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Abstract

We present a new style of metric generator in graphs. Specifically we introduce
a metric generator based on a partition of the vertex set of a graph. The sets of the
partition will work as the elements which will uniquely determine the position of
each single vertex of the graph. A set W of vertices of a connected graph G strongly
resolves two different vertices x, y /∈ W if either dG(x,W ) = dG(x, y) + dG(y,W ) or
dG(y,W ) = dG(y, x) + dG(x,W ), where dG(x,W ) = min {d(x,w) : w ∈ W}. An
ordered vertex partition Π = {U1, U2, . . . , Uk} of a graph G is a strong resolving
partition for G if every two different vertices of G belonging to the same set of
the partition are strongly resolved by some set of Π. A strong resolving partition
of minimum cardinality is called a strong partition basis and its cardinality the
strong partition dimension. In this article we introduce the concepts of strong
resolving partition and strong partition dimension and we begin with the study of
its mathematical properties.

Keywords: strong resolving set; strong metric dimension; strong resolving parti-
tion; strong partition dimension; strong resolving graph

1 Introduction

A vertex v ∈ V is said to distinguish two vertices x and y if dG(v, x) 6= dG(v, y), where
dG(x, y) is the length of a shortest path between x and y. A set S ⊂ V is said to be a
metric generator for G if any pair of vertices of G is distinguished by some element of S.
A minimum generator is called a metric basis, and its cardinality the metric dimension of
G, denoted by dim(G). The problem of distinguishing an external element in a network
was the motivation that caused the introduction of locating sets by Slater in [25]. The
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concept of resolving set of a graph was also introduced by Harary and Melter in [10],
where locating sets were called resolving sets. In fact, the concepts of locating set and
resolving set coincides with the concept of metric generator for the metric space (G, dG),
where G = (V,E) is a connected graph and dG : V × V → N is the standard vertex
distance. Throughout the article G = (V,E) denotes a simple graph or order n = |V (G)|,
minimum degree δ(G) and maximum degree ∆(G) (δ and ∆ for short).

Slater described the usefulness of these ideas into long range aids to navigation [25].
Also, these concepts have some applications in chemistry for representing chemical com-
pounds [12, 13] or in problems of pattern recognition and image processing, some of which
involve the use of hierarchical data structures [20]. Other applications of this concept to
navigation of robots in networks and other areas appear in [5, 11, 14]. Hence, according
to its applicability, resolving sets has became into an interesting and popular topic of
investigation in graph theory. While applications have been continuously appearing, also
this invariant has been theoretically studied in a high number of other papers including
for example, [1, 2, 4, 5, 8, 9, 20, 22, 23, 26]. Notice that the amount of literature about
metric dimension is quite large. In this sense, we have just mentioned some examples
of known works, nevertheless we must emphasize the survey article [1], which, among
other interesting things, propose creating a unified and consistent terminology for metric
dimension parameter that exist in different areas like groups, graphs, coherent configura-
tions and association schemes. Nevertheless such an article has passed relative without
the required attention and the most common terminology and notation still remains not
unified. On the other hand, several variations of metric generators including resolving
dominating sets [3], independent resolving sets [7], local metric sets [22], strong resolving
sets [19, 21, 24], metric colorings [6] and resolving partitions [4, 8, 9, 23, 26, 27], etc. have
been introduced and studied.

The terminology of strong metric generators in graphs was first used in [24], where
the authors presented some applications of this concept to combinatorial search. For
instance they worked with problems on false coins known from the borderline of extremal
combinatorics and information theory and also, with a problem known from combinatorial
optimization related to finding “connected joins” in graphs. In such a work results about
detection of false coins are used to approximate the value of the metric dimension of some
specific graphs. They also proved that the existence of connected joins in graphs can be
solved in polynomial time, but on the other hand they obtained that the minimization
of the number of components of a connected join is NP-hard. Metric generators were
also studied in [21] where the authors found an interesting connection between the strong
metric basis of a graph and the vertex cover of a related graph which they called “strong
resolving graph”. This connection allowed them to prove that finding the metric dimension
of a graph is NP-complete. Nevertheless when the problem is restricted to trees, it can
be solved in polynomial time, fact that was also noticed in [24]. A remarkable article
about strong metric generators is [17], where the authors used some genetic algorithms to
compute the strong metric dimension of some classes of graphs. Other examples of works
about strong metric generators are for instance [15, 16, 19, 21, 24].

In this article we present a different way to obtain generators of graphs. Specifically,
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we introduce here a generator based on a partition Π of the metric space into sets (set
marks). The set marks (sets of the partition Π) will work as the elements which will
uniquely determine the position of each single element of the space. Some of the principal
antecedents of this new generator is the resolving partition defined in [8] or the metric
colorings presented in [6].

A vertex v of a graph G strongly resolves the two different vertices x, y if either
dG(x, v) = dG(x, y) + dG(y, v) or dG(y, v) = dG(y, x) + dG(x, v). A set S of vertices
in a connected graph G is a strong resolving set for G if every two vertices of G are
strongly resolved by some vertex of S. A strong resolving set of minimum cardinality is
called a strong metric basis and its cardinality the strong metric dimension of G, which
is denoted by dims(G).

For a vertex x and a set W of G, it is defined the distance between x and W in G as
dG(x,W ) = min {d(x, w) : w ∈ W} (if the graph is clear from the context we use only
d(x,W )). Now, notice that given two different vertices x, y and a set of vertices A, such
that x ∈ A and y /∈ A, since d(x,A) = 0, it could happen that min {d(y, a) : a ∈ A} =
d(y, A) 6= d(y, x) + d(x,A). Hence, in order to avoid that case we say that a set W
of vertices of G strongly resolves two different vertices x, y /∈ W , if either dG(x,W ) =
dG(x, y) + dG(y,W ) or dG(y,W ) = dG(y, x) + dG(x,W ). An ordered vertex partition
Π = {U1, U2, . . . , Uk} of a graph G is a strong resolving partition for G if every two
different vertices of G belonging to the same set of the partition are strongly resolved
by some set of Π. A strong resolving partition of minimum cardinality is called a strong

partition basis and its cardinality the strong partition dimension, which is denoted by
pds(G). Notice that always pds(G) > 2.

