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Abstract

In 2009, Blagojević, Matschke & Ziegler established the first tight colored Tver-
berg theorem. We develop a colored version of our previous results (2008): Evenness
and non-trivial lower bounds for the number of colored Tverberg partitions. Both
properties follow from similar results on the number of colored Birch partitions.

1 Introduction

In 1966, Tverberg [10] showed that any (d+1)(r−1)+1 points in d-dimensional space Rd

can be partitioned into r blocks whose convex hulls have a non-empty intersection. This
result is known as Tverberg’s theorem, and it has several proofs, and many generalizations,
see Matoušek [8, Sect. 6.5] for details.

The first colored Tverberg theorem is due to Bárány & Larman [1]; see Ziegler [13] for
a recent account of the story. In 2009, Blagojević, Matschke & Ziegler [2] established an
optimal colored Tverberg theorem. Since then, their results have been reproved by the
same authors [3], by Matoušek, Tancer & Wagner [9], and by Vrećica & Živaljević [11].

Theorem 1 ([2, Thm 2.2]). Let d > 1, r > 2 prime, N := (d+1)(r−1), and f : ∆N → Rd

continuous, where the N + 1 vertices of the simplex ∆N have d + 2 different colors, and
the color classes satisfy |C0| = |C1| = . . . = |Cd| = r − 1 and |Cd+1| = 1. Then ∆N has r
disjoint faces F1, F2, . . . , Fr satisfying:

|Fi ∩ Cj| 6 1 for every i ∈ {1, . . . , r}, j ∈ {0, . . . , d+ 1}, and
r⋂
i=1

f(Fi) 6= ∅.

Faces satisfying the left condition are called rainbow faces. Any point in the intersec-
tion is called a colored Tverberg point. In the following, we focus on the case when f is
an affine map. In this case, one can think of the set f(vert(∆N)) ⊂ Rd as N + 1 colored
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points satisfying the above color condition which can be partitioned into r rainbow par-
tition blocks B1, B2, . . . , Br, where Bi = f(vert(Fi)) for all i, such that their convex hulls
intersect:

r⋂
i=1

conv(Bi) 6= ∅.

Both Tverberg’s theorem, and Theorem 1 settle the existence of one (!) partition.
In the uncolored case, Sierksma conjectured that there are at least ((r − 1)!)d unordered
partitions based on a particular point configuration; see [8]. This conjecture is open for
d > 2. Lower bounds for the number of Tverberg partitions have first been obtained by
Vućić & Živaljević [12] when r is prime, and by the author [5] when r is a prime power.
Then the first lower bound was shown that holds for arbitrary r in [6]. Up to now, no
non-trivial lower bounds have been known in the colored case, not even a good conjecture.
This is what we provide here: Existence implies lower bounds for the number of colored
Tverberg partitions.

Here, a set of points is in general position if no k + 2 points are on a common k-
dimensional affine subspace.

Theorem 2. Let d > 1, r > 2 prime, N := (d + 1)(r − 1), and f : ∆N → Rd affine,
where the N + 1 vertices of ∆N have d + 2 different colors, and the color classes satisfy:
|C0| = |C1| = . . . = |Cd| = r − 1 and |Cd+1| = 1. Then the number of unordered colored
Tverberg partitions Tr(f) satisfies the following four properties:

(i) Parity: Tr(f) is even for r > 2d+ 2.

(ii) Tight lower bound for d = 1: Tr(f) > d r−1
2
e! · b r−1

2
c!

(iii) Lower bound (planar case): Tr(f) > 8 · 3r−8, for d = 2 and r > 8.

(iv) Lower bound (general case): Tr(f) > 2r−2d−1, for d > 2 and r > 2d+ 2.

The proof of (ii) is an easy exercise. Furthermore, we will see that:

1. The assumption r prime is needed for the existence of at least one partition. Alter-
natively, r arbitrary and Tr(f) > 0 are sufficient conditions.

2. Any lower bound ` on the number of colored Tverberg points for a given map f
improves our lower bounds for the number of colored Tverberg partitions by a factor
of `.

