial upper bound, there are at most 2rn ways of choosing an
r-tuple (D1, . . . , Dr) satisfying (7) and (8).

Much of the rest of the proof is devoted to finding an upper bound on the number
of (τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin that correspond to a particular (D1, . . . , Dr).
We will do this by producing an upper bound that holds for an entire class of r-tuples
(D1, . . . , Dr), and so we define these classes now.

For i = 0, . . . , 6r, let Cn−i = Cn−i(r) be the collection of all tuples (τ1, . . . , τr) with
inf(τ1, . . . , τr) = τmin so that some Dj (associated to τj) has exactly n − i consecutive
elements from [n], where n− i is maximal in Dj (and so, in particular, Dj has no larger
amount of consecutive elements from [n]). In other words, Cn−i consists of those r-tuples
(τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin so that some τj has a block of exactly n − i con-
secutive distinguished rows. (It should be emphasized that whenever we say “consec-
utive” for the remainder of this paper, it should be interpreted as maximally consecu-
tive as we have done here.) See Figure 2. Then let C6n−6r−1 be the collection of all
(τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin so that all Dj have at most n − 6r − 1 consecu-
tive elements from [n]. Clearly, for any (τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin we have
(τ1, . . . , τr) ∈ Cn ∪ · · · ∪ Cn−6r ∪ C6n−6r−1.

First, notice that
|Cn| 6 rA(n)r−1, (9)

which follows since (τ1, . . . , τr) ∈ Cn implies that Dj = [n] for some j. That is, some
τj = τmin in this case. Our goal is to show that the number of elements in the remaining
classes is small relative to this upper bound.

Next, consider Cn−1. How many (τ1, . . . , τr) are in Cn−1? There are r choices for the
monotone triangle τj which will have the n − 1 consecutive distinguished rows. In fact,
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τ1 =

1
1 2

1 2 4
1 2 3 4

τ2 =

2
1 3

1 2 3
1 2 3 4

Figure 2: An example (τ1, τ2) with inf(τ1, τ2) = τmin. In this example D1 = {1, 2, 4},
D2 = {3, 4}, and (τ1, τ2) ∈ C4−2.

the n− 1 consecutive distinguished rows must be rows 2, 3, . . . , n, as n ∈ Dj, and so the
first row of τj must be a 2. There are r− 1 choices for k such that τk has a distinguished
first row. Once k is fixed, by Lemma 7 there are A(n − 1) possible monotone triangles
τk satisfying this condition, and we place no restriction on the remaining τ`. This means
that

|Cn−1| 6 r(r − 1)A(n− 1)A(n)r−2. (10)

We’ll consider Cn−i for i = 2, . . . , 6r via the following lemma.

Lemma 10. Let r > 2 and i ∈ {2, 3, . . . , 6r}. Then

|Cn−i| 6 r(r − 1)2iA(i+ 1)A(i)A(n− i+ 1)A(n)r−2.

Proof. Choose (in r ways) j so that τj has exactly n − i consecutive distinguished rows.
There are i places for the n − i consecutive distinguished rows to occur (they can’t be
rows i, . . . , n− 1). First assume that the block of n− i rows is not the first or last n− i
rows; we will deal with these two cases later. Since there are n− i distinguished rows in
[n− 1], by Corollary 8 there are at most A(i) possibilities for a monotone triangle τj that
has a fixed placement of the n− i consecutive distinguished rows.

Next, we choose k 6= j corresponding to a monotone triangle τk that has a distinguished
row directly preceding the n − i consecutive distinguished rows of τj, and similarly we
choose ` 6= j corresponding to a monotone triangle τ` (where potentially ` = k) that has
a distinguished row directly following the n− i consecutive distinguished rows of τj. Let
i1 be the number of undetermined rows that precede the n − i distinguished rows of τj,
and let i2 = i− i1. In other words, τk has row i1 distinguished and τ` has row n− i2 + 1
distinguished.

If k 6= `, then by Lemma 7 there are A(i1)A(n− i1)A(n− i2 + 1)A(i2 − 1) choices for
monotone triangles τk and τ` subject to these restrictions. As i1 + i2 = i and i1, i2 > 1,
repeated applications of Lemma 3 delivers

A(i1)A(i2 − 1) 6 A(i− 1)

and
A(i1)A(n− i1)A(n− i2 + 1)A(i2 − 1) 6 A(i− 1)A(n− i+ 1)A(n).

