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Abstract

Given a set X, a collection F C P(X) is said to be k-Sperner if it does not
contain a chain of length k¥ 4+ 1 under set inclusion and it is saturated if it is max-
imal with respect to this property. Gerbner et al. [11] conjectured that, if | X]| is
sufficiently large with respect to k, then the minimum size of a saturated k-Sperner
system F C P(X) is 28~1. We disprove this conjecture by showing that there exists
e > 0 such that for every k and |X| > no(k) there exists a saturated k-Sperner
system F C P(X) with cardinality at most o(1—e)k,

A collection F C P(X) is said to be an oversaturated k-Sperner system if, for
every S € P(X)\F, FU{S} contains more chains of length k+1 than F. Gerbner et
al. [11] proved that, if | X| > k, then the smallest such collection contains between

2k/2=1 and O (%2'“) elements. We show that if |X| > k? + k, then the lower

bound is best possible, up to a polynomial factor.

Keywords: minimum saturation; set systems; antichains

1 Introduction

Given a set X, a collection F C P(X) is a Sperner system or an antichain if there do
not exist A, B € F such that A C B. More generally, a collection F C P(X) is a
k-Sperner system if there does not exist a subcollection {A;,..., Axy1} € F such that
Ay © -+ € Agy1. Such a subcollection {Ay, ..., Ax1} is called a (k + 1)-chain. We say
that a k-Sperner system is saturated if, for every S € P(X) \ F, we have that F U {S}
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contains a (k+1)-chain. A collection F C P(X) is an oversaturated k-Sperner system! if,
for every S € P(X) \ F, we have that the number of (k4 1)-chains in F U {S} is greater
than the number of (k+ 1)-chains in F. Thus, F C P(X) is a saturated k-Sperner system
if and only if it is an oversaturated k-Sperner system that does not contain a (k+ 1)-chain.

For a set X of cardinality n, the problem of determining the maximum size of a
saturated k-Sperner system in P(X) is well understood. In the case k = 1, Sperner’s
Theorem [17] (see also [4]), says that every antichain in P(X) contains at most (Ln%J)
elements, and this bound is attained by the collection consisting of all subsets of X with
cardinality [n/2]. Erdés [6] generalised Sperner’s Theorem by proving that the largest
size of a k-Sperner system in P(X) is the sum of the k largest binomial coefficients (7).
In this paper, we are interested in determining the minimum size of a saturated k-Sperner
system or an oversaturated k-Sperner system in P(X). These problems were first studied
by Gerbner, Keszegh, Lemons, Palmer, Palvolgyi and Patkds [11].

Given integers n and k, let sat(n, k) denote the minimum size of a saturated k-Sperner
system in P(X) where | X| = n. It was shown in [11] that sat(n, k) = sat(m, k) if n and
m are sufficiently large with respect to k. We can therefore define

sat(k) := lim sat(n, k).

n—oo
We are motivated by the following conjecture of [11].
Conjecture 1 (Gerbner et al. [11]). For all k, sat(k) = 21

Gerbner et al. [11] observed that their conjecture is true for k = 1,2,3. They also
proved that 2¥/271 < sat(k) < 257! for all k, where the upper bound is implied by the
following construction.

Construction 2 (Gerbner et al. [11]). Let Y be a set such that |Y| =k — 2 and let H
be a non-empty set disjoint from Y. Let X =Y U H and define

G=PY)U{SUH:SePY)}
It is easily verified that G C P(X) is a saturated k-Sperner system of cardinality 2¢~1.
In this paper, we disprove Conjecture 1 by establishing the following:
Theorem 3. There exists € > 0 such that, for all k, sat(k) < 2079k,

We remark that the value of £ that can be deduced from our proof is approximately

(1 — w> ~ 0.023277. The proof of Theorem 3 comes in two parts. First, we give an

infinite family of saturated 6-Sperner systems of cardinality 30 which shows that sat(6) <
30 < 2°. We then provide a method which, under certain conditions, allows us to combine

1n [11], this is called a weakly saturated k-Sperner system. Since there is another notion of weak
saturation in the literature (see, for instance, Bollobds [3]), we have chosen to use a different term to
avoid possible confusion.
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a saturated ki-Sperner system of small order and a saturated ky-Sperner system of small
order to obtain a saturated (ki + k2 — 2)-Sperner system of small order. By repeatedly
applying this method, we are able to prove Theorem 3 for general k. As it turns out, our
method yields the bound sat(k) < 2¥~! for every k > 6. For completeness, we will prove
that sat(k) = 251 for k < 5, and so k = 6 is the first value of k for which Conjecture 1
is false.

Similar techniques show that sat(k) satisfies a submultiplicativity condition, which
leads to the following result.

Theorem 4. For € as in Theorem 3, there exists ¢ € [1/2,1 — €] such that sat(k) =
2(1+o(1))ck.

