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Abstract

A permutation σ ∈ Sn is a k-separator if all of its patterns of length k are
distinct. Let F (k) denote the maximal length of a k-separator. Hegarty (2013)
showed that k +

⌊√
2k − 1

⌋
− 1 6 F (k) 6 k +

⌊√
2k − 3

⌋
, and conjectured that

F (k) = k +
⌊√

2k − 1
⌋
− 1. This paper will strengthen the upper bound to prove

the conjecture for all sufficiently large k (in particular, for all k > 320801).

1 Introduction and Definitions

We begin by defining an important and well-known concept: that of pattern containment
(specifically, in the case of permutations).

Definition. A permutation σ of length n contains a permutation π of length k as a
pattern if n > k and there is a length-k subsequence of σ with the same relative ordering
as π.

For example, 52413 contains 321 but does not contain 123.
The concept of pattern containment, especially in the case of permutations, has been

studied a great deal in the past forty years, after some results on stack-sortable per-
mutations by Knuth [3]. Originally, the primary focus was on pattern avoidance; i.e.
permutations that do not contain a given (fixed) pattern, and related questions, such as
the number of such permutations (often considered asymptotically).

∗This research was conducted at the University of Minnesota Duluth REU program, supported by
NSF/DMS grant 1062709 and NSA grant H98230-11-1-0224.
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In 1999, Arratia [1] introduced the concept of a superpattern–a permutation which
contains all permutations of a given length as patterns, and bounded the minimal length
of a k-superpattern (a bound later improved by Miller [4]).

Recently, Hegarty [2] put forward the idea of a separator permutation–a notion that,
in his words, is ‘dual to the notion of a superpattern’.

Definition. A permutation σ is a k-separator if all length-k subsequences of σ are order-
isomorphic to different length-k permutations.

For example, 2413 is a 3-separator because it contains
(
4
3

)
= 4 length-3 subsequences,

which correspond to patterns as follows: 241 → 231, 243 → 132, 213 → 213, and 413 →
312. These 4 patterns are all distinct, so 2413 is a 3-separator.

Definition. We use F (k) to denote the maximum possible length of a k-separator.

For example, F (3) = 4 as 2413 is a 3-separator of length 4, but there are no length-5
3-separators (as

(
5
3

)
> 3!).

Hegarty [2] proved that k +
⌊√

2k − 1
⌋
− 1 6 F (k) 6 k +

⌊√
2k − 3

⌋
, showing that

F (k) is one of at most two values in all cases. (In fact, the stated theorem replaces
2k − 1 by 2k − 3 on the lower bound, but constructions bringing the lower bound to
k +

⌊√
2k − 1

⌋
− 1 are shown later in the paper.) Hegarty also conjectured that, in fact,

F (k) equals the lower bound, i.e. F (k) = k +
⌊√

2k − 1
⌋
− 1 in all cases.

This paper will prove Hegarty’s conjecture for all k > 320801.

2 Hegarty’s Lemma and Taxicab Boxes

We will use as our starting point a lemma of Hegarty (Lemma 2.3 in [2]).

Lemma 2.1. Let σ ∈ Sn be a k-separator. Then for any i 6= j ∈ {1, . . . , n},

|σ−1(i)− σ−1(j)| = (n− k + 2) + tσi,j − |i− j|,

where tσi,j is the number of integers lying strictly between i and j that also lie between i
and j in the permutation σ.

Since tσi,j > 0, we can substitute σ(i) and σ(j) for i and j to obtain the following
corollary.

Corollary 1. If σ ∈ Sn is a k-separator and i 6= j ∈ {1, . . . , n}, then

|σ(i)− σ(j)|+ |i− j| > n− k + 2.

Let n − k + 2 = d. Then the statement n 6 k +
⌊√

2k − 1
⌋
− 1 is equivalent to the

statement n > d2

2
− 1 (given the additional (obvious) assumption n > k).