If k = `, then similarly we have at most A(i− 1)A(n− i + 1) choices for τk. Finally,
we let the remaining r − 3 (r − 2, if k = `) monotone triangles be arbitrary.
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Putting these pieces together, in these i− 2 cases we obtain the upper bound

r(r − 1)2A(i)A(i− 1)A(n− i+ 1)A(n)r−2. (11)

Now what about the case where the block of n− i distinguished rows is at the bottom
of τj? Here, we need only choose k 6= j so that τk will have distinguished row i. Then, τj
can be completed outside of its bottom n− i distinguished rows in A(i+ 1) ways, and τk
can be completed outside of its distinguished i-th row in A(i)A(n− i) ways. Letting the
other n− 2 monotone triangles be arbitrary delivers the bound

r(r − 1)A(i+ 1)A(i)A(n− i)A(n)r−2 (12)

in this case. A similar analysis shows that the case where the block of n− i distinguished
rows is at the top of τj delivers the bound

r(r − 1)A(i)A(i− 1)A(n− i+ 1)A(n)r−2. (13)

Combining the i − 2 “intermediate” cases and their common bound given by (11) with
the top/bottom cases and their bounds given by (12) and (13), we obtain

|Cn−i| 6 r(r − 1)2(i− 2)A(i)A(i− 1)A(n− i+ 1)A(n)r−2

+ r(r − 1)A(i+ 1)A(i)A(n− i)A(n)r−2

+ r(r − 1)A(i)A(i− 1)A(n− i+ 1)A(n)r−2

6 r(r − 1)2iA(i+ 1)A(i)A(n− i+ 1)A(n)r−2,

as claimed.

Finally, we need to bound |C6n−6r−1|. Here, we already know that there are at most
2rn possible choices for an r-tuple (D1, . . . , Dr) satisfying (7) and (8). We fix such a
(D1, . . . , Dr) and bound the number of r-tuples (τ1, . . . , τr) ∈ C6n−6r−1 that correspond
to this fixed r-tuple (D1, . . . , Dr).

A precise count of these r-tuples would be difficult to compute, but we only need an
upper bound. But surely this count is at most

r∏
j=1

ηn (Dj \ {n}) ;

indeed, the number of τ ∈ Mn with precisely the distinguished rows Dj is certainly at
most the number of τ ∈Mn such that Dj ⊆ D(τ). Then, from Corollary 8 we have

r∏
j=1

ηn (Dj \ {n}) 6
r∏

j=1

A(n− |Dj|+ 1). (14)

Now let index m be such that |Dm| is maximal. First, we’ll suppose that |Dm| 6 n−6r.
Notice that

(|D1| − 1) + (|D2| − 1) + · · ·+ (|Dr| − 1) > n− 1 (15)
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which implies that

|Dm| >
n− 1

r
+ 1 =

n+ r − 1

r
>
n

r
,

and so
|Dm| > dn/re.

Then by Lemma 3 we have

r∏
j=1

A(n− |Dj|+ 1) 6 A(n− |Dm|+ 1)A(δ)A(n)r−2, (16)

where δ := max{n−|D1|−|D2|−· · ·−|Dr|+r+(|Dm|−1), 0}. Indeed, let m2 6= m denote
the index of the second largest value among |D1|, . . . , |Dn|. All we have done in order
to obtain (16) is to leave the m-th factor alone while repeatedly increasing the argument
sizes of the r− 2 factors with index not in {m,m2}, one at a time, always at the expense
of the factor with index m2 (via Lemma 3). If it should happen that factor m2’s argument
decreases to 0 in the process, we then leave that argument alone and simply continue to
increase the other r − 2 arguments (other than the m-th) all the way up to n.

Then using |Dm| 6 n− 6r, (15), and (16), we see that

r∏
j=1

A(n− |Dj|+ 1) 6 A(n− |Dm|+ 1)A(δ)A(n)r−2

6 A(n− |Dm|+ 1)A(|Dm|)A(n)r−2

6 A(6r + 1)A(n− 6r)A(n)r−2, (17)

where the last inequality uses Lemma 3 along with dn/re 6 |Dm| 6 n − 6r (and so
A(n− dn/re+ 1)A(dn/re) 6 A(6r + 1)A(n− 6r) for large enough n).

If instead |Dm| > n−6r, then we consider the n−6r consecutive rows 3r, 3r+1, . . . , n−
3r− 1. Since τm cannot have n− 6r consecutive distinguished rows, by (7) we know that
some other τk must have a distinguished row from among rows 3r, 3r + 1, . . . , n− 3r− 1.
Corollary 8 gives at most A(n− |Dm|+ 1) 6 A(6r) choices for such a τm, and Lemmas 7
and 3 give at most A(3r)A(n − 3r) choices for such a τk. Putting no restrictions on the
remaining monotone triangles, we have at most

A(6r)A(3r)A(n− 3r)A(n)r−2 (18)

monotone triangles corresponding to (D1, . . . , Dr) where |Dm| > n − 6r. Since there are
at most 2rn r-tuples (D1, . . . , Dr) and from (17) and (18) each of these corresponds to
at most A(6r)A(3r)A(n− 3r)A(n)r−2 r-tuples (τ1, . . . , τr) with inf(τ1, . . . , τr) = τmin, for
large enough n we have

|C6n−6r−1| 6 2rnA(6r)A(3r)A(n− 3r)A(n)r−2. (19)
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We are now ready to finish the calculation. We have (with the main inequalities
justified below, and all implied constants depending on r)

pmin =
|{(τ1, . . . , τr) : inf(τ1, . . . , τr) = τmin}|

A(n)r

6
|Cn|+ |Cn−1|+ · · ·+ |Cn−6r|+ |C6n−6r−1|

A(n)r

6
rA(n)r−1 +O(A(n− 1)A(n)r−2) +O(2rnA(n− 3r)A(n)r−2)

A(n)r
(20)

6
r +O((2/3)n) +O(2rn(2/3)3rn)

A(n)
(21)

=
r(1 + o(1))

A(n)
, (22)

where (20) follows from (9), (10), Lemma 3, Lemma 10 and (19), while (21) follows from
Lemma 4. Therefore, from (6) and (22) we have

pmin ∼
r

A(n)
.

