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Abstract

We give some identities involving sums of powers of the partial sum of q-binomial
coefficients, which are q-analogues of Hirschhorn’s identities [Discrete Math. 159
(1996), 273–278] and Zhang’s identity [Discrete Math. 196 (1999), 291–298].
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1 Introduction

In [2], Calkin proved the following curious identity:

n∑
k=0

(
k∑

j=0

(
n

j

))3

= n · 23n−1 + 23n − 3n

(
2n

n

)
2n−2.

Hirschhorn [5] established the following two identities on sums of powers of binomial
partial sums:

n∑
k=0

k∑
j=0

(
n

j

)
= n · 2n−1 + 2n, (1)

and
n∑

k=0

(
k∑

j=0

(
n

j

))2

= n · 22n−1 + 22n − n

2

(
2n

n

)
. (2)
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In [7], Zhang proved the following alternating form of (2):

n∑
k=0

(−1)k

(
k∑

j=0

(
n

j

))2

=


1, if n = 0,

22n−1, if n is even and n 6= 0,

−22n−1 − (−1)(n−1)/2
(

n−1
(n−1)/2

)
, if n is odd.

(3)

Several generalizations are given in [6, 8, 9]. Later, Guo et al. [4] gave the following
q-identities:

2n∑
k=0

(−1)k

(
k∑

j=0

[
2n

j

]
q

)2

=

(
2n∑
k=0

[
2n

k

]
q

)(
n∑

k=0

[
2n

2k

]
q

)
,

and

2n+1∑
k=0

(−1)k

(
k∑

j=0

[
2n + 1

j

]
q

)2

= −

(
n∑

k=0

[
2n + 1

2k

]
q

)(
2n+1∑
k=0

[
2n + 1

k

]
q

)

−
n∑

k=0

(−1)k
[
2n + 1

k

]2
q

− 2
∑

06i<j6n

(−1)i
[
2n + 1

i

]
q

[
2n + 1

j

]
q

.

Here and in what follows,
[
n
k

]
q

is the q-binomial coefficient defined by

[
n

k

]
q

=


(q; q)n

(q; q)k(q; q)n−k
, if 0 6 k 6 n,

0, otherwise,

where (z; q)n = (1− z)(1− zq) · · · (1− zqn−1) is the q-shifted factorial for n > 0.
The purpose of this paper is to study q-analogues of (1)–(2) and establish a new

q-version of (3). Our main results may be stated as follows.

Theorem 1. For any positive integer n and any non-zero integer m, we have

n∑
k=0

k∑
j=0

[
n

j

]
q

qmk+(j
2) =

(−qm, q)n − qm(n+1)(−1, q)n
1− qm

, (4)

and

n∑
k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)(
k∑

j=0

[
n

j

]
q

q(j
2)+2(1−n)j

)

=

(
(−q−1; q)n − q−(n+1)(−1; q)n

)
(−q2(1−n); q)n

1− q−1
−

n−1∑
i=0

1− qn−i

1− q

[
2n

i

]
q

q(i
2)−

3n2

2
+n

2
+1.

(5)
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Theorem 2. For any non-negative integer n, we have

2n+1∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)(
k∑

j=0

[
2n + 1

j

]
q

q(2n−j+1
2 )

)

= −q2n2+n(−q−2n; q)4n+1 −
n∑

i=0

(−1)i
[
2n + 1

i

]
q2
q2(

i
2), (6)

and

2n+2∑
k=0

(−1)k

(
k∑

i=0

[
2n + 2

i

]
q

q(i
2)

)(
k∑

i=0

[
2n + 2

i

]
q

q(2n+2−i
2 )

)
= q2n

2+3n+1(−q−1−2n; q)4n+3.

(7)

Letting q → 1 and using L’Hôpital’s rule and some familiar identities, we easily find
that the identities (4)–(5) and (6)–(7) are q-analogues of (1)–(2) and (3) respectively.

In Sections 2 and 3, we will give proofs of Theorems 1.1 and 1.2 respectively by using
the q-binomial theorem and generating functions.

2 Proof of Theorem 1.1

To give our proof of Theorem 1.1, we need to establish a result, which is a q-analogue of
Chang and Shan’s identity (see [3]).

Lemma 3. For any positive integer n, we have

n−1∑
k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)(
n∑

j=k+1

[
n

j

]
q

q(j
2)+2(1−n)j

)
=

n−1∑
i=0

1− qn−i

1− q

[
2n

i

]
q

q(i
2)−

3n2

2
+n

2
+1.