Naturally, we wonder about the correct value of ¢ in Theorem 4.
Problem 5. Determine the constant ¢ for which sat(k) = 20+e()ek,

We are also interested in oversaturated k-Sperner systems. Given integers n and k,
let osat(n, k) denote the minimum size of an oversaturated k-Sperner system in P(X)
where | X| = n. As we will prove in Lemma 7, osat(n, k) = osat(m, k) provided that n
and m are sufficiently large with respect to k. Similarly to sat(k), we define osat(k) :=
lim,,, 0sat(n, k). Gerbner et al. [11] proved that if |X| > k, then an oversaturated k-

Sperner system in P(X) of minimum size has between 2¥/2~1 and O (@2’“) elements.

Together with Lemma 7, this implies

ok/2-1 < osat(k) < O (_log]sk)2k> )

We show that the lower bound gives the correct asymptotic behaviour, up to a polynomial
factor.

Theorem 6. For every integer k and set X with |X| > k*+k there exists an oversaturated
k-Sperner system F C P(X) such that | F| = O (k°2¥/2). In particular,

osat(k) = 20/2+oWk,

In Section 2, we prove some preliminary results which will be used throughout the
paper. In particular, we provide conditions under which a saturated k-Sperner system
can be decomposed into or constructed from a sequence of k disjoint saturated antichains.
In Section 3 we show that certain types of saturated k;-Sperner and ks-Sperner systems
can be combined to produce a saturated (k; + k2 — 2)-Sperner system, and use this to
prove Theorems 3 and 4. Finally, in Section 4, we give a probabilistic construction of
oversaturated k-Sperner systems of small cardinality, thereby proving Theorem 6.

Minimum saturation has been studied extensively in the context of graphs [1, 2, 5,
10, 12, 13, 18, 19, 20] and hypergraphs [7, 14, 15, 16]. Such problems are typically of the
following form: for a fixed (hyper)graph H, determine the minimum size of a (hyper)graph
G on n vertices which does not contain a copy of H and for which adding any edge ¢ ¢ G,
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yields a (hyper)graph which contains a copy of H. This line of research was first initiated
by Zykov [21] and Erdds, Hajnal and Moon [8]. For more background on minimum
saturation problems for graphs, we refer the reader to the survey of Faudree, Faudree and
Schmitt [9].

2 Preliminaries

Given a collection F C P(X), we say that a set A C X is an atom for F if A is maximal
with respect to the property that

for every set S € F, SN A e {0, A}. (1)

We say that an atom A with |A] > 2 is homogeneous for F. Gerbner et al. [11] proved
that if n,m are sufficiently large with respect to k, then sat(n, k) = sat(m, k). Using a
similar approach, we extend this result to osat(n, k).

Lemma 7. Fiz k. Ifn,m > 22", then sat(n, k) = sat(m, k) and osat(n, k) = osat(m, k).

Proof. Fix n > 22" and let X be a set of cardinality n. Suppose that F C P(X) is an
oversaturated k-Sperner system of cardinality at most 2°~'. We know that such a family
exists by Construction 2. We will show that, for sets X; and X; such that | X;| =n —1
and | X3 = n + 1, there exists F; C P(X;) and F, C P(X3) such that

(a) [F] = |F| = |F],
(b) F; and F, have the same number of (k + 1)-chains as F,
(¢) Fi and F; are oversaturated k-Sperner systems.

We observe that this is enough to prove the lemma. Indeed, by taking F to be a saturated
k-Sperner system or an oversaturated k-Sperner system in P(X) of minimum order, we
will have that

max{sat(n — 1, k),sat(n + 1, k)} <sat(n, k) and

max{osat(n — 1, k), osat(n + 1, k)} < osat(n, k).

Since n was an arbitrary integer greater than 22" the result will follow by induction.
We prove the following claim.

Claim 8. Given a set X and a collection F C P(X), if |X| > 2V, then there is a
homogeneous set for F.

Proof. We observe that every atom A for F corresponds to a subcollection Fy := {S €
F : A C S} of Fsuch that F4 # Fa whenever A # A’. This implies that the number
of atoms for F is at most 27!, Therefore, since |X| > 2/, there must be a homogeneous
set H for F. O
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By Claim 8 and the fact that | X| > 22""" > 9171 there exists a homogeneous set H
for F. Let x; € H and x5 ¢ X and define X; := X \ {71} and X5 := X U {x2}. Let

Fir={SeF:SNH=0yU{S\{z1}:5 € Fu}, and

Fo={Se€F:SNH=0U{SU{z}:S¢c Fu}.

Since H is homogeneous for F, there does not exist a pair of sets in F which differ only
on x1. Thus, for ¢ € {1,2} there is a natural bijection from F; to F which preserves set
inclusion. Hence, (a) and (b) hold. Now, let ¢ € {1,2} and T; € P(X;) \ F; and define

T:= (T \ (HU{2})) U{a1}.