3. Computer experiments indicate that the lower bounds for d > 1 are far from being
optimal.

In Section 2, we introduce the concept of colored Birch partitions, then we come
up with our second main result (Theorem 3): Properties for the number of colored Birch
partitions. These properties imply Theorem 2, similar to the proof of its uncolored version
in [6]. Section 3 comes with a proof of Theorem 3. In Section 4, we compare the outcome
of different approaches aiming for potential minimal point configurations.
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2 Reduction to colored Birch partitions

Assuming that the (d + 1)(r − 1) + 1 points of Theorem 1 are in general position, the
partition blocks consist of at most d + 1 points. One possible solution is a single point
that lies in the convex hulls of r − 1 many (d + 1)-element sets. The other extreme case
would be d partition blocks of exactly (!) d points each, intersecting in a single point,
plus r− d many (d+ 1)-element sets that all contain the intersection point, where d 6 r.
In all cases, we have at least r−d−1 many (d+ 1)-element sets B1, B2, . . . , Br−d−1 which
(i) contain a common point in their convex hulls, and which (ii) are rainbow sets in the
following way: each of them contains each of the colors 0, 1, . . . , d exactly once, that is,
|Bi ∩ Cj| = 1 for all 0 6 j 6 d and all 1 6 i 6 r − d − 1. This observation leads to the
concept of colored Birch partitions.

Definition. Let p ∈ Rd be a point, and k > 1 a natural number. Given a set
X of k(d + 1) colored points in Rd of d + 1 different colors such that each color class
C0, C1, . . . , Cd contains exactly k points, we call a partition B1, B2, . . . , Bk a colored Birch
partition of X to the point p if each block Bi contains exactly d + 1 points, uses every
color exactly once, and contains p in its convex hull. Let cBPk(X) be the number of all
unordered colored Birch partitions of X to p. Again, unordered means that two partitions
are regarded as the same if one can be obtained from the other by a permutation of the
k partition blocks. The partitions in the first paragraph are examples of colored Birch
partitions to the single point resp. the intersection point. Placing p outside the convex
hull of X one gets cBPk(X) = 0.

Let us formulate our second main result.

Theorem 3. For d > 1, let p ∈ Rd be a point, and k > 1 a natural number. For any
set X of k(d + 1) colored points in Rd of d + 1 different colors such that each color class
C0, C1, . . . , Cd contains exactly k points, and X ∪ {p} in general position, the number of
colored Birch partitions cBPk(X) has the following four properties:

(i) cBPk(X) is even for k > d+ 2.

(ii) cBPk(X) > 0 =⇒ cBPk(X) > dk
2
e! · bk

2
c! for d = 1.

(iii) cBPk(X) > 0 =⇒ cBPk(X) > 8 · 3k−6 for d = 2 and k > 6.

(iv) cBPk(X) > 0 =⇒ cBPk(X) > 2k−d−1 for d > 2 and k > d+ 2.

Computer experiments for dimensions 2, and 3 show that the lower bounds (iii) and
(iv) are tight: For 4 6 k 6 9 in dimension 2, and for 5 6 k 6 8 in dimension 3. In
Figure 1, an example for tightness where d = 2, and k = 4 is given.

Example 1. The condition k > d + 2 in Property (i) is necessary as our computer
experiments came up with counter-examples for d = 2, 3, 4, and k = d + 1. Here, we
construct a planar set X such that cBP 3(X) is odd. In the planar setting, a point
configuration can be represented as a colored word of length 3k on the alphabet {+,−}:
Choose a line through p. This line hits at most one point from X, and it divides the plane
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Figure 1: Planar example for k = 4 showing tightness of the lower bounds (iv).

into two half-spaces. Choose one of the two half-spaces. Then sweep the line through p
over the chosen half-space counter-clockwise. The ray hits all points exactly once, and
the sweeping leads to a linear order on the points in X. This determines a colored word
of length 3k on the alphabet {+,−} in the following way: Write for every point of X
the letter + when the line hits a point in the chosen half-space, and − in the other case.
While writing the letters, keep for each letter track of its color.

