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Abstract

We give some identities involving sums of powers of the partial sum of g-binomial
coefficients, which are g-analogues of Hirschhorn’s identities [Discrete Math. 159
(1996), 273-278] and Zhang’s identity [Discrete Math. 196 (1999), 291-298].
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1 Introduction

In [2], Calkin proved the following curious identity:
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Hirschhorn [5] established the following two identities on sums of powers of binomial

partial sums:
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In [7], Zhang proved the following alternating form of (2):

n k 2 ]-7 if n= 0,
Z(—l)k (Z (n)) = ¢ 221 if n is even and n # 0, (3)
= =0 —2%=1 _ (—1)(n=1)/2 ((n":;/z), if n is odd.

Several generalizations are given in [6, 8, 9]. Later, Guo et al. [4] gave the following

g-identities: ) N )
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Here and in what follows, [k

]q is the ¢-binomial coefficient defined by
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0, otherwise,

if 0 <k <n,

where (z;¢), = (1 — 2)(1 — 2q) - -+ (1 — 2¢"!) is the g-shifted factorial for n > 0.
The purpose of this paper is to study g-analogues of (1)—(2) and establish a new
g-version of (3). Our main results may be stated as follows.

Theorem 1. For any positive integer n and any non-zero integer m, we have
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Theorem 2. For any non-negative integer n, we have
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Letting ¢ — 1 and using L’Hopital’s rule and some familiar identities, we easily find
that the identities (4)—(5) and (6)—(7) are g-analogues of (1)—(2) and (3) respectively.

In Sections 2 and 3, we will give proofs of Theorems 1.1 and 1.2 respectively by using
the g-binomial theorem and generating functions.

2 Proof of Theorem 1.1

To give our proof of Theorem 1.1, we need to establish a result, which is a g-analogue of
Chang and Shan’s identity (see [3]).

Lemma 3. For any positive integer n, we have

n

Zq*’“ (Z m qq@)) ( 3 [?Lq@:)mu—n)j) 5 Lt m PO

i=0 j=k+1 i=0

Proof. According to the ¢-binomial theorem (see [1]), we have for all complex numbers z
and ¢ with |z| < 1 and |g| < 1, there holds
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It follows that

o= (S]47) (59)
(=24"; @)n7 _12q = (g [n q 3) i ’) oo ) :

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(3) (2014), #P3.17 3




and
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Therefore, for any non-negetive integer k with k& < n—1, the coefficient of z* in (—z;q), 1i
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equating the coefficients of 2"~ ! and after some simplifications, we obtain Lemma 2.1.

Proof of Theorem 1.1. We first prove (4).
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where in the last step, we have used (8).
We next show (5). By (8), we have
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and taking m = —1 in (4), we obtain
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Hence, by Lemma 2.1, we get
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3 Proof of Theorem 1.2

In order to prove the Theorem 1.2, we need the following result, which gives a g-analogue
of alternating sums of Chang and Shan’s identity.

Lemma 4. For any non-negative integer n, we have
2n k 2n+1 n
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Proof. By (8), we find that
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n (—2;q)n is
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equating the coefficients of 2"~ and after some simplifications, we obtain Lemma 3.1.

Proof of Theorem 1.2. We first prove (6). By (8), we have

and
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Replacing n by 2n + 1 in (9), we obtain
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Hence, by Lemma 3.1, we get
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We next show (7). By (8), we have
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which follows easily from the substitution & — 2n — 1 — k, we have
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