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Abstract

The weak order on the symmetric group is a well-known partial order which is

also a lattice. We consider subposets of the weak order consisting of permutations

avoiding a single pattern, characterizing the patterns for which the subposet is a

lattice. These patterns have only a single small ascent or descent. We prove that

all patterns for which the subposet is a sublattice have length at most three.

1 Introduction

For any positive integer n, the weak order on the symmetric group Sn is well known to
be a lattice [7], [13]. There are also some interesting subposets of the weak order which
are lattices, some of which can be described using pattern avoidance. In particular, the
Tamari lattice is isomorphic to the weak order on 312 avoiding permutations ([4], 9.6.
Theorem), [9]. Additionally, the Boolean lattice is isomorphic to the weak order on 312
and 231 avoiding permutations ([8], Lemme 4). Both the Tamari lattice and Boolean
lattice are actually sublattices of the weak order. The Bruhat order on pattern avoiding
permutations has also been studied [1].

In this article we consider the case of avoiding a single pattern. Our main result is the
following.

Theorem 1. Sn(τ) is a lattice for all n if and only if

1. τ has exactly one descent, and its magnitude is at most two, or

2. τ has exactly one ascent, and its magnitude is at most two.
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Figure 1: The weak order on S3, S3(312), and S3({312, 231}).

If we insist that the join and meet operations in our subposet agree with those in Sn,
then it turns out that both (1) and (2) must be satisfied. These conditions are sufficient,
and the result simplifies to the following.

Theorem 2. Sn(τ) is a sublattice of Sn for all n if and only if τ is one of 1, 12, 21, 213,
132, 231, or 312.

The weak order on permutations avoiding any one of 213, 132, 231, or 312 is isomorphic
to the Tamari lattice. The others are either empty or a single vertex.

In the course of proving these theorems, we find a somewhat surprising result.

Theorem 3. If τ is a pattern of length k > 2, the following are equivalent:

1. Sn(τ) is a lattice for all n.

2. Sk+1(τ) is a lattice.

This paper is organized as follows. Section 2 contains some preliminaries about pat-
tern avoidance, lattices, and the weak order. Section 3 contains the proofs of the main
theorems. In Section 4, we give some results about Sn(T ), where T contains multiple
patterns.

2 Preliminaries

2.1 Permutations

A permutation of n letters is a bijection π : [n] → [n], where [n] denotes {1, 2, . . . , n}. The
set of all permutations of n letters is denoted Sn. We write our permutations in one line
notation as π = π(1)π(2) · · ·π(n). Note that π−1(i) gives the position of the letter i in
the word π(1)π(2) · · ·π(n).

A descent in a permutation π occurs in position i if π(i) > π(i + 1). The magnitude
of a descent in position i is π(i) − π(i + 1). Ascents and their magnitudes are defined
analogously. An inversion is a pair (i, j) with i < j and π−1(i) > π−1(j). That is, in the
one line notation for π, i appears to the right of j. We define the inversion set I(π) of π
to be the set of all inversions in π. For example, π = 24513 has an ascent of magnitude 1
in position 2, ascents of magnitude 2 in positions 1 and 4, and a descent of magnitude 4
in position 3. Its inversion set is I(24513) = {(1, 2), (1, 4), (1, 5), (3, 4), (3, 5)}.
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If π ∈ Sm and σ ∈ Sn, then π ⊕ σ denotes the permutation in Sm+n, where π acts
on {1, 2, . . . , m}, and σ acts on {m+ 1, m+ 2, . . . , m+ n}. Similarly, π ⊖ σ denotes the
permutation in Sm+n, where π acts on {n+1, n+2, . . . , n+m}, and σ acts on {1, 2, . . . , n}.
For example, 132⊕ 21 = 13254 and 132⊖ 21 = 35421.

2.2 Pattern Avoidance

Let w be a word consisting of k distinct integers. The standardization of w, denoted
st(w), is obtained by replacing the smallest entry of w with a 1, the second smallest
with a 2, and so on. A permutation π ∈ Sn is said to contain a pattern τ ∈ Sk if there
is a subsequence π′ of π such that st(π′) = τ . Otherwise, π is said to avoid τ . For
example, the permutation π = 1423 contains the pattern 132 twice, since st(142) = 132
and st(143) = 132. The permutation 2134 avoids 132. For a set of patterns T , we will use
Sn(T ) to denote the permutations of length n which avoid all of the patterns in T . We
will also use Sn(T ) to denote the set Sn(T ) together with its order relation induced from
the weak order. For simplicity of notation, we omit the set brackets for a single pattern.