A vertex u of G is maximally distant from v if for every vertex w in the open neigh-
borhood of u, dG(v, w) 6 dG(u, v). If u is maximally distant from v and v is maximally
distant from u, then we say that u and v are mutually maximally distant. The boundary

of G = (V,E) is defined as

∂(G) = {u ∈ V : there exists v ∈ V such that u, v are mutually maximally distant} .

For some basic graph classes, such as complete graphs Kn, complete bipartite graphs Kr,s,
cycles Cn and hypercube graphs Qk, the boundary is simply the whole vertex set. It is
not difficult to see that this property holds for all 2-antipodal1 graphs and also for all
distance-regular graphs. Notice that the boundary of a tree consists exactly of the set
of its leaves. A vertex of a graph is a simplicial vertex if the subgraph induced by its
neighbors is a complete graph. Given a graph G, we denote by ε(G) the set of simplicial
vertices of G. If the simplicial vertex has degree one, then it is called an end-vertex. We
denote by τ(G) the set of end-vertices of G. Notice that ε(G) ⊆ ∂(G).

The notion of strong resolving graph was introduced first in [21]. The strong resolving

graph2 of G is a graph GSR with vertex set V (GSR) = ∂(G) where two vertices u, v are
adjacent in GSR if and only if u and v are mutually maximally distant in G. There are

1The diameter of G = (V,E) is defined as D(G) = maxu,v∈V {d(u, v)}. We recall that G = (V,E) is
2-antipodal if for each vertex x ∈ V there exists exactly one vertex y ∈ V such that dG(x, y) = D(G).

2In fact, according to [21] the strong resolving graph G′

SR of a graph G has vertex set V (G′

SR) = V (G)
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some families of graph for which its strong resolving graph can be obtained relatively easy.
For instance, we emphasize the following cases.

Remark 1.

(i) If ∂(G) = ε(G), then GSR
∼= K|∂(G)|. In particular, (Kn)SR ∼= Kn and for any tree T

with l(T ) leaves, (T )SR ∼= Kl(T ).

(ii) For any connected block graph3 G of order n and c cut vertices, GSR
∼= Kn−c.

(iii) For any 2-antipodal graph G of order n, GSR
∼=

⋃

n
2

i=1K2. In particular, (C2k)SR ∼=
⋃k

i=1K2 and for any hypercube graph Qr, (Qr)SR ∼=
⋃2r−1

i=1 K2.

(iv) For any positive integer k, (C2k+1)SR ∼= C2k+1.

2 Realizability and basic results

Clearly the strong metric dimension and the strong partition dimension are related. If
S = {v1, v2, . . . , vr} is a strong metric basis of G = (V,E), then it is straightforward
to observe that the partition Π = {{v1} , {v2} , . . . , {vr} , V − S} is a strong resolving
partition for G. Thus the following result is obtained.

Theorem 2. For any connected graph G, pds(G) 6 dims(G) + 1.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at
least one vertex of S. The vertex cover number of G, denoted by α(G), is the smallest
cardinality of a vertex cover of G. We refer to an α(G)-set in a graph G as a vertex
cover of cardinality α(G). Oellermann and Peters-Fransen [21] showed that the problem
of finding the strong metric dimension of a connected graph G can be transformed to the
problem of finding the vertex cover number of GSR.

Theorem 3. [21] For any connected graph G, dims(G) = α(GSR).

While an equivalent result for the strong partition dimension of graphs could not be
deduced, the result above leads to an upper bound for the strong partition dimension.
According to Theorems 2 and 3 we have the following result.

Theorem 4. For any connected graph G, pds(G) 6 α(GSR) + 1.

A clique in a graph G is a set of vertices S such that 〈S〉 is isomorphic to a complete
graph. The maximum cardinality of a clique in a graph G is the clique number and it
is denoted by ω(G). We will say that S is an ω(G)-clique if |S| = ω(G). The following
claim, and its consequence, will be very useful to obtain the strong metric dimension of
some graphs.

and two vertices u, v are adjacent in G′

SR if and only if u and v are mutually maximally distant in G. So,
the strong resolving graph defined here is a subgraph of the strong resolving graph defined in [21] and
can be obtained from the latter graph by deleting its isolated vertices.

3G is a block graph if every biconnected component (also called block) is a clique. Notice that any
vertex in a block graph is either a simplicial vertex or a cut vertex.
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Claim 5. If two vertices are mutually maximally distant in a graph G, then they belong

to different sets in any strong resolving partition for G.

Corollary 6. For any connected graph G, pds(G) > ω(GSR).

Throughout the article we will present several examples (for instance paths, trees,
complete graphs) in which the bounds of Theorems 2 and 4, and Corollary 6 are tight.
Nevertheless, the bounds of Theorems 2 and 4 are frequently very far from the exact
value for the strong partition dimension. In fact, the difference between the strong metric
dimension and the strong partition dimension of a graph can be arbitrarily large as we
show at next. To do so we need to introduce some additional notation. Given a unicyclic
graph G with unique cycle Ct, any end-vertex u of G is said to be a terminal vertex of a
vertex v ∈ V (Ct) if dG(u, v) < dG(u, w) for every other vertex w ∈ V (Ct). The terminal

degree ter(v) of a vertex v ∈ V (Ct) is the number of terminal vertices of v. A vertex
v ∈ V (Ct) of G is a major vertex of G if it has positive terminal degree (v has degree
greater than two in G). Notice that |τ(G)| =

∑

vi∈V (Ct)
ter(vi).

Let C1 be the family of unicyclic graphsG(r, t), r > 2 and t > 4, defined in the following
way. Every G(r, t) ∈ C1 has unique cycle Ct of order t > 4 and also, G(r, t) has only one
vertex v ∈ V (Ct) of degree greater than two with ter(v) = δ(v)− 2 = |τ(G)| = r > 2.

Proposition 7. If G(r, t) ∈ C1, then

pds(G(r, t)) = r + 1 and dims(G(r, t)) =

{

r + t−1
2
, if t is odd,

r + t−2
2
, if t is even.