Every possibility of partitioning a colored word of length 3k into k colored subwords
of the form + − +, or − + − corresponds one-to-one to a colored Birch partition of
X. One can check that the alternating word + − + − + − + − + of length 9 with
a cyclic coloring 0, 1, 2, 0, 1, 2, 0, 1, 2 corresponds to a colored point configuration with
cBP3(X) = 3 being odd. Namely, one partition is {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, where the
letters are numbered from left to right. The other two are {0, 1, 8}, {2, 3, 4}, {5, 6, 7}, and
{0, 7, 8}, {1, 2, 3}, {4, 5, 6}.

Example 2. It is a natural question to ask whether there is a topological version
of Theorem 3. As in the case of the colored Tverberg theorem, the colored points in Rd

can be seen as images of an affine map f : ∆k(d+1) → Rd. The definition of cBPk(f)
can be adapted to continuous maps in a straightforward way. We construct a continuous
example f̃ showing that cBPk(f̃) = 1 for any k.

Start with a set X of colored points such that its convex hull does not contain p.
Then cBPk(X) = 0. X determines an affine map f : ∆k(d+1) → Rd uniquely. Choose a
partition of the vertex set of ∆k(d+1) into rainbow d-simplices B1, . . . , Bk. Modify f in the

interior of every simplex Bi such that its image hits the point p. Our modified map f̃ has
by construction the colored Birch partition B1, . . . , Bk. Any other way of partitioning of
∆k(d+1) comes with at least one d-simplex for which f̃ has not been modified. Therefore

cBPk(f̃) = 1.

First we prove Theorem 2 using Theorem 3. A proof of Theorem 3 is given in the next
section.

Proof of Theorem 2. The existence of at least one colored Tverberg partitions follows from
Theorem 1. In the worst case, the partition consists of d partition blocks of exactly d points
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each, intersecting in a single point, plus r− d many (d+ 1)-element sets B1, B2, . . . , Br−d
that all contain the intersection point in their convex hulls; here we need r > d. The first
d + 1 colors show up exactly r − d times if the unique point of color d + 1 does not end
up in one of the Bi’s. In that case, this single point is recolored with the unique color
showing up r−d−1 times. In both cases, each property of Tr(f) follows directly from the
corresponding property for colored Birch partitions for k = r−d given in Theorem 3.

3 Proof of Theorem 3

Property (ii) is an easy exercise. We first prove Property (i) inductively; here the key
part is the base case k = d + 2. In a second step, we show that Property (i) implies
Properties (iii) and (iv).

Prerequisites: We will use an approach similar to the uncolored case in [6]: One of
our points will be moved while all the others remain fixed. During this moving process,
we will keep track of the parity for the number of colored Birch partitions.

In the following, we assume d > 2. Let k > 2, fix p to be the origin o ∈ Rd, and
assume without restriction that all k(d + 1) colored points of X are on the unit sphere
Sd−1 ⊂ Rd. If all points lie in the northern hemisphere of Sd−1, then cBPk(X) = 0, as the
origin is not in the convex hull of X. Below we do the following: We move one colored
point q while fixing all others.

Let q be a point of X. Instead of looking at q, we follow its antipode −q as for any
d-element subset S ⊂ X \ {q}, one has:

o ∈ conv(S ∪ {q}) ⇐⇒ −q ∈ cone(S).

From now on, we restrict ourselves to d-element subsets S ⊂ X such that S ∪ {q} is
rainbow. Every d-element subset S defines a cone in Rd, all these cones decompose the
sphere Sd−1 ⊂ Rd into cells. As long as −q moves inside one of these cells, cBPk(X)
does not change. At some point, we are forced to move −q from one cell to another. At
that point cBPk(X) might change. A boundary hyperplane of a cell is defined through a
(d− 1)-element subset H ⊂ S.