Then T' € P(X) \ F since H is a non-singleton atom and 7'N H = {x;}, and so there
exists Ay,..., A € Fand t € {0,...,k} such that

AC - CACTCANS - C A

Since TN H # H, we must have A; N H = () for j < t and so Ay,...,A; € F; and
A € - C A CT;. Also, since TN H # 0, we have A;NH = H for j >t + 1. Setting
Al = (A U{r2}) N X, we see that A} € F; for j > ¢+ 1 and that T; C A, C -+ C Aj.
Thus, (c) holds. O

The rest of the results of this section are concerned with the structure of saturated k-
Sperner systems. The next lemma, which is proved in [11], implies that for any saturated
k-Sperner system there can be at most one homogeneous set. We include a proof for
completeness.

Lemma 9 (Gerbner et al. [11]). If F C P(X) is a saturated k-Sperner system and H,
and Hy are homogeneous for F, then Hy = H,.

Proof. Suppose to the contrary that H; and Hs are homogeneous for F and that H; # H,.
Then, since each of H; and H, are maximal with respect to (1), we have that H; U Hy
is not homogeneous for F. Therefore, there is a set S € F which contains some, but not
all, of H; U H,. Without loss of generality, we have SN H; = H; and S N Hy, = () since
H, and H, are homogeneous for F. Now, pick x € H; and y € Hy arbitrarily and define

T = (S\{z}) Uiy}

Clearly T cannot be in F since T'N Hy = Hy \ {z} and H; is homogeneous for F. Since
F is saturated, there must exist sets Aq,..., Ay € F and t € {0,...,k} such that

AC - CACTCALS - C A

Since H; and Hy are homogeneous for F, and neither H; nor Hj is contained in 7', we
get that A, C T\ (H; U Hy) C S. Similarly, A,;; 2 S. However, this implies that

=

{A,..., A} U{S} is a (k + 1)-chain in F, a contradiction. O
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By Lemma 9, if F is a saturated k-Sperner system for which there exists a homogeneous
set, then the homogeneous set must be unique. Throughout the paper, it will be useful
to distinguish the elements of F which contain the homogeneous set from those that do
not.

Definition 10. Let F C P(X) be a saturated k-Sperner system and let H be homoge-
neous for F. We say that a set S € F is large if H C S or small if SN H = (). Let
Flarge and Fomall denote the collection of large and small sets of F, respectively. Thus,
F = }‘small U ]:large'

Lemma 11. Let A C P(X) be a saturated antichain with homogeneous set H. Then
every set S € P(X) \ A either contains a set in A" or is contained in a set of A&,

Proof. Suppose, to the contrary, that S € P(X) \ A does not contain a set of A4 and
is not contained in a set of A'®"¢. Since A is saturated, we get that either

(a) there exists A € A8 such that A C S, or
(b) there exists B € A% such that S C B.

Suppose that (a) holds. Let y € S\ A and € H and define 7" := (A \ {z}) U {y}. Since
H is homogeneous for A and TN H = H \ {z}, we must have T ¢ A. Also, since H is
homogeneous for A, any set 7° € A containing 7" would have to contain T'U {z} 2 A.
Therefore, since A is an antichain, no such set 7" can exist. Thus, there is a set 7" € A
such that 7" C T C S. Since H is homogeneous for A and TN H # H, we get that
T" € Al contradicting our assumption on S.

Note that we are also done in the case that (b) holds by considering the saturated
antichain {X \ A : A € A} and applying the argument of the previous paragraph. O

2.1 Constructing and Decomposing Saturated k-Sperner Sys-
tems

There is a natural way to partition a k-Sperner system F C P(X) into a sequence of k
pairwise disjoint antichains. Specifically, for 0 < i < k — 1, let A; be the collection of all

minimal elements of F \ (U i Aj> under inclusion. We say that (A;)¥ is the canonical

decomposition of F into antichains.

In this section we provide conditions under which a sequence of k pairwise disjoint
saturated antichains can be united to obtain a saturated k-Sperner system. Later we
will prove a partial converse: if F C P(X) is a saturated k-Sperner system with a
homogeneous set, then every antichain of the canonical decomposition of F is saturated.
We also provide an example which shows that this is not necessarily the case if we remove
the condition that F has a homogeneous set.

Definition 12. We say that a sequence (D;)!_, of subsets of P(X) is layered if, for
1 <i<t, every D € D; strictly contains some D’ € D;_; as a subset.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(3) (2014), #P3.22 6



Note that the canonical decomposition of any set system is layered.