3 Second-order term

In this section, we describe how the ideas from the proof of Theorem 1 can be generalized
to produce a second-order term for pmin. By inspection, there are 1, 1, and 6 monotone
triangles with a maximal block of exactly n, n − 1, and n − 2 consecutive distinguished
rows, respectively. In particular,

there are A(n)− 8 monotone triangles of size n
with at most n− 3 consecutive distinguished rows.

(23)

Let τ ′min denote the monotone triangle obtained from τmin by changing the top row to
a 2, and τ ′′min denote the monotone triangle obtained from τmin by changing row n− 1 to
1, 2, 3, · · · , n − 3, n − 2, n. It is important to note that τ ′min and τ ′′min each have more
than n− 3 consecutive distinguished rows.

We produce a lower bound as follows: Consider all (τ1, . . . , τr) such that:

1. one τj is τmin, and the others have at most n− 3 consecutive distinguished rows; or

2. one τj is τ ′min, a second τk has row 1 distinguished and has at most n−3 consecutive
distinguished rows, and the remaning τ` do not have row 1 distinguished and have
at most n− 3 consecutive distinguished rows; or

3. one τj is τ ′′min , a second τk has row n−1 distinguished and has at most n−3 consec-
utive distinguished rows, and the remaining τ` do not have row n− 1 distinguished
and have at most n− 3 consecutive distinguished rows.
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Notice that the collections of r-tuples in the three cases above are disjoint, since exactly
one monotone triangle τj will be either τmin, τ ′min, or τ ′′min. Using (23), there are r(A(n)−
8)r−1 = rA(n)r−1 −Θ(A(n)r−2) r-tuples (τ1, . . . , τr) in the first collection.

For the second collection, there are r choices for the index j followed by r−1 choices for
k. To compute the number of possibilities for τk in this collection we use a union bound:
subtract the total number of monotone triangles that do not have row 1 distinguished
(there are A(n)−A(n− 1) of these) from the number of monotone triangles with at most
n−3 consecutive distinguished rows given by (23) to obtain at least (A(n)−8)− (A(n)−
A(n − 1)) = A(n − 1) − 8 choices for τk. Lastly, from (23) and another union bound
there are at least (A(n)− 8)−A(n− 1) choices for each of the r− 2 remaining monotone
triangles τ`.

The enumeration for the third collection is very similar. There are r choices for j,
r − 1 choices for k, at least A(n− 1)− 8 choices for τk, and at least A(n)−A(n− 1)− 8
choices for each of the r − 2 remaining monotone triangles τ`. Therefore,

pmin >
r(A(n)− 8)r−1 + r(r − 1)(A(n− 1)− 8)(A(n)− A(n− 1)− 8)r−2

A(n)r

+
r(r − 1)(A(n− 1)− 8)(A(n)− A(n− 1)− 8)r−2

A(n)r

=
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2 −O(A(n− 1)2A(n)r−3)

A(n)r
(24)

For a corresponding upper bound, we use

|Cn| 6 rA(n)r−1 and |Cn−1| 6 r(r − 1)A(n− 1)A(n)r−2,

as before. We can refine Cn−2 to find those r-tuples with a τj having the top n − 2 rows
distinguished (giving 1 choice for the last entry in row n − 1 of τj, as row n − 1 is not
distinguished; i.e., τj = τ ′′min), and a k 6= j so that τk has row n− 1 distinguished. There
are r choices for j, r − 1 choices for k, A(n− 1) choices for τk, and we let the rest of the
choices be arbitrary. This gives an upper bound of r(r − 1)A(n − 1)A(n)r−2 for the size
of this subset of Cn−2. From the proof of Lemma 10 the remaining subset of Cn−2 has size
at most O(A(n− 2)A(n)r−2) (specifically, see the discussion around (12)).

Using the bounds for |Cn−3|, . . . , |Cn−6r| obtained in Lemma 10 and the bound for
|C6n−6r−1| from (19), we have

pmin 6
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2

A(n)r

+
O(A(n− 2)A(n)r−2) +O(2rnA(n− 3r)A(n)r−2)

A(n)r

=
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2

A(n)r
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+
O(A(n− 2)A(n)r−2) +O(2rnA(n− 2)(2/3)(3r−2)nA(n)r−2)

A(n)r
(25)

=
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2 +O(A(n− 2)A(n)r−2)

A(n)r
; (26)

here, moving from line (25) to (26) we have used r > 2.
Notice that A(n − 1)2 6 A(n − 2)A(n) (via Lemma 3), and so (24) and (26) imply

that

pmin =
rA(n)r−1 + 2r(r − 1)A(n− 1)A(n)r−2 + Θ(A(n− 2)A(n)r−2)

A(n)r
.
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