Proof. Let V (Ct) = {v0, v1, . . . , vt−1}. Without loss of generality we suppose that v0 is the
vertex of G(r, t) such that δ(v0) = r+ 2. Let u1, u2, . . . , ur be the set of terminal vertices
of v0 and let Pi be the ui − v0 path for every i ∈ {1, . . . , r}. Notice that u1, u2, . . . , ur are
mutually maximally distant between them and also, there exists at least one vertex (for
instance v⌊t/2⌋) being diametral with v0 in Ct such that it is mutually maximally distant
with any other vertex in u1, u2, . . . , ur. Thus, pds(G(r, t)) > ω((G(r, t))SR) > r + 1.

Now, suppose t even. Define the vertex partition Π = {A1, . . . , Ar, B} such that

A1 = V (P1) ∪
{

v1, v2, . . . , v⌊t/2⌋−1

}

,

A2 = V (P2)− {v0} ,

A3 = V (P3)− {v0} ,

. . .

Ar = V (Pr)− {v0} ∪
{

v⌊t/2⌋+1, . . . , vt−1

}

and

B =
{

v⌊t/2⌋
}

.

We claim that Π is a strong resolving partition for G(r, t). Let x, y be two different vertices
of G(r, t). If x, y ∈ A1 or x, y ∈ Ar, then since d(u1, v⌊t/2⌋) = d(u1, v0) + d(v0, v⌊t/2⌋) =
d(u1, v0) +D(Ct) and d(ur, v⌊t/2⌋) = d(ur, v0) + d(v0, v⌊t/2⌋) = d(ur, v0) +D(Ct), we have
either d(x,B) = d(x, v⌊t/2⌋) = d(x, y) + d(y, v⌊t/2⌋) = d(x, y) + d(y, B) or d(y, B) =
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d(y, v⌊t/2⌋) = d(y, x) + d(x, v⌊t/2⌋) = d(y, x) + d(x,B). Now, if x, y ∈ Ai for some i ∈
{2, . . . , r − 1}, then we have either d(x,A1) = d(x, v0) = d(x, y) + d(y, v0) = d(x, y) +
d(y, A1) or d(y, A1) = d(y, v0) = d(y, x) + d(x, v0) = d(y, x) + d(x,A1). Thus, Π is a
strong resolving partition for G(r, t) and pds(G(r, t)) 6 r + 1. Therefore, we obtain that
pds(G(r, t)) = r + 1.

Now, suppose t is odd. Define Π′ = {A′
1, . . . , A

′
r, B

′} such that

A′
1 = V (P1) ∪

{

v1, v2, . . . , v⌊t/2⌋−1

}

A′
2 = V (P2)− {v0}

A′
3 = V (P3)− {v0}

. . .

A′
r = V (Pr)− {v0} ∪

{

v⌈t/2⌉+1, . . . , vt−1

}

and

B′ =
{

v⌊t/2⌋, v⌈t/2⌉
}

.

Analogously to the case t even we obtain that Π′ is a strong resolving partition for G(r, t)
and pds(G(r, t)) 6 r + 1. Therefore, we obtain that pds(G(r, t)) = r + 1.

To obtain the strong metric dimension of G(r, t) we consider the following. If t is even,
then the strong resolving graph of G(r, t) is formed by t−2

2
+ 1 connected components,

one of them isomorphic to a complete graph Kr+1 and the other t−2
2

copies isomorphic
to K2. Thus we have that dims(G(r, t)) = α((G(r, t))SR) = r + t−2

2
. On the other hand,

if t is odd, then the strong resolving graph of G(r, t) is isomorphic to a graph obtained
from a complete graph Kr and a path Pt−1 by adding all the possible edges between the
vertices of the complete graph Kr and the leaves of the path Pt−1. Thus we have that
dims(G(r, t)) = α((G(r, t))SR) = r + t−1

2
.

From now on in this section we deal with the problem of realization for the strong
partition dimension of graphs.

Theorem 8. For any integers r, n such that 2 6 r 6 n there exists a connected graph G
of order n with pds(G) = r.

Proof. If r = n, then pds(Kn) = n. Suppose r < n. Let G be a graph defined in the
following way. We begin with a complete graph Kr and a path of order n−r+1. Then we
identify one leaf u of the path with a vertex v of the complete graph (in some literature
this graph is called a comet). Notice that the order of G is n. Also notice that only those
vertices of the complete graph different from v and the leaf of the path different from u
are mutually maximally distant between them and they form the boundary of G. Thus,
GSR

∼= Kr and from Theorem 4 and Corollary 6 we obtain that pds(G) = r.

As the results above shows, any two pair of integers r, n such that 2 6 r 6 n are
realizable as the strong partition dimension and the order of a graph, respectively. Nev-
ertheless, as we can see at next, not every three integers r, t, n are realizable as the strong
partition dimension, the strong metric dimension and the order of a graph, respectively.
Since pds(G) = 2 if and only if G is the path Pn (see Theorem 19), and dims(Pn) = 1,
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we have that if t 6= 1, then the values 2, t, n are not realizable as the strong partition
dimension, the strong metric dimension and the order of a graph, respectively. More-
over, since pds(G) = n if and only if G is a complete graph Kn (see Theorem 16), and
dims(Kn) = n−1, it follows that if r < t+1 = n, then the values r, t, n are not realizable
as the strong partition dimension, the strong metric dimension and the order of a graph,
respectively.

Notice that the comet graph of the proof of Theorem 8 has order n, pds(G) = r and
dims(G) = r − 1 = t < t+ 1 < n. Thus we have the following result.

Remark 9. For any integers r, t, n such that 3 6 r = t + 1 < n there exists a connected
graph G of order n with pds(G) = r and dims(G) = t.

Remark 10. For any integers r, t, n such that 3 6 r = t 6 n− 3 there exists a connected
graph G of order n with pds(G) = r and dims(G) = t.