Lemma 13. If (A;)'_, is a layered sequence of pairwise disjoint saturated antichains,
then every A € A; is strictly contained in some B € A; 14

Proof. Let A € A;. Since A;,, is a saturated antichain disjoint from 4;, there exists some
B € A;;4 such that either B C A or A C B. In the latter case we are done, so suppose
B C A. Since (A;)t_, is layered, there exists some A" € A; such that A’ C B. Hence

we have A’ C B C A, contradicting the fact that A; is an antichain and completing the
proof. O

Lemma 14. If (A )f 01 s a layered sequence of pairwise disjoint saturated antichains in
P(X), then F =} o Ai is a saturated k-Sperner system.

Proof. Clearly, F is a k-Sperner system since Ay,...,Ax_1 are antichains. Let S €

P(X) \ F be arbitrary and define ¢t = max{i: S 2 A for some A € A;}. If t > 0, then S
strictly contains some set A, € A;. As (A;)") is layered, for 0 < i < t — 1, there exist
sets A; € A; such that

A C--CACS

Now, if t > k — 2, then since A;,; is a saturated antichain and S does not contain a set
of Ayy1, there must exist A;11 € A;yq such that S € A;1. By Lemma 13, we see that for
t+ 2 <1< k—1 there exists A; € A; such that

SCAn G G A
Thus {Ao, ..., Ax_1} U{S} is a (k + 1)-chain, as desired. O

In Lemma 14, we require the sequence (A;)¥7)} of saturated antichains to be layered.
As it turns out, if each antichain A; has a homogeneous set, then (A;)*7} is layered if and

only if (Af-ma”)izl

o 1s layered.

Lemma 15. Let (A=) be a sequence of pairwise disjoz'nt saturated antichains in P(X )

each of which has a homogeneous set. Then (A; )Z o 18 layered if and only if (Asmau)
18 layered.

=0

Proof. Suppose that (A;)¥=) is layered and, for some i > 0, let A e Al be arbitrary.
We show that A contains a set of A5™!l. Otherwise, since (A k=1 is layered, we get that
there is some B € A& such that B C A. Therefore, since A; is an antichain, A cannot
be contained in an element of .Aiarge. By Lemma 11 and the fact that A; and A;,; are
disjoint, we get that A contains a set of A as desired.

Now, suppose that (Af-‘ma“)i:ol is layered. Given ¢ > 0 and S € Aiﬁffe, we show that S
contains a set of A;, which will complete the proof. If not, then since A; is saturated and
disjoint from A;,, there must exist T' € A; such that S C T'. Since A;; is an antichain,

S cannot be strictly contained in a set of A%, and so neither can T. Therefore, by

Lemma 11, there is a set A € A7 contained in 7. However, since (.Asma“)f: is layered,
there exists A’ € Al such that A’ € A. But then, A’ C T, which contradicts the
assumption that A; is an antichain. The result follows. O
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It is natural to wonder whether a converse to Lemma 14 is true. That is: if F is a
saturated k-Sperner system, can we decompose F into a layered sequence of k pairwise
disjoint saturated antichains? The following example shows that this is not always the
case.

Example 16. Let X := {1, 29,23}, Y := {y1,90,y3} and Z := X UY. We define
BO = {{IZ’,ZL’]‘} oy 7é ]} U {{xhyl} S {17273}} U {{xkayivyj} : i7j7k distinct } U {Y}7

Bl = {X7 {xh T, y1}7 {.11'1, T3, y3}7 {x27 T3, y2}7 {.Tl, Y1, y3}7 {$2, Y1, y2}7 {.1’3, Y2, 3/3};

{21, 22, Y2, Y3}, {21, T3, Y1, Y2 s {22, T3, 41, Y3} }
Then (B;)._, is a layered sequence of disjoint antichains. In fact, (B;)!_, is the canonical
decomposition of F := By U By. Clearly B; is not saturated as B; U {Y'} is an antichain.
We claim that F is a saturated 2-Sperner system.

Consider any S € P(Z) \ F. We will show that F U {S} contains a 3-chain. It is easy
to check that every element of By \ {Y'} is contained in a set of By. Hence if S is contained
in some set B € By \ {Y'}, then F U {S} contains a 3-chain. In particular, this completes
the proof when |S| € {0,1,2}. Similarly, since (B;),_, is layered, if S contains some set
B € By, then F U {S} contains a 3-chain. Therefore, we are done if |S| € {4,5,6}.

It remains to consider the case that |S| = 3. Since X, Y € F, we must have |SNY| = 2,
or |[SNX|=2 If|SNY| =2, we have S € {{z1,vy1, 92}, {2, ¥2,y3}, {x3,y1,y3}}. This
implies that S is contained in a set B € B; and contains a set B’ € By N P(X). If
|S N X| =2, then S contains some set {z;,x;} € By. Also, it is easily verified that S is
contained in a set of By. Thus, F is a saturated 2-Sperner system.

However, for saturated k-Sperner systems with a homogeneous set, the converse to
Lemma 14 does hold; we can partition F into a layered sequence of k pairwise disjoint
saturated antichains.

Lemma 17. Let F € P(X) be a saturated k-Sperner system with homogeneous set H and

canonical decomposition (Ai)fgol. Then A; is saturated for all i.