2.3 Lattices

We assume that the reader is familiar with the definitions of partially ordered sets (posets),
covering relations, Hasse diagrams, and dual posets ([11], Chapter 3), or [2].

A lattice L is a poset with the following property. For all x, y ∈ L, the set of upper
bounds {z ∈ L | z > x, z > y} has a unique minimal element, called the join of x and
y and denoted x ∨ y, and the set of lower bounds {z ∈ L | z 6 x, z 6 y} has a unique
maximal element, called the meet of x and y and denoted x ∧ y.

One useful lemma which follows directly from the definition of a lattice is the following.

Lemma 4. Let L be a lattice, with u, v, x, y, z ∈ L. Then u ∨ v = z = x ∧ y if and only
if {t ∈ L | u 6 t, v 6 t, t 6 x, t 6 y} = {z}.

A join semi-lattice L is a poset where every pair of elements x, y ∈ L has a join x∨ y.
A meet semi-lattice L is a poset where every pair of elements x, y ∈ L has a meet x ∧ y.
L is a lattice if and only if it is both a join semi-lattice and a meet semi-lattice. We will
make use of the following lemma.

Lemma 5. ([11], Proposition 3.3.1.) Let P be a finite meet semi-lattice with a unique
maximal element. Then P is a lattice.

Given posets Q and P , where the elements of Q are a subset of the elements of P , we
say that Q is an induced subposet of P if x 6 y in Q if and only if x 6 y in P .

In this paper we will be interested in showing that certain induced subposets are
lattices. We are not assuming that the join and meet operations are the same in the
induced subposet as in the larger lattice. When these operations do coincide, we use a
stronger term. An induced subposet P of a lattice L is a join sublattice if x, y ∈ P implies
x∧y ∈ P , where ∧ is taken in L. An induced subposet P of a lattice L is a meet sublattice
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if x, y ∈ P implies x ∨ y ∈ P . P is a sublattice of L if P is both a join sublattice and a
meet sublattice.

Our main tool for investigating induced subposets is the following technical result.

Lemma 6. Let L be a join semi-lattice and P an induced subposet. Suppose that for all
v ∈ L, the set {v′ ∈ P | v′ 6 v} has a unique maximal element or is the empty set. Then
P is a join sublattice of L.

Proof. Let x, y ∈ P , and suppose z = x ∨ y in L. We want to show that z ∈ P . The set
{z′ ∈ P | z′ 6 z} is nonempty since it contains both x and y, so by assumption it has a
unique maximal element z∗. The element z∗ is in {z′ ∈ P | z′ 6 z}, so we have z∗ 6 z.
By the maximality of z∗, we have x 6 z∗ and y 6 z∗. But since z = x ∨ y, we also have
z 6 z∗ by the definition of join. Hence z = z∗ so z ∈ P .

2.4 Weak Order

For permutations σ, π ∈ Sn, we define σ 6 π if and only if I(σ) ⊆ I(π). It follows from the
definition that π covers σ if and only if π is obtained from σ by an adjacent transposition
which changes an ascent to a descent. Figure 1 includes the Hasse diagram of the weak
order on S3. The weak order on Sn is well known to be a lattice [7], [13]. Throughout
this paper, we will abuse notation and let Sn denote the set of permutations of length n

together with the order relation given by the weak order.
There are some standard bijections of the weak order which will be useful. Let w0 ∈ Sn

be the strictly decreasing permutation n(n− 1) · · ·21.

Lemma 7. ([3], Proposition 3.1.5.) Let π ∈ Sn.

(i) π 7→ πw0 and π 7→ w0π are order reversing bijections of the weak order on Sn.

(ii) π 7→ w0πw0 is an order preserving bijection of the weak order on Sn.

The permutation πw0 reverses the positions in the word π and w0π reverses the values
of the entries, switching i and (n+ 1− i), while w0πw0 does both commuting operations.
For example, if π = 14235, then πw0 = 53241, w0π = 52431, and w0πw0 = 13425.

It follows immediately that π avoids τ if and only if πw0 avoids τw0. The same is true
for the other two bijections. Combined with Lemma 7, we get the following.

Lemma 8. Let π ∈ Sn(T ).

(i) π 7→ πw0 and π 7→ w0π are order reversing bijections of the weak order on Sn(T ).