A permutation σ ∈ Sn can be interpreted graphically as sending each i ∈ {1, . . . , n}
to the point (i, σ(i)) in the plane. Corollary 1 can then be interpreted as follows: the
taxicab distance between any two such points in a k-separator is at least d.
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Now, consider the taxicab balls of radius d
2

around each such point; these are simply
boxes of side length d√

2
centered around the point, rotated by 45◦. (From now on, we

will refer to them interchangeably as ‘taxicab balls’ and ‘boxes’.) By Corollary 1, these
cannot overlap. An example for d = 6, n = 17 = 62

2
− 1 (k = 13) is shown below; the

permutation shown is the 13-separator 5, 10, 15, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8,
13.
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Our results will come from considering the total area of the boxes and the region they
must occupy. Since the boxes have radius d

2
, all points contained in them have x and y

coordinates between 1 − d
2

and n + d
2
, i.e. they are contained in a square of side length

n+ d− 1.
In section 3, we will divide this square into several regions, and provide a bound on

the area in the regions covered by boxes, given a k-separator of sufficiently large size. In
particular, the center of the square must be almost entirely covered, while the corners
must be mostly empty. Sections 4 and 5 together study the behavior of points in the
permutation (i.e. centers of the boxes) that are near the corners of this square. Section 6
uses these points to create a final bound on d, and therefore on k.

3 Area Argument

Each box (taxicab ball) has area d2

2
, so the total area contained in the boxes is nd

2

2
.

We now divide the part of the plane that the boxes can contain into several regions.
Namely, we consider four ‘strip’ areas around the edges, which are given by the equations
|x− 1| 6 d

2
, |x− n| 6 d

2
, |y − 1| 6 d

2
, and |y − n| 6 d

2
. These strips border a square with

side length n− d− 1 that arises from the equation 1 + d
2
6 x, y 6 n− d

2
. Note also that

the strips intersect in 4 corner regions, and all of the area of the boxes is contained in the
strips and the central square.

We will call the strips E1, E2, E3, and E4, starting at the bottom and going counter-
clockwise. We will call the corners Q1, Q2, Q3, and Q4, starting in the bottom left corner
and going counterclockwise (so, for example, E1 contains Q1 and Q2). We will call the
central square C.
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Lemma 3.1. The total area covered by the boxes in each strip Ei, 1 6 i 6 4 is d3+d2

4
.

Proof. Without loss of generality, consider only the strip E1 (given by the equation |y −
1| 6 d

2
; the other strips can be argued symmetrically).

Note that since the centers of the boxes correspond to a permutation of {1, . . . , n},
there is exactly one box with y-coordinate i for all i ∈ {1, . . . , n}. The only boxes that
intersect the strip are the ones with centers at y-coordinates in {1, . . . , d+1}. Furthermore,
note that the area of the intersection of the box with center at y-coordinate i with the
strip plus the area of the intersection for y-coordinate d + 1 − i is d2

2
, as together the

two intersections can be rearranged to form an entire box. Thus the total area of the

intersections is
(d+1) d

2

2

2
= d3+d2

4
.

The total area taken up by the boxes must equal the area of the central square covered
by the boxes, plus the area in each strip Ei (1 6 i 6 4) covered by the boxes, minus the
area in each corner region Qi (1 6 i 6 4) covered by the boxes (as this area is counted
twice, as Qi is contained in both Ei and Ei−1, where indices are taken modulo 4). For each
i ∈ {1, 2, 3, 4}, let Ai be the covered area in the corner region Qi. Let A = A1+A2+A3+A4

be the total covered area in the corner regions, and B be the total uncovered area in the
center region C.

Noting that C has side length n − d − 1, and applying Lemma 3.1, we obtain the
equality

n
d2

2
= (n− d− 1)2 + d3 + d2 − A−B. (1)

We first apply (1) using the trivial bounds A > 0 and B > 0. We obtain nd
2

2
6

n2 − 2nd+ d3 + 2d2 − 2n+ 2d+ 1, or rearranging,

n2 − n(
d2

2
+ 2d+ 2) + (d3 + 2d2 + 2d+ 1) > 0.