Proof. Fix ¢ and let S € P(X) \ A;. Let x € H and define
T:=(S\H)U{z}.

Then T' ¢ F since TN H = {z} and H is homogeneous for F. Therefore, there exists
{Ag, ..., Ax1} C Fand t €{0,...,k} such that

Ay C-CA L CTCAC - C A

By definition of the canonical decomposition, we must have A; € A, for all j. Also, since
H is homogeneous for F and TN H ¢ {0, H}, we must have A,y C T\ H C S and
A; DT UH D S. Therefore,

A S CA 1 CSCAC - C A
Since S # A;, we must have either A; C .S or S C A; depending on whether or not i < ¢.
Therefore, A; is saturated for all i. n
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3 Combining Saturated k-Sperner Systems

Our first goal in this section is to prove that, under certain conditions, a saturated k-
Sperner system JF; C P(X;) and a saturated ko-Sperner system F, C P(X3) can be
combined to yield a saturated (k; + ko — 2)-Sperner system in P(X; U X5). We apply
this result to prove Theorem 3. Afterwards, we prove that sat(k) = 2871 for k < 5. We
conclude the section with a proof of Theorem 4.

Lemma 18. Let X; and X5 be disjoint sets. Fori € {1,2}, let F; C P(X;) be a saturated
k;-Sperner system which contains {0, X;} and let H; C X; be homogeneous for F;. If G is
the set system on P(X; U X,) defined by

G:={AUB:Ac F™ Be R} u{SUT: S e F" T eF],

then G is a saturated (ki+ ko —2)-Sperner system which contains {0, XU X5} and HyUH,
1s homogeneous for G.

Proof. Tt is clear that G contains {0, X; U X5} and that H; U H; is homogeneous for G.
We show that G is a saturated (k; + ko — 2)-Sperner system.

First, let us show that G does not contain a chain of length k; + ky — 1. Suppose that
{Ay,..., A} is an r-chain in G. We can assume that A; = () and A, = X; U X,. Define

Il = {Z . Az ﬂXl g Ai—f—l le}, and
]2 = {Z . Az ﬂXz g Ai—l—l N XQ}

Clearly, Iy U I, = {1,...,r — 1}. Also, for i € {1,2}, since F; is a k;-Sperner system, we
must have |I;] < k; — 1. Let ¢ be the maximum index such that A, N X; € F™al Note
that ¢ exists and is less than r since A; = () and A, = X; U X,. By construction of G,
A; N X, is a small set for F» and, for i € {1,2}, A1 N X, is a large set for F;. This
implies that ¢t € I; N I and so

T—1:|]1UIQ|:|]1|+|]2|—|]1ﬂ12|<kfl+k’2—3

as required.
Now, let S € P(X; U X5)\ G. We show that G U {S} contains a (k; + k2 — 1)-chain.
Fix 1 € H; and x4 € Hy and define

T .= (S \ (Hl U Hg)) U {ZL‘l,[EQ}.

For i € {1,2}, let T; := T N X;. Then T; ¢ F; since T; N H; = {x;}. Therefore, there
exists Af,..., A}, € Fyand t; € {1,...,k; — 1} such that

D=AiC  CACTCA S CA =X

Note that A5 e Fp™! for j < t; and A} € FI8 for j > t; + 1. This implies that
A} UA} C Sand A}, UA? | 2 S. Therefore,

1 2 1 2 1 2 1 2 1 2

=
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1 2 1 2 1 2 1 2 2 2
g Atl—l-l U Atg—l—l g Atl-l—l U At2+2 g U g Atl—l-l U AkQ - At1+2 U Akg G- g Akl U Akg

= =

and so G U {S} contains a (k; + k2 — 1)-chain. The result follows. O
Remark 19. If F;, 5, and G are as in Lemma 18, then

a < 1 1
|g| — ‘flbmall‘ |f§mall| + ’J,—_-large J,—_-;rge )

3.1 Proof of Theorem 3

We apply Lemma 18 to prove Theorem 3. The first part of the proof of Theorem 3 is to
exhibit an infinite family of saturated 6-Sperner systems with cardinality 30 < 2°.

Proposition 20. For any set X such that | X| > 8, there is a saturated 6-Sperner system
F CP(X) with a homogeneous set such that ‘J—_'small‘ = |}"large| =15.