(ii) π 7→ w0πw0 is an order preserving bijection of the weak order on Sn(T ).
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3 Proof of Theorems 1, 2 and 3

3.1 Terminology

Let us introduce some terminology to be used in this section. Given a poset P and
elements σ, σ′, µ, µ′ ∈ P such that µ covers both σ and σ′ and µ′ covers both σ and σ′, we
say that σ, σ′, µ, and µ′ form a butterfly in the Hasse diagram of P , and that P contains
a butterfly in its Hasse diagram. We call µ and µ′ the top elements of the butterfly and
σ and σ′ the bottom elements of the butterfly. See Figure 2.

µ µ’

σ σ'

Figure 2: A butterfly in a Hasse diagram.

Note that any poset P which contains a butterfly in its Hasse diagram cannot be a
lattice or semi-lattice, since the meet of the top elements and the join of the bottom
elements of the butterfly do not exist.

Lemma 9. If the Hasse diagram of Sn(τ) contains a butterfly, then so does the Hasse
diagram of Sm(τ) for m > n.

Proof. Suppose σ, σ′, µ, and µ′ form a butterfly in the Hasse diagram of Sn(τ). Suppose
also that τ ends with a descent in position k − 1. In this case, define

σm = σ ⊕ 12 · · · (m− n)

σ′

m = σ′ ⊕ 12 · · · (m− n)

µm = µ⊕ 12 · · · (m− n)

µ′

m = µ′ ⊕ 12 · · · (m− n).

Let us show that σm, σ
′

m, µm, and µ′

m avoid τ . We know that τ ends with a descent
and σm, σ

′

m, µm, and µ′

m each end with an increasing sequence of their greatest (m − n)
letters. So if any of these contains τ , the occurrence of τ would have to be in the first
n letters. But these letters are one of σ, σ′, µ, or µ′, each of which avoids τ . Hence
σm, σ

′

m, µm, µ
′

m ∈ Sm(τ).
Notice that the inversion sets are unchanged: I(σm) = I(σ), I(σ′

m) = I(σ′), I(µm) =
I(µ), and I(µ′

m) = I(µ′). Therefore we have σm 6 µm, σm 6 µ′

m, σ
′

m 6 µm, σ
′

m 6 µ′

m, and
these relations are covering relations. That is, σm, σ

′

m, µm, and µ′

m form a butterfly in the
Hasse diagram of Sm(τ).
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For the remaining case, suppose that τ ends with an ascent. Define

σm = σ ⊖ (m− n) · · ·21

σ′

m = σ′ ⊖ (m− n) · · ·21

µm = µ⊖ (m− n) · · · 21

µ′

m = µ′ ⊖ (m− n) · · ·21.

An analogous argument shows that µm, µ
′

m, σm and σ′

m form a butterfly in the Hasse
diagram of Sm(τ).

3.2 Proofs

For the rest of this section, let τ be a pattern of length k, with k > 2. We prove our main
results using three intermediate propositions.

Proposition 10. Suppose τ has at least two ascents and at least two descents. Then
Sn(τ) is not a meet semi-lattice or a join semi-lattice for n > k.

Proof. Choose integers a1, a2, d1, d2 such that ascents of τ occur in positions a1 and a2
and descents of τ occur in positions d1 and d2. That is, we have τ(a1) < τ(a1+1), τ(a2) <
τ(a2 + 1), τ(d1) > τ(d1 + 1), and τ(d2) > τ(d2 + 1).

By Lemma 9, it suffices to find a butterfly in the Hasse diagram of Sk(τ). Define
permutations

µ1 = τ(1)τ(2) · · · τ(a1 − 1)τ(a1 + 1)τ(a1)τ(a1 + 2) · · · τ(k)

µ2 = τ(1)τ(2) · · · τ(a2 − 1)τ(a2 + 1)τ(a2)τ(a2 + 2) · · · τ(k)

σ1 = τ(1)τ(2) · · · τ(d1 − 1)τ(d1 + 1)τ(d1)τ(d1 + 2) · · · τ(k)

σ2 = τ(1)τ(2) · · · τ(d2 − 1)τ(d2 + 1)τ(d2)τ(d2 + 2) · · · τ(k).

Notice that µi is obtained from τ by changing the ascent in position ai to an descent, and
that σi is obtained from τ by changing the descent in position di to an ascent. We have

I(µ1) = I(τ) ∪ {(τ(a1), τ(a1 + 1))}

I(µ2) = I(τ) ∪ {(τ(a2), τ(a2 + 1))}

I(σ1) = I(τ) \ {(τ(d1 + 1), τ(d1))}

I(σ2) = I(τ) \ {(τ(d2 + 1), τ(d2))}.