Proof. To prove the result we consider a graph H constructed in the following way. We
begin with a graph G(r − 1, 4) ∈ C1. Suppose that v is the vertex of degree r + 1 in the
unique cycle of G(r− 1, 4) and let u be a terminal vertex of v. Then to obtain the graph
H we subdivide the edge uv by adding n − r − 3 vertices. Notice that the order of H is
n − r − 3 + r − 1 + 4 = n and according to Proposition 7 we have that pds(H) = r and
dims(H) = r − 1 + 4−2

2
= r = t.

Theorem 11. For any integers r, t, n such that 3 6 r < t 6 n+r−2
2

there exists a connected

graph G of order n with pds(G) = r and dims(G) = t.

Proof. To prove the result we will construct a graph H in the following way. We begin
with a graph G(r − 1, 2(t − r + 1) + 1) ∈ C1. Suppose that v is the vertex of degree
r + 1 in the unique cycle of G(r − 1, 2(t − r + 1) + 1) and let u be a terminal vertex
of v. Then to obtain the graph H we subdivide one of the edges of the shortest u − v
path by adding n − 2t + r − 2 vertices. Now, notice that the order of the graph H is
n− 2t+ r− 2 + 2(t− r + 1) + 1) + r− 1 = n and, according to Proposition 7, we obtain

that pds(H) = r and dims(H) = r − 1 + 2(t−r+1)+1−1
2

= t.

The result above immediately brings up another interesting question: Is it the case

that dims(G) 6
pds(G) + n− 2

2
for every nontrivial connected graph G of order n?

For instance, given a graph G of order n, if dims(G) 6 n
2
, then we have that 2 ·

dims(G)− pds(G) 6 n− pds(G) 6 n− 2, which leads to dims(G) 6
pds(G) + n− 2

2
.

3 Exact values for the strong partition dimension of

some families of graphs

We first notice that Remark 1, Theorem 4 (or Theorem 2) and Corollary 6 lead to the
following results.
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Theorem 12. If ∂(G) = ε(G), then pds(G) = |∂(G)|. In particular,

(i) for any positive integer n, pds(Kn) = n,

(ii) for any tree T with l(T ) leaves, pds(T ) = l(T ),

(iii) for any connected block graph G of order n and c cut vertices, pds(G) = n− c.

We continue with a remark which will be useful to present other results. We consider
a vertex partition P (r, t) = {A1, A2, . . . , Ar, B1, B2, . . . , Bt} of the vertex set of a graph
such that every Ai induces a shortest path ai1 ∼ ai2 ∼ · · · ∼ airi in G and every Bi

induces an isolated vertex. Hence, it is straightforward to observe that the partition
Π(r, t) = {B1, B2, . . . , Bt, A1 − {a11}, A2 − {a21}, . . . , Ar − {ar1}, {a11}, {a21}, . . . , {ar1}}
is a strong resolving partition for G of cardinality 2r + t. Now, a partition Π(r, t) is a
P1-partition for G if it is satisfied that 2r + t has a minimum value among all possible
P (r, t) partitions of G. Thus, we have the following result.

Remark 13. Let G be a connected graph and let Π(r, t) be a P1-partition for G. Then
pds(G) 6 2r + t.

Corollary 14. For any connected graph G of order n and diameter d, pds(G) 6 n−d+1.

Notice that the bound above is tight. For instance, for complete graphs, path graphs
and star graphs. Also, note that if a graph G has order n and pds(G) = n − 1, then as
a consequence of Corollary 14 it follows that D(G) = 2. On the other hand, if G has
a vertex partition Π(r) = {A1, A2, . . . , Ar, B} such that B is an isolated vertex and for
every i ∈ {1, . . . , r}, Ai ∪ B induces a shortest path in G, then it is straightforward to
observe that the partition Π(r) is a strong resolving partition for G of cardinality r + 1.
A partition Π(r) of minimum cardinality in G is a P2-partition for G. Thus, we have the
following result.

Remark 15. Let G be a connected graph. If G has a P2-partition, then pds(G) 6 r + 1.

Notice that there are several graphs having such kind of partition. For instance, star
graphs with subdivided edges and the sphere graphs Sk,r (k, r > 2), where Sk,r is a graph
defined as follows: we consider r path graphs of order k + 1 and we identify one extreme
of each one of the r path graphs in one pole a and all the other extreme vertices of the
paths in a pole b. In particular, Sk,2 is a cycle graph. The case of cycle graphs also shows
that the bound is tight (see Proposition 21).

Next we characterize the families of graphs achieving some specific values for the strong
partition dimension.

Theorem 16. Let G be a connected graph of order n. Then pds(G) = n if and only if G
is a complete graph.

Proof. If pds(G) = n, then by Corollary 14 we have that D(G) = 1 and, as a consequence,
G is a complete graph.
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Next result is useful to give a characterization of graphs of order n having strong
partition dimension n− 1.

Remark 17. Let G be a connected graph of order n. If G has an induced subgraph
isomorphic to C5 or S2,3 or K1 + C4, then pds(G) 6 n− 2.

Proof. Since the subgraphs considered has order five, we suppose {u1, u2, . . . , un−5} are
the vertices of G not belonging to the corresponding subgraph.

Let the cycle C5 = v1v2 . . . v5v1 be an induced subgraph in G. It is straightforward to
observe that the vertex partition Π = {{v1}, {v2, v3}, {v4, v5}, {u1}, {u2}, . . . , {un−5}} is a
strong resolving partition for G of cardinality n− 2.

Let xy1z, xy2z and xy3z be the paths of the induced subgraph S2,3 in G. As above the
vertex partition Π = {{y2}, {y1, x}, {y3, z}, {u1}, {u2}, . . . , {un−5}} is a strong resolving
partition for G of cardinality n− 2.

Let C4 = x1x2x3x4x1 be an induced subgraph in G and let v be a vertex of G, such that
v 6= x1, x2, x3, x4 and 〈{v, x1, x2, x3, x4}〉 is isomorphic to the graph K1 + C4. Then, the
vertex partition Π = {{v, x1, x2}, {x3}, {x4}, {u1}, {u2}, . . . , {un−5}} is a strong resolving
partition for G of cardinality n− 2.