Applying the quadratic formula yields that n must not be between the roots

d2

4
+ d+ 1± d

4

√
d2 − 8d− 8.

if d > 9 (and thus d2 − 8d− 8 > 0).
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Hegarty’s original result of n 6 k+
√

2k − 3 yields n > d2

2
−d, and d2

2
−d > d2

4
+d+ 1

for d > 9. Thus for d > 9,

n >
d2

4
+ d+ 1 +

d

4

√
d2 − 8d− 8,

as n is greater than the other root.

Lemma 3.2. For d > 30, d2

4
+ d+ 1 + d

4

√
d2 − 8d− 8 > d2−5

2
.

Proof. Multiplying by 4 and rearranging, we seek to show d
√
d2 − 8d− 8 > d2− 4d− 14.

Squaring both sides and moving all terms to one side yields the equivalent inequality
4(d2 − 28d− 49) > 0, which holds for d > 14 + 7

√
5 ≈ 29.7.

Corollary 2. For d > 30, we have n > d2−5
2

. Therefore, if d > 30 and n < d2

2
− 1, either

d is even and n = d2

2
− 2 or d is odd and n = d2

2
− 3

2
.

Recall that B is the total uncovered area in the central region C. We have the following
lemma in the odd case. The motivation for the lemma is that when d is odd, the corners
of the boxes must have one of their coordinates a half-integer and the other an integer,
so they cannot ‘mesh’ completely.

Lemma 3.3. If d is odd, then B > n
2
− d− 5

2
.

Proof. In the diagram below, the large box represents one of the taxicab balls (of radius
d
2
) around the points in the permutation; X, Y , and Z are taxicab balls of radius 1

2
,

positioned as shown.
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Suppose another one of the taxicab boxes contains X. Because the rightmost vertex
of X has y-coordinate equal to a half-integer (as d is odd), the taxicab box cannot have
the rightmost vertex of X as its rightmost vertex. Therefore, it must contain Z.
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Similarly, if one of the taxicab boxes contains Y , it must contain Z. Thus one of Y
and Z must be uncovered. It remains to be seen for how many points in the permutation
the corresponding boxes X and Y both lie in the inner square.

For X and Y to both lie in the inner square, the x-value of the point in the permutation
must be between 2 + d

2
and n− d

2
− 1, and the y-value must be between 3

2
and n− d− 1

2
.

This eliminates at most d+3
2

+ d+3
2

+ 1 + (d + 1) = 2d + 5 cases (since d is odd), so since
X and Y each have area 1

2
, we have B > n−2d−5

2
.

Now, we find a bound on A.

Lemma 3.4. If d > 30 and n < d2

2
− 1, then A 6 6d+ 19

2
.

Proof. By Corollary 2, either d is even and n = d2

2
− 2 or d is odd and n = d2−3

2
. We now

apply (1) in both cases.

Case 1. d is even, n = d2

2
− 2.

In this case, simply use (1) with the inequality B > 0. We obtain

(
d2

2
− 2)

d2

2
6 (

d2

2
− d− 3)2 + d3 + d2 − A,

or A 6 6d+ 9 < 6d+ 19
2

.

Case 2. d is odd, n = d2

2
− 3

2
.

We now must also use Lemma 3.3. (1) now yields

(
d2

2
− 3

2
)
d2

2
= (

d2

2
− d− 5

2
)2 + d3 + d2 − A−B,

or A + B = d2

4
+ 5d + 25

4
. By Lemma 3.3, B > n

2
− d − 5

2
= d2

4
− d − 13

4
, so A 6

d2

4
+ 5d+ 25

4
−B 6 6d+ 19

2
.