By our definition of the weak order on Sk in terms of inversion sets, we have µ1∧µ2 = τ =
σ1∨σ2, where the meet and join are taken in Sk. By Lemma 4, τ is the only permutation
in Sk between µ1, µ2, σ1 and σ2. Recall that τ has length k. A permutation π of length k

contains a pattern τ of length k if and only if π = τ , so Sk(τ) = Sk \ {τ} as sets. Then
by the definition of an induced subposet, µ1, µ2, σ1 and σ2 form a butterfly in the Hasse
diagram of Sk(τ).
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Proposition 11. Suppose τ has exactly one descent, and its magnitude is at least 3.
Then Sn(τ) is not a meet semi-lattice or a join semi-lattice for n > k + 1.

Proof. Given such a pattern τ , we have a set of letters {a, b, c, d} which appear in τ , with
a < b < c < d in the usual integer ordering, and a appearing immediately to the right of
d in τ . That is, τ has a descent in position π−1(d) of magnitude d − a > 3. Since τ has
exactly one descent, it can be decomposed into two increasing subwords of consecutive
letters. One is τ(1) < τ(2) < · · · d and the other is a < · · · < τ(k). Therefore we can
assume that a, b, c, and d appear consecutively in τ . There are four possibilities for τ :

(i) τ = τinit bcda τend

(ii) τ = τinit bdac τend

(iii) τ = τinit cdab τend

(iv) τ = τinit dabc τend

where τinit and τend are the appropriate increasing subwords. In each case we want to find
a butterfly in the Hasse diagram of Sk+1(τ), which completes the proof by Lemma 9.
Case (i). Choose τ ′ ∈ Sk+1 such that

τ ′ = τ ′init b(c+ 1)(d+ 1)sa τ ′end

with a < b < s < (c + 1) < (d+ 1). Define

µ1 = τ ′init(c+ 1)b(d+ 1)saτ ′end
µ2 = τ ′initb(d+ 1)(c+ 1)saτ ′end
σ1 = τ ′initb(c+ 1)a(d+ 1)sτ ′end
σ2 = τ ′initb(c+ 1)sa(d+ 1)τ ′end.

First, we want to show that µ1, µ2, σ1, and σ2 avoid τ . Since τ has length k, an occurrence
of τ in one of these permutations would use all letters but one. Such an occurrence would
start with an increasing sequence of |τinit| + 3 letters, followed by a descent. This is
impossible in µ1, µ2 and σ2. The letter after the descent in an occurrence of τ must be
smaller than the previous three. This is impossible in σ1. Hence µ1, µ2, σ1, σ2 ∈ Sk+1(τ).

Next we want to verify that σ1 6 µ1, σ1 6 µ2, σ2 6 µ1, and σ2 6 µ2. This is immediate
from the inversion sets

I(µ1) = I(τ ′) ∪ {(b, (c+ 1))}

I(µ2) = I(τ ′) ∪ {((c+ 1), (d+ 1))}

I(σ1) = I(τ ′) \ {(a, s), (a, (d+ 1))}

I(σ2) = I(τ ′) \ {(a, (d+ 1)), (s, (d+ 1))}.

We want to show that all permutations in the set {ξ ∈ Sk+1 | ξ 6 µ1, ξ 6 µ2, σ1 6

ξ, σ2 6 ξ} contain the pattern τ . Since µ1 and µ2 cover τ ′, any such permutation ξ must
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satisfy ξ 6 τ ′. The possible inversion sets are I(τ ′), I(τ ′) \ {(a, s)}, I(τ ′) \ {(s, (d+ 1))},
and I(τ ′)\{(a, (d+1))}. The first is the inversion set for τ ′, which contains τ . The second
is the inversion set for ξ1 = τ ′init b(c + 1)(d + 1)as τend, which contains τ by removing s.
The third is the inversion set for ξ2 = τ ′init b(c + 1)s(d + 1)a τend, which contains τ by
removing s. The fourth is not the inversion set of a permutation, since to move a left of
(d + 1), either a must move left of s or s must move left of (d + 1), removing another
inversion. By the definition of an induced subposet, we have shown that µ1, µ2, σ1, and
σ2 form a butterfly in the Hasse diagram of Sk+1(τ).
Case (ii). In this case we have τ = τinit bdac τend with a < b < c < d. Choose τ ′ ∈ Sk+1

by
τ = τ ′init b(d+ 1)sa(c+ 1) τ ′end

with a < b < s < (c + 1) < (d+ 1). Define the following permutations:

µ1 = τ ′init(d+ 1)bsa(c + 1)τ ′end
µ2 = τ ′initb(d+ 1)s(c+ 1)aτ ′end
σ1 = τ ′initba(d+ 1)s(c+ 1)τ ′end
σ2 = τ ′initbsa(d+ 1)(c+ 1)τ ′end.