Theorem 18. Let G be a connected graph of order n. Then pds(G) = n− 1 if and only

if G ∼= P3, G ∼= C4, G ∼= Kn − e4 or G ∼= K1 +
⋃

iKni
, i > 1, ni > 1 for every i and

∑

i ni = n− 1.

Proof. Suppose pds(G) = n− 1. By Theorem 4, we have that α(GSR) > n− 2. Also, by
Corollary 14 we have that D(G) = 2. We consider the following cases.

Case 1. The order of GSR is |∂(G)| = n. Hence, there exists two non adjacent vertices
u, v in GSR which means u, v are not mutually maximally distant in G and also there
exist u′, v′ such that u, u′ and v, v′ are two pairs of mutually maximally distant vertices.
If n = 3, then G ∼= P3. If n = 4, then we can observe that G ∼= C4, G ∼= K4 − e, G ∼= S1,3

(the star graph with tree leaves) or G ∼= K1+(K1∪K2). Now on in this case, we suppose
n > 5. We consider the following subcases.

Case 1.1: ∆(G) < n−1. Hence, for every vertex x of G there exists a vertex z such that
they are not adjacent. Moreover, since D(G) = 2, for every two non adjacent vertices
x, z, there exists a vertex y such that xyz form a shortest x− z path. Now, for the vertex
y there exists w 6= x, z such that y 6∼ w. Let yy′w be a shortest y−w path. We have the
following cases.
(a) If y′ 6= x and y′ 6= z, then we have that w ∼ x or w ∼ z or there exist x′, z′ such that
wx′x and wz′z form a w − x path and a w − z path respectively. So, we have either:

• xyy′wx′x induce a cycle C5, in which case the Remark 17 leads to a contradiction.

• zyy′wz′z induce a cycle C5, and again the Remark 17 leads to a contradiction.

4Kn − e is the graph obtained from Kn by deleting one edge.
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• xyy′wx induce a cycle C4 and zyy′wz induce a cycle C4. Thus both cycles together
induces a sphere graph S2,3 and by Remark 17 we have a contradiction.

(b) If y′ = x, then y′ 6= z. Since D(G) = 2 we have that if w 6∼ z, then there exists z′ such
that wz′z form a shortest w− z path. As a consequence, xyzz′wx is an induced subgraph
of G isomorphic to C5, in which case the Remark 17 leads to a contradiction. Thus, w ∼ z.
Since n > 5, there exists at least a vertex a 6= x, y, z, w in G. Let {u1, u2, . . . , un−5} be
the other vertices of G different from x, y, z, w, a. We consider the following cases.

• The vertex a is adjacent to every vertex x, y, z, w. In this case 〈{a, x, y, z, w}〉 is
isomorphic to K1 + C4 and by Remark 17 we have a contradiction.

• The vertex a is adjacent to three vertices, say x, z, w. Hence, the vertex partition
Π = {{a, x}, {w, z}, {y}, {u1}, {u2}, . . . , {un−5}} is a strong resolving partition for
G of cardinality n− 2, a contradiction.

• The vertex a is adjacent to two adjacent vertices, say x, y. We have a contradiction
again since the vertex partition Π = {{z, y}, {w, x}, {a}, {u1}, {u2}, . . . , {un−5}} is
a strong resolving partition for G of cardinality n− 2.

• The vertex a is adjacent to two non adjacent, say x, z. So, the vertex partition
Π = {{w, x}, {y, z}, {a}, {u1}, {u2}, . . . , {un−5}} is a strong resolving partition for
G of cardinality n− 2, a contradiction.

• The vertex a is adjacent to only one vertex, say x. Also a contradiction, since
the vertex partition Π = {{y, z}, {a, x}, {w}, {u1}, {u2}, . . . , {un−5}} is a strong
resolving partition for G of cardinality n− 2.

(c) If y′ = z, then y′ 6= x and we can proceed analogously to the case (b) above to obtain
a contradiction.

Case 1.2: ∆(G) = n − 1. Let u be a vertex such that δ(u) = n − 1. Since |∂(G)| = n,
there exists u′ such that u, u′ are mutually maximally distant, which means that d(u′, x) 6
d(u′, u) = 1 for every x ∈ N(u). Thus, u′ ∼ x for every x ∈ N(u), which means that
also δ(u′) = n − 1. Since n > 5 there exist at least three different vertices a, b, c ∈
N(u) − {u′}. Let {u1, u2, . . . , un−5} the other vertices of G. If a 6∼ b and b 6∼ c, then
the vertex partition Π = {{a, u}, {c, u′}, {b}, {u1}, {u2}, {un−5}} is a strong resolving
partition for G of cardinality n − 2, which is a contradiction. Thus, at most two of
the vertices a, b, c are non adjacent. If n = 5, then G ∼= K5 − e. Suppose n > 5. If
there exist two different pairs of vertices a, b and c, d (a 6= b 6= c 6= d) such that a 6∼ b
and c 6∼ d and {u1, u2, . . . , un−6} are the other vertices of G, then the vertex partition
Π = {{a, u}, {b}, {c, u′}, {d}, {u1}, {u2}, {un−6}} is a strong resolving partition for G of
cardinality n− 2, which is a contradiction. Thus, at most there exist one pair of vertices
in G being non adjacent and, as a consequence, we obtain that G ∼= Kn − e.

Case 2. The order of GSR is |∂(G)| = n − 1. Hence α(GSR) 6 n − 2 and we obtain
that α(GSR) = n − 2. Thus GSR is isomorphic to Kn−1. So, there is only one vertex
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v in G which is not mutually maximally distant with any other vertex of G and every
pair x, y of different vertices of V (G) − {v} are mutually maximally distant between
them. If δ(v) < n − 1, then there exists a vertex u such that v 6∼ u. Let vx1x2 . . . xnu
be a shortest v − u path. Since u is mutually maximally distant with every vertex in
V (G)− {v}, particularly, u is mutually maximally distant with x1, x2, . . . , xn and this is
a contradiction. Thus, δ(v) = n − 1 and, as a consequence, G is isomorphic to a graph
K1 +

⋃

i Gni
where K1 = 〈{v}〉 and Gni

is a connected graph of order ni for every i. If
i = 1, then G is a complete graph and pds(G) = n, a contradiction. So, i > 1. Now,
suppose there exists nj such that Gnj

is not a complete graph. Hence, there exist two
different vertices a, b in Gnj

such that a 6∼ b. Notice that d(a, b) = 2. Since Gnj
is

connected, there exists a shortest a− b path, say ayb, in Gnj
. Also, as every two vertices

in V (G) − {v} are mutually maximally distant between them, we have that a, y, b are
mutually maximally distant between them, which leads to a contradiction. Therefore, G
is isomorphic to a graph K1 +

⋃

i Gni
where K1 = 〈{v}〉 and Gni

is a complete graph of
order ni for every i.