Proof. According to the q-binomial theorem (see [1]), we have for all complex numbers z
and q with |z| < 1 and |q| < 1, there holds

(z, q)n =
n∑

k=0

(−1)k
[
n

k

]
q

q(k
2)zk (8)

and
1

(z, q)n
=
∑
i>0

[
n + i− 1

i

]
q

zi.

It follows that

(−z; q)n
1

1− z
=

(
n∑

i=0

[
n

i

]
q

q(i
2)zi

)(
∞∑
i=0

zi

)
,

(−zqn; q)n
1

1− zq
=

(
n∑

i=0

[
n

i

]
q

q(i
2)+nizi

)(
∞∑
i=0

qizi

)
,
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and

(−z; q)2n
1

(z; q)2
=

(
2n∑
i=0

[
2n

i

]
q

q(i
2)zi

)(
∞∑
i=0

[
1 + i

i

]
q

zi

)
.

Therefore, for any non-negetive integer k with k 6 n−1, the coefficient of zk in (−z; q)n
1

1−z
is

k∑
i=0

[
n

i

]
q

q(i
2),

the coefficient of zn−k−1 in (−zqn; q)n
1

(1−zq is

n∑
i=k+1

[
n

i

]
q

q(n−i
2 )+n(n−i)+i−k−1

and the coefficient of zn−1 in (−z; q)2n
1

(z;q)2
is

n−1∑
i=0

[
2n

i

]
q

1− qn−i

1− q
q(i

2).

Using the fact

(−z; q)n
1

1− z
· (−zqn; q)n

1

1− zq
= (−z; q)2n

1

(z; q)2
,

equating the coefficients of zn−1 and after some simplifications, we obtain Lemma 2.1.

Proof of Theorem 1.1. We first prove (4).

n∑
k=0

k∑
j=0

[
n

j

]
q

qmk+(j
2) =

n∑
j=0

[
n

j

]
q

q(j
2)

n∑
k=j

qmk

=

∑n
j=0

[
n
j

]
q
q(j

2)+mj − qm(n+1)
∑n

j=0

[
n
j

]
q
q(j

2)

1− qm

=
(−qm, q)n − qm(n+1)(−1, q)n

1− qm
,

where in the last step, we have used (8).
We next show (5). By (8), we have

n∑
j=0

[
n

j

]
q

q(j
2)+2(1−n)j = (−q2(1−n); q)n,

and taking m = −1 in (4), we obtain

n∑
k=0

q−k
k∑

j=0

[
n

j

]
q

q(j
2) =

(−q−1, q)n − q−(n+1)(−1, q)n
1− q−1

.
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Hence, by Lemma 2.1, we get

n∑
k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)(
k∑

j=0

[
n

j

]
q

q(j
2)+2(1−n)j

)

=
n∑

k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)(
(−q2(1−n); q)n −

n∑
j=k+1

[
n

j

]
q

q(j
2)+2(1−n)j

)

= (−q2(1−n); q)n

n∑
k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)

−
n−1∑
k=0

q−k

(
k∑

i=0

[
n

i

]
q

q(i
2)

)(
n∑

j=k+1

[
n

j

]
q

q(j
2)+2(1−n)j

)

=

(
(−q−1; q)n − q−(n+1)(−1; q)n

)
(−q2(1−n), q)n

1− q−1
−

n−1∑
i=0

1− qn−i

1− q

[
2n

i

]
q

q(i
2)−

3n2

2
+n

2
+1.

3 Proof of Theorem 1.2

In order to prove the Theorem 1.2, we need the following result, which gives a q-analogue
of alternating sums of Chang and Shan’s identity.

Lemma 4. For any non-negative integer n, we have

2n∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)(
2n+1∑
j=k+1

[
2n + 1

j

]
q

q(2n−j+1
2 )

)
=

n∑
i=0

(−1)i
[
2n + 1

i

]
q2
q2(

i
2).

Proof. By (8), we find that

(z; q)n
1

1 + z
=

(
n∑

i=0

[
n

i

]
q

q(i
2)(−z)i

)(
∞∑
i=0

(−z)i

)
,

(−z; q)n
1

1− z
=

(
n∑

i=0

[
n

i

]
q

q(i
2)zi

)(
∞∑
i=0

zi

)
,

and

(z2; q2)n
1

1− z2
=

(
n∑

i=0

[
n

i

]
q2
q2(

i
2)(−1)iz2i

)(
∞∑
i=0

z2i

)
.