Proof. Let X be a set such that | X| > 8. Let x1, z2,y1, ¥2, w and z be distinct elements of
X and define H := X\ {z1, 22, 1,2, w, z}. We apply Lemma 14 to construct a saturated
6-Sperner system F C P(X) of order 30. Naturally, we define Ay = {0} and A5 := {X}.
Also, define

Ay = {{x1}7 {x2}7 {y1}7 {w}’H U {y27z}}7 and
Ay = {X\AAGAl}

It is easily observed that A; and A, are saturated antichains. We define A, and A3
by first specifying their small sets. Define

A;mall = {{x“yj} -1 < Z,] < 2} U {{wgz}}y and

A%mall = {{xla U, U)}7 {xla Y1, Z}? {3:27 Y2, ’LU}, {xQ? Y2, Z}}

Given any collection B C P(X), a set S C X is said to be stable for B if S does not
contain an element of B. For i = 2,3, define A to be the collection consisting of
all maximal stable sets of A3 and let A; := A3 U A, Note that every element
of A™™ contains H. It is clear that 4; is an antichain for i = 2,3. Moreover, A; is
saturated since every set A € P(X) either contains an element of A or is contained
in an element of AP,

One can easily verify that (Aiman)fzo is layered. Therefore, by Lemma 15, (-Ai)?:o is
a layered sequence of pairwise disjoint saturated antichains. By Lemma 14, F := U?:o A;
is a saturated 6-Sperner system. Also,

5
‘Fsmall‘ — Z |A?mall| = (1 +5+9+0) = 157 and

=0
5
| Flree] =) ‘A?rge =(0+9+5+1) =15
=0

as desired. ]
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We remark that the construction in Proposition 20 is similar to one which was used
in [11] to prove that sat(k, k) < 12257! for every k > 6.
For the proof of Theorem 3 we require that

sat(k) < 2sat(k —1). (2)

This was proved in [11] using the fact that if F C P(X) is a saturated (k — 1)-Sperner
system and y ¢ X, then FU{AU{y} : A € F} is a saturated k-Sperner system in

P(X U{y}).

Proof of Theorem 3. First, we prove that the result holds when k is of the form 45 + 2 for
some j > 1. In this case, we repeatedly apply Lemma 18 and Proposition 20 to obtain a
saturated k-Sperner system JF on an arbitrarily large ground set X such that

|}—small| + ‘]:large‘ =15 +15 =2.15,

Therefore, if k =45 + 2, then sat(k) < 2- 157,
For k of the form 45 + 2+ s for j > 1 and 1 < s < 3, apply (2) to obtain
sat(k) < 2%sat(47 + 2) < 2571 . 157, Thus, we are done by setting e slightly smaller

than (1 — w>. O

3.2 Bounding sat(k) From Below

One can easily deduce from the proof of Theorem 3 that sat(k) < 2¥~! for all k > 6. For
completeness, we prove that sat(k) = 281 for k < 5.

Proposition 21. If k < 5, then sat(k) = 281,

Proof. Fix k < 5. The upper bound follows from Construction 2, and so it suffices to prove
that sat(k) > 2*~1. Let X be aset with n := | X| > 22" and let F C P(X) be a saturated
k-Sperner system of minimum order. By Claim 8 and the fact that |X| > 2271 > olFl
there is a homogeneous set H for F.

Let (.Ai)fz_ol be the canonical decomposition of F. By Lemma 17, we get that A; is a

saturated antichain for each 7. Also, since (Ai)f:_ol is layered, by Lemma 13 we see that
every element of A; has cardinality between i and n — k + i + 1. (3)

Our goal is to to show that for k < 5, every saturated antichain .A; which satisfies (3)
must contain at least (kzl) elements. Clearly this is enough to complete the proof of the
proposition. Note that it suffices to prove this for i < £ since {X \ A: A € A} is a
saturated antichain in which every set has size between £k — ¢ — 1 and n — 7. Since k < 5,
this means that we need only check the cases i = 0,1,2. In the case + = 0, we obtain
|Agl = 1= (kgl) trivially.

Next, consider the case i = 1. Let A be the largest set in A; such that H C A. Then, by
(3), we must have |A| < n—k+2and so | X\ A| > k—2. Fix an element = of H and, for each
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y € X\A, define A, := (A\{z})U{y}. Since A, is saturated, H is homogeneous for F, and
A is the largest set in A; containing H, there must be a set B, € A, such that B, C A,.
However, since A; is an antichain, B, ¢ A, and so B, \ A = {y}. In particular, B, # B,
for y # y'. Therefore, [Ai| > [{A}U{B, 1y e X\ A} > 1+ X\ Al >k—1=("]"), as
desired.

Thus, we are finished except for the case i = 2 and k = 5. Suppose to the contrary
that |Ag| < (;L) = 6. We begin by proving the following claim.

Claim 22. For every verter y € X \ H, there is a set S, € AS™° containing y.

Proof. Let x € H be arbitrary and consider the set T := {x,y}. Then T is not contained
in A, since H is homogeneous for F. Also, no strict subset of T is in A, by (3). Since As
is saturated, there must be some S, € AL containing T', which completes the proof. [J

Let us argue that ‘Alzarge > 3. By (3), each set A € AP has at most n — 2 elements.