Theorem 19. Let G be a connected graph. Then pds(G) = 2 if and only if G is a path.

Proof. If G is a path, then dims(G) = 1. Since pds(G) > 2 for every graph, by Theorem 2
we have that pds(G) = 2. On the contrary, suppose that pds(G) = 2 and let Π = {U1, U2}
be a strong partition basis of G. Let x, y be two vertices belonging to the same set of
the partition, say x, y ∈ U1. If d(x, U2) = d(y, U2), then x, y are not strongly resolved
by Π, which is a contradiction. Thus, d(u, U2) 6= d(v, U2) for every pair of vertices of U1.
Analogously d(u, U1) 6= d(v, U1) for every pair of vertices of U2. Since G is connected there
exists only one vertex of U1 adjacent to a vertex of U2 and viceversa. So, the distances
between vertices of U2 and the set U1 take every possible values in the set {1, . . . , |U2|}
and, analogously, the distances between vertices of U1 and the set U2 take every possible
values in the set {1, . . . , |U1|}. Therefore G is a path.

As a consequence of the characterization above, if G is a graph different from a path
such that ω(GSR) = 2, then Corollary 6 can be improved at least by one.

Remark 20. If G is a connected graph different from the path graph such that ω(GSR) = 2,
then pds(G) > ω(GSR) + 1.

Proof. For any connected graph G, pds(G) > ω(GSR). Since pds(G) = 2 if and only if G
is a path, it follows that pds(G) > 3 = ω(GSR) + 1.

In next results we give the exact value for the strong partition dimension of some
families of graphs.

Proposition 21. For any cycle graph Cn, pds(Cn) = 3.

Proof. Since the strong resolving graph of a cycle is either a cycle (if n is odd) or a
union of n/2 disjoint copies of K2 (if n is even), we have that ω((Cn)SR) = 2. So
Remark 20 leads to pds(Cn) > 3. On the other hand, let V = {v0, v1, . . . , vn−1} be
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the vertex of Cn, where two consecutive vertices (modulo n) are adjacent. Since Π =
{

{v0} ,
{

v1, v2, . . . , v⌊n/2⌋
}

,
{

v⌊n
2
⌋+1, . . . , vn−1

}}

is a P2-partition for Cn of cardinality

three, by Remark 15 the result follows.

We recall that the Cartesian product of two graphs G = (V1, E1) and H = (V2, E2) is
the graph G�H , such that V (G�H) = V1 × V2 and two vertices (a, b), (c, d) are adjacent
in G�H if and only if, either (a = c and bd ∈ E2) or (b = d and ac ∈ E1). Next we study
the particular cases of grid graphs which are obtained as the Cartesian product of two
paths.

Theorem 22. For any grid graph Pm�Pn with m,n > 2, pds(Pm�Pn) = 3.

Proof. Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} be the vertex sets of Pm and
Pn, respectively. Since for any two vertices (ui, vj), (ul, vk) ∈ V1 × V2, it follows that
dPm�Pn

((ui, vj), (ul, vk)) = dPm
(ui, ul) + dPn

(vj , vk) we obtain that (ui, vj), (ul, vk) are mu-
tually maximally distant in Pm�Pn if and only if ui, ul are mutually maximally distant
in Pm and vj , vk are mutually maximally distant in Pn. So, we have that ∂(Pm�Pn) =
{(u1, v1), (u1, vn), (um, v1), (um, vn)} and (Pm�Pn)SR ∼=

⋃2
i=1K2. Thus ω((Pm�Pn)SR) =

2 and by Remark 20 it follows pds(Pm�Pn) > 3.
Now, let Π = {{(u1, v1)} , {(u1, vn)} , (V1 × V2)− {(u1, v1), (u1, vn)}} be a vertex par-

tition of Pm�Pn. We shall prove that Π is a strong resolving partition for Pm�Pn. Let
(ui, vj), (ul, vk) be two different vertices of Pm�Pn. We consider the following cases.
Case 1. j = k. Hence, without loss of generality we suppose i > l. So, it is satisfied that

dPm�Pn
((ui, vj), (u1, v1)) = dPm�Pn

((ui, vj), (ul, vk)) + dPm�Pn
((ul, vk), (u1, v1)),

and also,

dPm�Pn
((ui, vj), (u1, vn)) = dPm�Pn

((ui, vj), (ul, vk)) + dPm�Pn
((ul, vk), (u1, vn)).

Thus the sets {(u1, v1)} and {(u1, vn)} strongly resolve (ui, vj), (ul, vk).
Case 2. j 6= k. Hence, without loss of generality let j < k. If i 6 l, then we have that

dPm�Pn
((ul, vk), (u1, v1)) = dPm�Pn

((ul, vk), (ui, vj)) + dPm�Pn
((ui, vj), (u1, v1))

and the set {(u1, v1)} strongly resolves (ui, vj), (ul, vk). On the contrary, if i > l, then we
have that

dPm�Pn
((ui, vj), (u1, vn)) = dPm�Pn

((ui, vj), (ul, vk)) + dPm�Pn
((ul, vk), (u1, vn))

and the set {(u1, vn)} strongly resolves (ui, vj), (ul, vk).
Therefore, Π is a strong resolving partition for Pm�Pn and the result follows.