We leave to the reader the argument that µ1, µ2, σ1, and σ2 form a butterfly in the Hasse
diagram of Sk+1(τ). It is entirely analogous to Case (i).
Case (iii). We have τ = τinit cdab τend with a < b < c < d. This is the same as in Case
(ii), except b and c are switched. In Case (ii) we did not need to use the relation b < c,
so the same argument works in this case.
Case (iv). This case is equivalent to Case (i) by using the symmetry operation π 7→ w0πw0

described in Lemma 8.

Proposition 12. Suppose τ has exactly one descent, and its magnitude is at most two.
Then Sn(τ) is a join sublattice of Sn.

Proof. Let π be a permutation which contains τ . Choose an occurrence of τ in positions
i1, i2, . . . , ik with the descent in position ih, such that ih+1 − ih is minimal.

First, we want to show that π(ih + 1), π(ih + 2), . . . , π(ih+1 − 1) are each less than
π(ih+1) or greater than π(ih). Suppose there is such a π(j) with π(ih+1) < π(j) < π(ih)
and ih < j < ih+1. Then either

st (π(i1)π(i2) · · ·π(ih−1)π(j)π(ih+1) · · ·π(ik)) = τ, or

st (π(i1)π(i2) · · ·π(ih)π(j)π(ih+2) · · ·π(ik)) = τ

depending on the relative sizes of π(ih−1), π(ih), π(j), π(ih+1), and π(ih+2). Here we are
using the fact that τ has exactly one descent, which is of magnitude at most 2. So we have
another occurrence of τ with the letters forming the descent appearing closer together in
π, contradicting the minimality of ih+1 − ih. Hence π(ih + 1), π(ih + 2), . . . , π(ih+1 − 1)
are each less than π(ih+1) or greater than π(ih).

the electronic journal of combinatorics 21(3) (2014), #P3.15 8



In other words, {π(j) | ih < j < ih+1} = X ∪ Y , where

X = {π(j) | ih < j < ih+1, π(j) < π(ih+1)}

Y = {π(j) | ih < j < ih+1, π(ih) < π(j)}.

Let x1, x2, . . . , xr be the elements of X , ordered such that if p < q, then xp appears to the
left of xq in π. Let y1, y2, . . . , yt be the elements of Y ordered in the same fashion.

Now let π′ ∈ Sn(τ) with π′ < π. We want to show that π′ 6 π0, where

π0 = π(1)π(2) · · ·π(ih − 1)x1x2 · · ·xrπ(ih+1)π(ih)y1y2 · · · ytπ(ih+1 + 1) · · ·π(n).

Since π(i1), π(i2), . . . , π(ih) form an increasing subsequence in π, these letters must
also appear in increasing order from left to right in π′, else I(π′) 6⊆ I(π). Similarly,
π(ih+1), π(ih+2), . . . , π(ik) appear in increasing order from left to right in π′. The sub-
sequence π(i1), π(i2), . . . , π(ik) does not form an occurrence of τ in π′, so by the above
π(ih+1) appears to the left of π(ih) in π′. But π0 is maximal among permutations less
than π with π(ih+1) appearing to the left of π(ih). Therefore π′ 6 π0.

It is possible that π0 contains τ , but π0 does not have an occurrence of τ with π(ih+1)
and π(ih) forming the descent. Since π has only finitely many letters, we can repeat
this process and eventually end at a permutation π∗ such that π∗ avoids τ , and every
permutation π′ which avoids τ and satisfies π′ < π also satisfies π′ 6 π∗.

Now we can apply Lemma 6 to complete the proof.

We are now in a position to prove our main results. In fact, we have results about
semi-lattices as well.

Theorem 13. Sn(τ) is a join sublattice of Sn for all n if and only if

1. τ has exactly one descent, and its magnitude is at most two, or

2. τ has no descents.