This is quite a strong result, as it means that for large values of d, almost none of the
corner area is covered by boxes, as 6d + 19

2
is linear in d, whereas the area of the Qi is

quadratic in d.

4 Improvement on another Lemma of Hegarty

To bound the corner areas, we must first improve another lemma of Hegarty (Lemma 2.5
in [2]), which states the following.

Lemma 4.1. Let m ∈ N and a1a2 · · · am be any permutation of the integers in {1, . . . ,m}.
Then

m−1∑
i=1

|ai − ai+1| 6
m2 − 1

2
.
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We will prove the following refined version of the lemma.

Lemma 4.2. Let m ∈ N and a1a2 · · · am be any permutation of the integers in {1, . . . ,m}.
Then

m−1∑
i=1

|ai − ai+1| 6
m2

2
− |a1 −

m+ 1

2
| − |am −

m+ 1

2
|.

Proof. We only need to show the lemma for 2 distinct cases (since we can replace each ai
by m+1−ai if necessary); the case when a1, am > m+1

2
and the case when a1 > m+1

2
> am.

Case 1. a1, am > m+1
2

.
We proceed analogously to Hegarty’s proof of Lemma 4.1; that is, let r be the number

of i ∈ {1, . . . ,m − 1} such that ai < ai+1, and s be the number of i ∈ {1, . . . ,m − 1}
such that ai > ai+1. Let i1, . . . , ir be the indices such that aij < aij+1. Then all aij must

be distinct and all aij+1
must be distinct. By the definition of the ij,

r∑
j=1

|aij − aij+1
| =

r∑
j=1

aij+1
−

r∑
j=1

aij . The latter sum is at least 1 + · · · + r, and the former is at most

m+ · · ·+ (m− r)− a1, since a1 cannot be part of the sum. Thus

r∑
j=1

|aij − aij+1
| 6 m(r + 1)− r(r + 1)− a1.

Similarly, if i′1, . . . , i
′
s are the indices for which ai′j > ai′j+1, then

s∑
j=1

|ai′j − ai′j+1| 6 m(s+ 1)− s(s+ 1)− am.

Adding these, we obtain
m−1∑
i=1

|ai−ai+1| 6 m(r+s+2)−r−s−r2−s2−a1−am. Applying

the condition r + s = m− 1, the right hand side is maximized when r = s = m−1
2

, so we
obtain

m−1∑
i=1

|ai − ai+1| 6 m(m+ 1)− m2 − 1

2
− a1 − am

=
m2 + 2m+ 1

2
− a1 − am

=
m2 − 1

2
− (a1 −

m+ 1

2
)− (am −

m+ 1

2
)

=
m2 − 1

2
− |a1 −

m+ 1

2
| − |am −

m+ 1

2
|,

as desired.
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Case 2. a1 > m+1
2

> am.

As before, we have
r∑
j=1

|aij − aij+1| =
r∑
j=1

aij+1 −
r∑
j=1

aij . However, in this case, not

only can a1 not appear in the first sum, but am cannot appear in the second sum. Thus
r∑
j=1

|aij−aij+1| 6 m+· · ·+(m−r)−a1−(1+· · ·+(r+1))+am = m(r+1)−(r+1)2−a1+am.

The other sum has no restrictions and thus is bounded bym+· · ·+(m−s+1)−(1+· · ·+s) =
ms− s2. Therefore, the sum is at most m(r + s+ 1)− (r + 1)2 − s2 − a1 + am, which is
maximized when r + 1 = s = m

2
, giving

m−1∑
i=1

|ai − ai+1| 6
m2

2
− a1 + am

=
m2

2
− (a1 −

m+ 1

2
)− (

m+ 1

2
− am)

=
m2

2
− |a1 −

m+ 1

2
| − |am −

m+ 1

2
|.

5 Bounding Corner Points

Armed with the previous lemma, we now turn our attention to the area in the corners.
Roughly, in this section we will show that each ‘corner’ ((1, 1), (n, 1), (n, n), or (1, n)) has
two points near it, in somewhat specific locations (the possible error in their locations is
of order lower than d).