Therefore, for any non-negetive integer k with k 6 n−1, the coefficient of zk in (z; q)n
1

1+z

is

(−1)k
k∑

i=0

[
n

i

]
q

q(i
2),
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the coefficient of zn−k−1 in (−z; q)n
1

1−z is

n∑
i=k+1

[
n

i

]
q

q(n−i
2 )

and the coefficient of zn−1 in (z2; q2)n
1

1−z2 is

(n−1)/2∑
i=0

(−1)i
[
n

i

]
q2
q2(

i
2)[2|(n− 1)],

where [2|n] is defined by

[2|n] =

{
1, if 2|n,

0, otherwise.

Using the fact

(−z; q)n
1

1− z
· (z; q)n

1

1 + z
= (z2; q2)n

1

1− z2
,

equating the coefficients of zn−1 and after some simplifications, we obtain Lemma 3.1.

Proof of Theorem 1.2. We first prove (6). By (8), we have

n∑
k=0

(−1)k
k∑

j=0

[
n

j

]
q

q(j
2) =

n∑
j=0

[
n

j

]
q

q(j
2)

n∑
k=j

(−1)k

=
1

2

n∑
j=0

[
n

j

]
q

q(j
2)((−1)j − (−1)n+1)

=
(−1)n

2
(−1, q)n, (9)

and
2n+1∑
j=0

[
2n + 1

j

]
q

q(2n−j+1
2 ) = q2n

2+n(−q−2n; q)2n+1.

Replacing n by 2n + 1 in (9), we obtain

2n+1∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)
= −(−q; q)2n.
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Hence, by Lemma 3.1, we get

2n+1∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)(
k∑

j=0

[
2n + 1

j

]
q

q(2n−j+1
2 )

)

=
2n+1∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)(
q2n

2+n(−q−2n; q)2n+1 −
2n+1∑
j=k+1

[
2n + 1

j

]
q

q(2n−j+1
2 )

)

= −q2n2+n(−q−2n; q)4n+1 −
2n∑
k=0

(−1)k

(
k∑

i=0

[
2n + 1

i

]
q

q(i
2)

)(
2n+1∑
j=k+1

[
2n + 1

j

]
q

q(2n−j+1
2 )

)

= −q2n2+n(−q−2n; q)4n+1 −
n∑

i=0

(−1)i
[
2n + 1

i

]
q2
q2(

i
2).

We next show (7). By (8), we have

2n∑
j=0

[
2n

j

]
q

q(2n−j
2 ) = q2n

2−n(−q1−2n; q)2n,

and replacing n by 2n in (9), we obtain

2n∑
k=0

(−1)k

(
k∑

i=0

[
2n

i

]
q

q(i
2)

)
= (−q; q)2n−1.

Hence, by the fact

2n−1∑
k=0

(−1)k

(
k∑

i=0

[
2n

i

]
q

q(i
2)

)(
2n∑

i=k+1

[
2n

i

]
q

q(2n−i
2 )

)
= 0

which follows easily from the substitution k → 2n− 1− k, we have

2n∑
k=0

(−1)k

(
k∑

i=0

[
2n

i

]
q

q(i
2)

)(
k∑

i=0

[
2n

i

]
q

q(2n−i
2 )

)

=
2n∑
k=0

(−1)k

(
k∑

i=0

[
2n

i

]
q

q(i
2)

)(
q2n

2−n(−q1−2n; q)2n −
2n∑

i=k+1

[
2n

i

]
q

q(2n−i
2 )

)
= q2n

2−n(−q1−2n; q)4n−1.

Acknowledgement

I would like to thank the referee for his/her helpful comments.

the electronic journal of combinatorics 21(3) (2014), #P3.17 7



References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge,
1998.

[2] N.J. Calkin, A curious binomial identity, Discrete Math. 131 (1994), 335–337.

[3] G.-Z. Chang, Z. Shan, Problems 83-3: A binomial summation, SIAM Review, 1983,
25(1): 97.

[4] V.J.W. Guo, Y.-J. Lin, Y. Liu, C. Zhang, A q-analogue of Zhang’s binomial coefficient
identities, Discrete Math. 309 (2009), 5913–5919.

[5] M. Hirschhorn, Calkin’s binomial identity, Discrete Math. 159 (1996), 273–278.

[6] J, Wang, Z. Zhang, On extensions of Calkin’s binomial identities, Discrete Math. 274
(2004), 331–342.

[7] Z. Zhang, A kind of binomial identity, Discrete Math. 196(1999), 291–298.

[8] Z. Zhang, J. Wang, Generalization of a combinatorial identity, Util. Math. 71 (2006),
217–224.

[9] Z. Zhang, X. Wang, A generalization of Calkin’s identity, Discrete Math. 308 (2008),
3992–3997.

the electronic journal of combinatorics 21(3) (2014), #P3.17 8


	Introduction
	Proof of Theorem 1.1
	Proof of Theorem 1.2