Proof. Let τ be a pattern of length k. Proposition 12 shows that if τ satisfies condition
(1), then Sn(τ) is a join sublattice of Sn. Suppose that τ satisfies condition (2), so that
τ = 12 · · ·k. In this case π avoids τ if and only if π does not contain an increasing
subsequence of k letters. If π does not contain an increasing subsequence of k letters and
π′ > π, then π′ does not contain an increasing subsequence of k letters since I(π) ⊆ I(π′).
Therefore π, σ ∈ Sn(τ) implies π ∨ σ ∈ Sn(τ). That is, Sn(τ) is a join sublattice.

Now we want to show conditions (1) and (2) are necessary for Sn(τ) to be a join
sublattice of Sn. Propositions 10 and 11 rule out all cases, except when τ has exactly one
ascent, that ascent has magnitude at most 2, and τ has at least two descents. Suppose
τ is of this type. Then τ is the join of two permutations, each obtained by changing one
of the descents to an ascent. But these two permutations are in Sk(τ), so it cannot be a
join sublattice.

Theorem 14. Sn(τ) is a join semi-lattice for all n if and only if
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1. τ has exactly one descent, and its magnitude is at most two, or

2. τ has exactly one ascent, and its magnitude is at most two, or

3. τ has no descents.

Proof. Propositions 10 and 11 show that conditions (1), (2), and (3) are necessary. By
Theorem 13, conditions (1) and (3) are sufficient. We want to show that condition (2) is
as well.

Suppose τ has exactly one ascent, which is of magnitude at most two. Then by using
π 7→ πw0 of Lemma 8 and Proposition 12, the dual poset to Sn(τ) is a join semi-lattice.
That is, Sn(τ) is a meet semi-lattice. Since n(n− 1) · · ·21 avoids τ , Sn(τ) has a maximal
element. By the dual to Lemma 5, Sn(τ) is a lattice, and hence a join semi-lattice.

Using the map π 7→ πw0 of Lemma 8, we have dual results.

Theorem 15. Sn(τ) is a meet sublattice of Sn for all n if and only if

1. τ has exactly one ascent, and its magnitude is at most two, or

2. τ has no ascents.

Theorem 16. Sn(τ) is a meet semi-lattice for all n if and only if

1. τ has exactly one ascent, and its magnitude is at most two, or

2. τ has exactly one descent, and its magnitude is at most two, or

3. τ has no ascents.

Since Sn(τ) is a lattice if and only if it is both a meet semi-lattice and a join semi-
lattice, we have proven Theorem 1. We have also shown that the only τ for which Sn(τ) is
a semi-lattice but not a lattice are the strictly increasing and strictly decreasing patterns.

We can apply the same reasoning to sublattices, and get Theorem 2. Propositions 10,
11, and 12 also immediately imply Theorem 3.

4 Multiple patterns

Theorem 1 does not generalize immediately to larger sets of patterns. In particular, even
if both Sn(τ1) and Sn(τ2) are lattices, Sn({τ1, τ2}) is not necessarily a lattice.

Proposition 17. S5(2431, 3124) is not a meet or join semi-lattice.

Proof. In S5, define µ = 43215, µ′ = 45231, σ = 23415, and σ′ = 21435. By considering
the inversion sets, we see that µ ∧ µ′ = 42315 and σ ∨ σ′ = 24315. Since 42315 covers
24315, we have that {ξ ∈ S5 | ξ 6 µ, ξ 6 µ′, σ 6 ξ, σ′ 6 ξ} = {24315, 42315}. Observe
that µ, µ′, σ, and σ′ all avoid 2431 and 3124, but 24315 contains 2431 and 42315 contains
3124. Therefore, in the terminology of Section 3, µ, µ′, σ, and σ′ form a butterfly in the
Hasse diagram of S5(2431, 3124).
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Moreover, it is not necessary for both Sn(τ1) and Sn(τ2) to be lattices in order for
Sn({τ1, τ2}) to be a lattice. For example, consider Sn({2134, 2143}), which is one case of
the following result.

Proposition 18. Let T = {21⊕ τ | τ ∈ Sk−2}. Then Sn(T ) is a lattice for all n.

Proof. Observe that Sn(T ) is the set of permutations such that for each descent π(i) >
π(i + 1), we have |{j | j > i, π(j) > π(i)}| < k − 2. So if π ∈ Sn \ Sn(T ), then there
is a unique maximal element π′ ∈ Sn(T ) less than π. The element π′ is obtained by
changing all descents which violate the condition above to ascents. Therefore Sn(T ) is a
join semi-lattice by Lemma 6. We also have 12 · · ·n ∈ Sn(T ), so Sn(T ) is a lattice by the
dual statement of Lemma 5.
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