Assume there is a construction satisfying n < d2

2
− 1.

Recall that A1, A2, A3, and A4 are the amount of covered area in Q1, Q2, Q3, and Q4,
respectively.

Note that if a box contributes to A1 (i.e. part of its area covers part of the region
|x − 1| 6 d

2
, |y − 1| 6 d

2
) then both its x- and y-coordinates must be at most d. (When

referring to the coordinates of one of the boxes, we mean the coordinates of its center.)
Therefore, it is logical to consider boxes at y-coordinates in {1, . . . , d}. In particular,

let x1, . . . , xd be such that σ({x1, . . . , xd}) = {1, . . . , d} and x1 < x2 < · · · < xd (that is,
they are the x-coordinates corresponding to the y-coordinates 1 through d, arranged from
left to right). Let σ(xi) = yi for 1 6 i 6 d, so the yi are a permutation of {1, . . . , d}.

We apply Lemma 4.2. The idea is that Lemma 4.2 requires the vertical distances
|yi− yi+1| to not be too large, which forces the horizontal distances |xi−xi+1| to be large,
forcing the outer points into the corners. In particular, we obtain

d−1∑
i=1

|yi+1 − yi| 6
d2

2
− |y1 −

d+ 1

2
| − |yd −

d+ 1

2
|.

Since |xi+1 − xi| + |yi+1 − yi| > d by Lemma 2.1 and xi+1 > xi by assumption, we must
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have xd − x1 > d(d− 1)− (d
2

2
− |y1 − d+1

2
| − |yd − d+1

2
|), so

xd − x1 >
d2

2
− d+ |y1 −

d+ 1

2
|+ |yd −

d+ 1

2
|.

Now suppose that n 6 d2−3
2

. Then xd−x1 > n−d+ 3
2
+|y1− d+1

2
|+|yd− d+1

2
|. Rearranging,

we get (n − xd) + |yd − d+1
2
| + (x1 − 1) + |y1 − d+1

2
| 6 d − 5

2
. Thus the taxicab distance

from (x1, y1) to (1, d+1
2

) plus the taxicab distance from (xd, yd) to (n, d+1
2

) is at most d− 5
2
.

Call these two taxicab distances TC1 and TCd, respectively.
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Consider the point (x1, y1) and the box centered around it, as shown.

Lemma 5.1. If d > 50, TC1 > d+1
2
−
√
A1.

Proof. Suppose that TC1 <
d+1
2
−
√
A1. Then y1 < d + 1 −

√
A1, so the bottom tip of

the box lies below y-coordinate d
2

+ 1 −
√
A1. Thus, more than A1 of the area in the

box lies in the region y 6 d
2

+ 1. So some of this area must be outside the corner area,
i.e. have x-coordinate greater than d

2
+ 1 (since the y-coordinate is known to be less than

that). This implies that x1 +
√
A1 >

d
2

+ 1. But since TC1 <
d+1
2
−
√
A1, we have that

|y1 − d+1
2
| < d+1

2
− d

2
−
√
A1 +

√
A1 = 1

2
. Since y1 is an integer, y1 = d+1

2
. This, however,

implies that the entire bottom-left fourth (and slightly extra) of the box lies in the corner
region, so d2

8
< A1 6 6d+ 19

2
(if d > 30), so d2 − 48d− 76 < 0. Thus d 6 49, proving the

lemma.

Corollary 3. If d > 50, d+1
2
−
√
A1 6 TC1 6 d

2
− 3 +

√
A2

Proof. By the lemma we have TC1 > d+1
2
−
√
A1. Similarly, TCd > d+1

2
−
√
A2. Since

TC1 + TCd 6 d− 5
2
, we obtain the remaining inequality TC1 6 d

2
− 3 +

√
A2.