So, by Claim 22, if ‘Algarge‘ < 3, then it must be the case that AR = {A;, A,} where

Ay U Ay = X. Therefore, since each of |A;| and |As| is at most n — 2, we can pick
{wy,we} € Ay \ Ay and {21, 20} € A\ Ay. Given z € H and 1 < 7,5 < 2, we have that
{z,w;, z;} ¢ Ay since H is homogeneous for F. Note that {z,w;, 2;} is not contained in
either A; or A,, and so by Lemma 11 and (3) we must have {w;, z;} € Ay. However, this
implies that |As| > [{{w;, z;} : 1 < 4,5 <2} U{A4;, A3}| = 6, a contradiction.

So, we get that ‘Alfrge‘ > 3. Note that {X \ A: A € Ay} is also a saturated antichain
in which every set has cardinality between 2 and n — 2. Thus, we can apply the argument
of the previous paragraph to obtain | A5 > 3. Therefore, |A;| = | A5 + )Alzarge) > 6,
which completes the proof.

It is possible that a similar approach may prove fruitful for improving the lower bound

on sat(k) from 2¥/271 to 2040k for some ¢ > 1/2. That is, one may first decompose a

saturated k-Sperner system F C P(X) of minimum size into its canonical decomposition

(ALY} and then bound the size of |A;| for each i individually. Since there are only k

antichains in the decomposition and the bound on |F| that we are aiming for is exponential

in k, one could obtain a fairly tight lower bound on sat(k) by focusing on a single antichain
k

of the decomposition. Setting i = Lﬂ in (3), we see that it would be sufficient to prove

that there exists ¢ > 1/2 such that every saturated antichain .4 with a homogeneous set

such that every element of A has cardinality between \_%J and n — (ﬂ + 1 must satisfy

|A| > 2(1+e())ek - The problem of determining whether such a ¢ exists is interesting in its
own right.

3.3 Asymptotic Behaviour of sat(k)
To prove Theorem 4, we require the following fact, which is proved in [11].

Lemma 23 (Gerbner et al. [11]). For anyn > k > 1 and set X with |X| = n there is a
saturated k-Sperner system F C P(X) such that |F| = sat(n,k) and {0, X} C F.
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Proof. Let F C P(X) be a saturated k-Sperner system such that |F| = sat(n, k). We let
(Ai)f;ol denote the canonical decomposition of F and define

,F, = (]:\ (./40 U Ak—l)) U {@,X}

It is clear that F' C P(X) is a saturated k-Sperner system and |F'| < |F| = sat(n, k),
which proves the result. O

Proof of Theorem 4. We show that, for all &, ¢,
sat(k + €) < 4sat(k)sat(f). (4)

Letting f(k) := 4sat(k), we see that (4) implies that f(k + ¢) < f(k)f(¢) for every k,£.
It follows by Fekete’s Lemma that f(k)!/* converges, and so sat(k)'/* converges as well.

For n > 227" let X and Y be disjoint sets of size n and let Fj, C P(X) and
Fir € P(Y) be saturated k-Sperner and (-Sperner systems of cardinalities sat(k) and
sat(f), respectively. By Claim 8, we can assume that Fj and F, have homogeneous
sets and, by Lemma 23, we can assume that {0, X} C F and {0,Y} C F,. We apply
Lemma 18 and Remark 19 to obtain a saturated (k-+¢— 2)-Sperner system G C P(XUY)
of order at most | Fy||F¢| = sat(k)sat(f). Therefore, by (2), we have

sat(k +0) < 4sat(k + ¢ — 2) < 4|G| < 4sat(k) sat(?)

as required. 0

4 Oversaturated k-Sperner Systems

In this section we construct oversaturated k-Sperner systems of small order. We first state
a lemma, from which Theorem 6 follows, and then prove the lemma itself.

Lemma 24. Given k > 1, let X be a set of cardinality k* + k. Then for all t such that
1 <t < k*+k there exist non-empty collections Fi, G; C P(X) that have the following
properties:

(a) For every F € Fy and G € G, |F|+ |G| > k,
(b) |Fl +1G.| = O (K*2*7%),

(c) For every S C X such that |S| =t, there exists some F € F; and some G € G; such
that F C S and GN S = .

We apply Lemma 24 to prove Theorem 6.

Proof of Theorem 6. First, let X be a set of cardinality k* + k. For t € {1,...,k? + k},
let F; and G, be as in Lemma 24. For each F' € F; UG, choose Fi, ..., F; € P(X) such
that

PG CRCF
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where i := min{k — 1, |F|}. We let Cr := FU{F},..., F;} and define

G:= U ({T: T € Cp for some F € F;,} U{X \T:T € Cg for some G € G;}).