The wheel graph W1,r (respectively fan graph F1,r) is the graph obtained from the
graphs K1 and Cr (respectively Pr) by adding all possible edges between the vertices of
Cr (respectively Pr) and the vertex of K1. Notice that W1,r = K1+Cr and F1,r = K1+Pr.
Next we obtain the strong partition dimension of W1,r and F1,r. The vertex of K1 is called
the central vertex of the wheel or the fan.
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Remark 23. For any wheel graph W1,r, r > 4,

pds(W1,r) =

{

3, if r = 4,
⌈

r
2

⌉

, if r > 5.

Proof. Let u be the central vertex and let C = {v0, . . . , vr−1} be the set of vertices of the
cycle used to construct W1,r (for every i ∈ {0, . . . , r − 1}, vi ∼ vi+1 where the operations
with the subscripts are done modulo r). By doing simple calculation it is possible to check
that if r = 4, then pds(W1,r) = 3. Now on we assume r > 5. Since the diameter of W1,r is
two, any two non adjacent vertices of C are mutually maximally distant between them.
So, any two non adjacent vertices of C belong to different sets of any strong resolving
partition forW1,r. Thus, every set of every strong resolving partition forW1,r must contain
at most two vertices of C and, as a consequence, pds(W1,r) >

⌈

r
2

⌉

.
Now, let the vertex partition Π = {{u, v0, v1} , {v2, v3} , . . . , {vr−2, vr−1}} if r is even

or Π = {{u, v0, v1} , {v2, v3} , . . . , {vr−3, vr−2} , {vr−1}} if r is odd. It is straightforward to
check that Π is a strong resolving partition for W1,r. Therefore pds(W1,r) 6

⌈

r
2

⌉

and the
result follows.

By using similar arguments we obtain the strong metric dimension of fan graphs.

Remark 24. For any fan graph F1,r, r > 3,

pds(F1,r) =

{

3, if r = 3, 4,
⌈

r
2

⌉

, if r > 5.

4 Strong partition dimension of unicyclic graphs

From now on we will denote by G(Ct) the unicyclic graph different from a cycle whose
unique cycle Ct has vertex set u0, u1, . . . , ut−1 with t > 3 an ui ∼ ui+1 (operations with
the subindex i are done modulo t), for every i ∈ {0, . . . , t− 1}.

Theorem 25. Let G(Ct), t > 3, be a unicyclic graph of order n. If |τ(G(Ct))| = 1, then
pds(G(Ct)) = 3.

Proof. If |τ(G)| = 1, then G(Ct) has only one major vertex. Without loss of generality we
suppose that the major vertex is u0. Let v0 be the terminal vertex of u0 and let P (u0, v0)
be the shortest u0 − v0 path in G(Ct). Now, define the vertex partition Π = {A1, A2, A3}
such that, if t is even, then

A1 = V (P (u0, v0)) ∪
{

u1, u2, . . . , u⌊t/2⌋−1

}

A2 =
{

u⌊t/2⌋

}

A3 =
{

u⌊t/2⌋+1, . . . , ut−1

}

,
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and, if t is odd, then

A1 = V (P (u0, v0)) ∪
{

u1, u2, . . . , u⌊t/2⌋−1

}

A2 =
{

u⌊t/2⌋, u⌈t/2⌉

}

A3 =
{

u⌈t/2⌉+1, . . . , ut−1

}

.

We claim that Π is a strong resolving partition for G(Ct). We consider two different
vertices x, y of G(Ct). If x, y ∈ A1 or x, y ∈ A3, then since u0, u⌊t/2⌋ (for t even) and
u0, u⌈t/2⌉ and u0, u⌊t/2⌋ (for t odd) are diametral vertices in Ct we have either d(x,A2) =
d(x, y)+d(y, A2) or d(y, A2) = d(y, x)+d(x,A2). Also, if t is odd and x, y ∈ A2, then either
d(x,Ai) = d(x, y) + d(y, Ai) or d(y, Ai) = d(y, x) + d(x,Ai) with i ∈ {1, 3}. Therefore, Π
is a strong resolving partition for G(Ct) and we have that pds(G(Ct)) 6 3. Finally the
results follows by Theorem 19.

Theorem 26. Let G(Ct), t > 3, be a unicyclic graph of order n. If |τ(G(Ct))| > 2, then

|τ(G(Ct))| 6 pds(G(Ct)) 6 |τ(G(Ct))|+ 2.

Proof. If t = 3, then G(C3) is a block graph. Let q be the number of vertices of C3 being
major vertices in G(C3). So, G(C3) has n − |τ(G(C3))| − 3 + q cut vertices. Thus, by
Theorem 12 (iii) we have that pds(G(C3)) = n−(n−|τ(G(C3))|−3+q) = |τ(G(C3))|+3−q.
Since 1 6 q 6 3 we obtain that |τ(G(C3))| 6 pds(G(C3)) 6 |τ(G(C3))| + 2. Now on we
suppose t > 4. Notice that any two different vertices of τ(G(Ct)) are mutually maximally
distant between them. Thus, ω(G(Ct)) > |τ(G(Ct))|. Thus by Theorem 6 we have that
pds(G(Ct)) > ω(GSR) = |τ(G(Ct))|. Now, without loss of generality suppose that u0 is a
major vertex and for any major vertex ui of Ct let vij, j ∈ {1, . . . , ter(ui)}, be a terminal
vertex of ui. For every major vertex ui and all its terminal vertices let P (ui, vij) be the
shortest ui − vij path in G(Ct).

Now, for the major vertex u0 and all its terminal vertices v0j , j ∈ {1, . . . , ter(u0)} we
define the following sets

A0,1 = V (P (u0, v01)) ∪
{

u0, u1, . . . , u⌊t/2⌋−1

}

A0,2 = V (P (u0, v02))− A0,1 − {u0}

A0,3 = V (P (u0, v03))− A0,2 − A0,1 − {u0}

. . .

A0,ter(u0) = V (P (u0, v0 ter(u0)))− A0,ter(u0)−1 − · · · −A0,1 − {u0}

Moreover, for every major vertex ui, with i 6= 0, and all its terminal vertices vij, with
j ∈ {1, . . . , ter(ui)}, we define the following sets.