Lemma 5.2. If d > 128, y1 > d+ 1−
√
A1.
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Proof. Suppose y1 < d + 1 −
√
A1. The area of the portion of the box around (x1, y1)

with y-coordinate at most y1 − d
2

+
√
A1 is A1. Since y1 < d + 1 −

√
A1, this area has

y-coordinate less than d
2

+ 1, so it is in the bottom strip region. If it is all in the corner
region, then we will have the area being strictly greater than A1 (because the assumed
inequality on y1 is strict, there will be additional area above the bottom tip of the box),
a contradiction. Therefore, we must have x1 +

√
A1 >

d
2

+ 1, or x1 >
d
2

+ 1−
√
A1. Since

TC1 6 d
2
−3+

√
A2, this implies |y1− d+1

2
| <
√
A1 +

√
A2−3, so y1 <

d
2

+
√
A1 +

√
A2− 5

2
.

Thus the area in the box around (x1, y1) that is in the lower strip (|y1− 1| 6 d
2
) is greater

than (d
2

+ 7
2
−
√
A1−

√
A2)

2. Since x < d
2

+ 1, more than half of this area is in the corner
region, so (d

2
+ 7

2
−
√
A1 −

√
A2)

2 < 2A1. Therefore,

(2 + 2
√

2)
√
A1 + 2

√
A2 > d+ 7.

Now,

(2 + 2
√

2)
√
A1 + 2

√
A2 = (2 + 2

√
2)2

√
A1

(2 + 2
√

2)2
+ 22

√
A2

22

6
√

(2 + 2
√

2)2 + 22

√
(2 + 2

√
2)2

A1

(2 + 2
√

2)2
+ 22

A2

22

=

√
(2 + 2

√
2)2 + 22

√
A1 + A2

6

√
12 + 8

√
2

√
6d+

19

2
,

where the first inequality is by Weighted Power Mean and the second by Lemma 3.4.
Thus,

d+ 7 <

√
(12 + 8

√
2)(6d+

19

2
).

Squaring, we obtain d2 + 14d+ 49 < (12 + 8
√

2)(6d+ 19
2

) = (72 + 48
√

2)d+ (114 + 76
√

2),

so d2 − (58 + 48
√

2)d− (65 + 78
√

2) > 0. Therefore, d 6 127, as desired.

Corollary 4. If d > 128, x1 6
√
A1 +

√
A2 − 5

2
.

Proof. By Corollary 3, TC1 6 d
2
− 3 +

√
A2. Since y1 > d+ 1−

√
A1, we have |y1− d+1

2
| >

d+1
2
−
√
A1, so |x1− 1| = TC1− |y1− d+1

2
| 6
√
A1 +

√
A2− 7

2
. The conclusion follows.

Lemma 5.2 and its corollary together show that if d > 128 there is a point (x, y) in
the permutation (i.e. σ(x) = y) such that x 6

√
A1 +

√
A2− 5

2
and d+ 1−

√
A1 6 y 6 d.

Symmetrically, there must be a point (x, y) in the permutation such that d + 1 −√
A1 6 x 6 d and y 6

√
A1 +

√
A4 − 5

2
. Now, if these two points are the same, then

we must have d + 1 −
√
A1 6

√
A1 +

√
A2 − 5

2
, so d + 7

2
6 2
√
A1 +

√
A2. However,

2
√
A1 +

√
A2 < 3

√
6d+ 19

2
, so (d+ 7

2
)2 = d2 + 7d+ 49

4
< 54d+ 171

2
, a contradiction with

the assumption that d > 128. Thus the points are distinct.
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6 Resulting Additional Bounds

In this section, we will use the two points that we showed exist in the previous section,
in order to show that area is now forced into the center.