1<t<k2+k

For each t < k* + k and F € F, UG, we have |Cp| < k. Thus, by Property (b) of

Lemma 24,
k2+k

61 < D k(R +1G]) = O (K2°/?).
t=1

We will now show that for any S € P(X) \ G there is a (k + 1)-chain in G U {S}
containing .S, which will imply that ¢ is an oversaturated k-Sperner system. Let S C X
and define ¢ := |S|. By Property (c) of Lemma 24, there exists F' € F; such that F¥ C S
and G € G; such that GN S = (. This implies that S C X \ G. By Property (a) of
Lemma 24 we get that

CrU{X\T:TeCstU{S}

contains a (k + 1)-chain in G U {S} containing S.

Now, suppose that |X| > k* + k. Let Y C X such that |Y| = k? + k and define
H := X\Y. As above, let G C P(Y) be an oversaturated k-Sperner system of cardinality
at most O (k52k/2). Define G’ C P(X) as follows:

G ={T:TeG}U{TUH:T € G}.

Consider any set S € P(X)\ G'. Let 8’ =SNY. We have, by definition of G, that there
is a (k + 1)-chain C in G U {5’} containing S’. Adding H to every superset of S’ in C
and replacing S’ by S in C gives us a (k + 1)-chain in G’ U {S} containing S. The result
follows. O

To prove Lemma 24, we use a probabilistic approach.

Proof of Lemma 24. Throughout the proof, we assume that k is sufficiently large and let
X be a set of cardinality k% + k. Let 1 < t < k* + k be given. We can assume that
t < @ since, otherwise, we can simply define F;, := G2,y and G; := Fp2yp . We
divide the proof into two cases depending on the size of t.

Case 1: t < kQ;k.

We define F; := {0} and let G, be a uniformly random collection of 2%/ subsets of X,
each of cardinality k. Given S C X of cardinality ¢, the probability that S is not disjoint

from any set of G, is
k
(i (7L
8 &k

2k/2

() < (- (5)

ok/2 ok/2
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Therefore, the expected number 2of subsets of X of cardinality ¢ which are not disjoint
from any set of G; is at most (* jk) e~(D" which is less than 1. Thus, with non-zero
probability, every S C X of cardinality ¢ is disjoint from some set in G;.

2 2
C’ase2:%<t<%.

and let a be the rational number such that ak = L_klog‘/ﬁ + lJ.

Define p := Tog(p)

_t
k24-k
1

Then, since g < p < %, we have

1/6 <a<1/2+1/k<4/7. (5)

Now, let F; be a collection of [8¢%k?2¥/?| subsets of X, each of cardinality ak, chosen
uniformly at random with replacement. Similarly, let G; be a collection of ’—62k22k/ 2-‘
subsets of X, each of cardinality (1 — a)k, chosen uniformly at random with replacement.
We show that, with non-zero probability, every S C X of size ¢t contains a set of F; and

is disjoint from a set of G;.
Given S C X of size t = p(k? + k), the probability that S does not contain a set of F;

1s at most
ak—1 . |]:t| ak
1_1—[ p(k* + k) —i <(1_ p(k? + k) —k
ST\ Rk h k2

(0"

1—p _20-p) 1—p\ —2a(1-p) )
Observe that (1 —=F) > e »¢ for large enough k. So, (1 — —F >e »  which
p p

is at least e® since a < 4/7 and p > 1/8. Thus, the expression in (6) is at most

[Fe

(1 _ e,gpak)\}}\ < e,e—spakl}—d < e_e—spak(gestQk/z) _ eipak8k22k/2.
Using our choice of a and the fact that p > 1/8, we can bound the exponent by
og V2
pak8k22k/2 > p<—llogg<p?+%)k8k22k/2 _ p8k2 > k2
Therefore, the expected number of subsets of X of size t which do not contain a set of F;

1s at most )
(k + k) eikQ < 2]€2+k’€7k2
t

which is less than 1. Thus, with positive probability, every subset of X of cardinality ¢
contains a set of F;.

The proof that, with positive probability, every set of cardinality t is disjoint from a
set of G, is similar; we sketch the details. First, let us note that

—logv2 . log v/2
log(p) =~ log(l—p)

(7)
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since p < 1/2. For a fixed set S C X of size t = p(k* + k), the probability that S is not
disjoint from any set of G; is at most

Ve |Gt G
s L GO AN I R (T G A R
P k2+k—1 h k2
p (1-a)k |G|
=(1-(1- L 1 — p)t-k 8
(1) e ®
=5 p \UTk s :
Now, (1 (1 )k> > e(-pk for large enough k. So, (1 — m) > e (- | which
is at least e~ since a > 1/6 and g < L. Therefore, the expression in (8) is at most

(1—e2(1- p)“‘“’k)'gt' S i P G G

. ef(lfp)(l_”‘)kk‘22k/2

By (7), we can bound the exponent by

log

(1 _p)(lfa)kaZk/Z > (1 _p)<10g(1 o) ) k22k/2 > k2

As with F;, we get that the expected number of sets of cardinality ¢ which are not disjoint
from a set of G, is less than one. The result follows. O
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