Ai,1 = V (P (ui, vi1))− {ui}

Ai,2 = V (P (ui, vi2))− Ai,1 − {ui}

Ai,3 = V (P (ui, vi3))− Ai,2 − Ai,1 − {ui}

. . .

Ai,ter(ui) = V (P (ui, vi ter(ui)))− Ai,ter(ui)−1 − · · · − Ai,1 − {ui}
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Also let B =
{

u⌊t/2⌋

}

if t is even or B =
{

u⌊t/2⌋, u⌈t/2⌉

}

if t is odd, and let C =
{

u⌈t/2⌉+1, . . . , ut−1

}

. Notice that the sets B, C and the sets Ai,j defined for every major
vertex ui and all its terminal vertices vij form a vertex partition Π of G(Ct) of cardinality
|τ(G(Ct))|+2. An example of the partition is drawn in Figure 1. We claim that the vertex

Figure 1: An example of the partition Π.

partition Π is a strong resolving partition for G(Ct). Let x, y be two different vertices of
G(Ct). We consider the following.

• If x, y ∈ A0,1 or x, y ∈ C, then since u0, u⌊t/2⌋ (for t even) and u0, u⌈t/2⌉ and u0, u⌊t/2⌋

(for t odd) are diametral vertices in Ct we have either d(x,B) = d(x, y)+ d(y, B) or
d(y, B) = d(y, x) + d(x,B).

• If x, y ∈ Ai,j related to some major vertex ui and j ∈ {2, . . . , ter(ui)}, then we have
either d(x,Ai,j−1) = d(x, y) + d(y, Ai,j−1) or d(y, Ai,j−1) = d(y, x) + d(x,Ai,j−1).

• If x, y ∈ Ai,1 related to some major vertex ui 6= u0, then we have the following cases.

– If i ∈ {1, . . . , ⌊t/2⌋ − 1}, then we have either d(x,A0,1) = d(x, y) + d(y, A0,1)
or d(y, A0,1) = d(y, x) + d(x,A0,1).

– If i ∈ {⌊t/2⌋, ⌈t/2⌉}, then we have either d(x,B) = d(x, y) + d(y, B) or
d(y, B) = d(y, x) + d(x,B).

– If i ∈ {⌈t/2⌉+ 1, . . . , t− 1}, then we have either d(x, C) = d(x, y) + d(y, C) or
d(y, C) = d(y, x) + d(x, C).

• If t is odd and x, y ∈ B, then we have either d(x, C) = d(x, y)+d(y, C) or d(y, C) =
d(y, x) + d(x, C).

Therefore, Π is a strong resolving partition for G(Ct) and the proof is complete.

The bounds above are tight as we can see at next. Moreover, there are unicyclic graphs
achieving also the only value in the middle between lower and upper bound. An example
of that is the family of unicyclic graphs C1 of Proposition 7.
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Proposition 27. Let G(Ct), t > 3, be a unicyclic graph of order n and |τ(G(Ct))| > 2.

• If t = 3 and Ct has only one major vertex, then pds(G(Ct)) = |τ(G(Ct))|+ 2.

• If every vertex of Ct is a major vertex, then pds(G(Ct)) = |τ(G(Ct))|.

Proof. If t = 3, then G(C3) is a block graph with n − |τ(G(C3))| − 2 cut vertices. Thus
by Theorem 12 (iii) we have that pds(G(C3)) = n− (n−|τ(G(C3))| − 2) = |τ(G(C3))|+2
and (i) is proved.

The technique of the proof of (ii) is relative similar to the proof of Theorem 26.
Without loss of generality suppose that. As above for any major vertex ui, i ∈ {0, . . . , t−
1}, and all its terminal vertices vij , j ∈ {1, . . . , ter(ui)} we define the following sets

Ai,1 = V (P (ui, vi1))

Ai,2 = V (P (ui, vi2))− Ai,1

Ai,3 = V (P (ui, vi3))− Ai,2 −Ai,1

. . .

Ai,ter(ui) = V (P (ui, vi ter(ui)))− Ai,ter(ui)−1 − · · · − Ai,1

Notice that the sets Ai,j defined for every major vertex ui and all its terminal vertices
vij form a vertex partition Π of G(Ct) of cardinality |τ(G(Ct))|. By using similar ideas
to those ones in the the proof of Theorem 26 we obtain that the vertex partition Π is a
strong resolving partition for G(Ct). Therefore pds(G(Ct)) 6 |τ(G(Ct))| and the result
follows by the lower bound of Theorem 26.

5 Conclusion

In this article we have introduced the concepts of strong resolving partition and strong par-
tition dimension of graphs and have began with the study of its mathematical properties.
We have proved that for any integers r, t, n satisfying that 3 6 r < t 6 n+r−2

2
there exists

a connected graph G of order n such that pds(G) = r and dims(G) = t. Such a result im-

mediately brings up an interesting question: Is it the case that dims(G) 6
pds(G) + n− 2

2
for every nontrivial connected graph G of order n? We have also computed the strong
partition dimension of several graph families. For instance we remark the following ex-
amples.

• For any tree T with l(T ) leaves, pds(T ) = l(T ).

• For any graph G of order n, pds(G) = n if and only if G is a complete graph.

• For any graph G of order n, pds(G) = n − 1 if and only if G ∼= P3, G ∼= C4,
G ∼= Kn − e or G ∼= K1 +

⋃

i Kni
, i > 1, ni > 1 for every i and

∑

i ni = n− 1.

• For any graph G, pds(G) = 2 if and only if G is a path.
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• For any cycle graph Cn, pds(Cn) = 3.

• For any grid graph Pm�Pn with m,n > 2, pds(Pm�Pn) = 3.

Motivated by the formulas above, we studied also the strong partition dimension of uni-
cyclic graph, for which we gave tight upper and lower bounds. According to that formulas
and bounds for some specific families, it seems to be hard to compute the strong partition
dimension of general graphs. Thus, it is natural to think about the following computa-
tional problem. Which is the complexity of computing the strong partition dimension of
a graph?
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mension of some special classes of graphs by genetic algorithms. Yugosl. J. Oper.

Res., 18(2):143–151, 2008.
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