The diagram below shows the two points, along with the boxes around them. (As
shown in the diagram, one point must be strictly above and strictly to the left of the
other.)

r @
@
@

@@

�
�
�

��

�
�
�
��

@
@
@
@@

r
@
@
@
@@

�
�

�
��

�
�
�
��

@
@

@
@@

@
@
@

�
�
�
�

@
@
@

�
�
�
� R

Note that none of the region R can be covered by any other box. This is because
its taxicab width is less than d (that is, there exist two points on opposite sides such
that the taxicab distance between them is less than d); in fact, it is equal to the taxicab
distance between the two points in the diagram minus d, and both points must have both
coordinates between 1 and d (inclusive), by their construction. Therefore, if a box covers
any point in R, it must intersect one of the two boxes already there, which is impossible.

Note that some of R intersects the central area, which creates a new lower bound on
B.

Lemma 6.1. If d > 128, B > (d+7)2

2
− 6(d+ 7)

√
A+ 2A.

Proof. Call the points (x1, y1) and (x2, y2) ((x1, y1) is the upper-left one). We know that
x1 6

√
A1 +

√
A2 − 5

2
by Corollary 4 and d+ 1−

√
A1 6 y1 by Lemma 5.2. We consider

the lower intersection of the box around (x1, y1) with the line x = d
2

+ 1. Note that
|x − x1| > d

2
−
√
A1 −

√
A2 + 7

2
. Therefore, |y − y1| = d

2
− |x − x1| 6

√
A1 +

√
A2 − 7

2
.

Thus y > y1 −
√
A1 −

√
A2 + 7

2
> d− 2

√
A1 −

√
A2 + 9

2
.

Similarly, the leftmost intersection (x, y) of the box around x2, y2 with the line y = d
2
+1

has x > d− 2
√
A1 −

√
A4 + 9

2
.

Thus, the triangle T1 formed by the 3 points (d
2

+1, d
2

+1), (d−2
√
A1−

√
A4+ 9

2
, d
2

+1),
and (d

2
+ 1, d− 2

√
A1 −

√
A2 + 9

2
) is contained in both R and the central region, and has

area

1

2
(d− 2

√
A1 −

√
A4 +

9

2
− (

d

2
+ 1))(d− 2

√
A1 −

√
A2 +

9

2
− (

d

2
+ 1)).
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Simplifying, we get

1

2

(
d

2
− 2
√
A1 −

√
A4 +

7

2

)(
d

2
− 2
√
A1 −

√
A2 +

7

2

)
=

1

2

((
d+ 7

2

)2

− 2

(
d+ 7

2

)
(4
√
A1 +

√
A2 +

√
A4)

+ 4A1 + 2
√
A1A2 + 2

√
A1A4 +

√
A2A4

)
.

Since this occurs at every corner and using A1 + A2 + A3 + A4 = A, we obtain

B >
(d+ 7)2

2
− 3(d+ 7)(

∑
cyc

√
A1) + 2(

∑
cyc

A1)

+ 2(
∑
cyc

√
A1A2) +

√
A1A3 +

√
A2A4

>
(d+ 7)2

2
− 3(d+ 7)(

∑
cyc

√
A1) + 2(

∑
cyc

A1)

>
(d+ 7)2

2
− 3(d+ 7)(

∑
cyc

√
A

4
) + 2A

=
(d+ 7)2

2
− 6(d+ 7)

√
A+ 2A.

Here the last inequality comes from the concavity of the square root function.

We split the remainder of the argument into two cases, depending on the parity of d.

Case 1. First, assume d is even (and, as before, d > 128). Then by the argument in
Lemma 3.4, A+B 6 6d+ 9. Thus

(d+ 7)2

2
− 6(d+ 7)

√
A+ 3A 6 6d+ 9.

The derivative of this with respect to A is −3(d+7)√
A

+ 3, which is negative for A < (d+ 7)2.

However, (d+ 7)2 > d2 > 6d+ 9 > A+ B > A for d > 128, so the derivative is negative.
Thus the expression is minimized when A is maximized. Since A 6 6d+ 9, we must have

(d+ 7)2

2
− 6(d+ 7)

√
6d+ 9 + 3(6d+ 9) 6 6d+ 9,

which simplifies to
d2 + 38d+ 85 6 12(d+ 7)

√
6d+ 9.

Squaring and subtracting, we obtain

d4 − 788d3 − 11778d2 − 54020d− 56279 6 0,

so d 6 802.

the electronic journal of combinatorics 21(3) (2014), #P3.19 12



Case 2. Now, consider the case when d is odd. This case is somewhat more nuanced,
because our previous results already required bounding B below.

The idea is that the uncovered space that causes each of the bounds (Lemma 3.3 and
Lemma 6.1) only intersect a relatively small amount, so they can nearly be added directly.

Consider the diagram for Lemma 3.3. Note that the small boxes X and Y are each
contained within taxicab radius 1 from the topmost vertex of the box. Since any two such
topmost vertices must have taxicab distance at least d between them, there must be at
least taxicab distance d − 2 between (any two points in) any two small boxes (i.e. X or
Y ) corresponding to different vertices. But the maximum taxicab distance between any
two points in T1 is(
d

2
− 2
√
A1 −

√
A4 +

7

2

)
+

(
d

2
− 2
√
A1 −

√
A2 +

7

2

)
= d− 4

√
A1 −

√
A2 −

√
A4 + 7.

If 4
√
A1 +

√
A2 +

√
A4 > 9, then the taxicab distance is less than d− 2, meaning that

there can only be at most 1 small box touching T1. Otherwise, we can split the triangle
along its median from (d

2
+ 1, d

2
+ 1), and then any two points in T1 on the same side of

the median must have taxicab distance at most d
2

+ 7
2
< d− 2 for d > 11, so there are at

most two boxes that intersect the region.
Since there are at most two small boxes that intersect T1 or any one of the four such

triangles, each with area 1
2
, we can add our two bounds for B (the above bound for the

even case and Lemma 3.3) while subtracting their maximum intersection, which is thus
4. Therefore

B >

(
(d+ 7)2

2
− 6(d+ 7)

√
A+ 2A

)
+

(
d2 − 3

4
− d− 5

2

)
− 4.

We know from Case 2 of the proof of Lemma 3.4 that A+B 6 d2

4
+ 5d+ 25

4
. Thus

d2

4
+ 5d+

25

4
> A+B > (

(d+ 7)2

2
− 6(d+ 7)

√
A+ 3A) + (

d2 − 29

4
− d),

so (
(d+ 7)2

2
− 6(d+ 7)

√
A+ 3A

)
− 6d− 27

2
6 0.

As in the even case, this is minimized when A = 6d+ 19
2

, so we have(
(d+ 7)2

2
+ 3(6d+

19

2
)

)
− 6d− 27

2
6 6(d+ 7)

√
6d+

19

2
,

or
d2

2
+ 19d+

79

2
6 6(d+ 7)

√
6d+

19

2
.

Multiplying by 2,

d2 + 38d+ 79 6 12(d+ 7)

√
6d+

19

2
.
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Squaring and clearing the right hand side,

d4 − 788d3 − 11862d2 − 55484d− 60791 6 0,

meaning d 6 802 in this case as well.

Therefore, if n < d2

2
− 1, it follows that d 6 802, so if d > 803, then n > d2

2
− 1.

Substituting back in d = n − k + 2 and solving the quadratic (and adding the obvious
assumption n > k), we obtain that n 6 k +

⌊√
2k − 1

⌋
− 1 if n− k > 801.

Thus, if n > k +
⌊√

2k − 1
⌋
− 1, then 801 > n − k >

⌊√
2k − 1

⌋
− 1, so n − k 6 800

and so
√

2k − 1 < 801. Thus 2k − 1 < 641601, so k 6 320800.
Therefore, if k > 320801, there is no k-separator of length greater than k+

⌊√
2k − 1

⌋
−

1, as desired.
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