Our moving procedure can be chosen so that our cell decomposition is nice, and that
−q crosses a boundary hyperplane of the cell in a transversal way. Before looking at
colored Birch partitions, let’s look at the set A of all rainbow d-simplices containing the
origin. If −q crosses a hyperplane defined through a subset H, then A might change. Let
H ′ = H∪{q}. For all colored simplices that do not contain H ′ as a face, nothing changes.
For the other simplices ∆ the following property switches:

o ∈ conv(∆) before the crossing. ⇐⇒ o 6∈ conv(∆) afterwards. (1)

A colored Birch partition of X consists of k disjoint rainbow d-simplices containing
the origin. If −q crosses a hyperplane defined through H ⊂ X, then some colored Birch
partitions vanish, and new colored Birch partitions come up. In fact, all Birch partitions,
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that include a simplex ∆, H ′ ⊂ ∆, which contains the origin before the crossing, vanish.
The new ones include a simplex ∆, H ′ ⊂ ∆, which contains the origin after the crossing,
but only if X \∆ admits a colored Birch partition into k − 1 partition blocks.

In our proof, we need a special case of Deza et al. [4, Theorem 3.5] which we reprove
to make the reader familiar with the argument used below.

Lemma 4 ([4, Theorem 3.5]). For d > 2, and a given set X of 2(d + 1) colored points
in Rd of d + 1 different colors such that each color occurs exactly twice, the number of
colored d-simplices containing the origin is even.

Proof. Let X = {p0, p1, . . . , p2d+1} such that the points p2i, and p2i+1 are of color i, for all
0 6 i 6 d. Without restriction, we choose q = p0, and the boundary hyperplane of our
cell spanned by H = {p2, p4, . . . , p2(d−1)}. If −q crosses the hyperplane through H, then
exactly two colored d-simplices {p0, p2, . . . , p2(d−1), p2d}, and {p0, p2, . . . , p2(d−1), p2d+1} are
affected as observed in (1). In any case, the parity for the number of colored d-simplices
containing the origin does not change.

Proof of Theorem 3, Property (i). This follows – as in the uncolored case – via in-
duction from its base case k = d + 2. Let k > d + 3, and x a point of color 0. Let
B1, B2, . . . , Bl be all rainbow d-simplices containing the origin, and using the point x. For
every i ∈ [l] the set X \Bi has an even number of colored Birch partitions by assumption.
Adding up all these even numbers leads to cBPk(X).

Let k = d + 2, and X be our set of (d + 1)(d + 2) colored points. We will repeat the
following step d times, and then we will finally apply Lemma 4 to complete our proof.

Step 1: Let q be a point of X, and the boundary hyperplane – that is crossed
transversally – be spanned by a rainbow set H1. Assume without restriction that in
H1 ∪ {q} the d colors 0, 1, 2, . . . , d − 1 show up. For every s ∈ Cd, the colored d-simplex
H1 ∪ {q, s} will change its property of containing the origin – as observed in (1) – so that
some colored Birch partitions vanish, and new ones come up. Again, new ones come up
if the rest admits a colored Birch partition into d + 1 blocks. To prove the evenness of
cBPd+2(X) it is sufficient to show that

cBPd+1(X1) =
∑
s∈C1

d

cBPd+1(X1 \ {s}) is even. (2)

Here, the set X1 = X \ H1 consists of (d + 1)2 + 1 points: The d new color classes C0

to Cd−1 are of size d + 1, and color class Cd of size d + 2. Therefore, the expression
cBPd+1(X1) stands for the sum over the d+ 2 possibilities to drop one of the d+ 2 points
of color d from X1. Define the new color classes C1

i to be Ci minus the point of color i in
H1 ∪ {q1}, for 0 6 i 6 d.

In Step 1, we have reduced the partition parameter k from d + 2 to d + 1 by 1, and
the number of points from (d + 1)(d + 2) to (d + 1)2 + 1 by d. In repeating this step d
times, we will end up with k = d + 2 − d = 2, and (d + 1)(d + 2) − d2 = 3d + 2 many
points. Finally, the color class Cd

0 will be of size 2, and Cd
1 to Cd

d of size 3.
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General Step i, 2 6 i 6 d: Assume that we have reduced our problem to showing
that

cBPd+3−i(Xi−1) =
∑

s1∈Ci−1
d ,s2∈Ci−1

d−1,...,si−1∈Ci−1
d−i+2

cBPd+3−i (Xi−1 \ {s1, s2, . . . , si−1})

is even, where Xi−1 has color classes Ci−1
0 , Ci−1

1 , . . . , Ci−1
d such that |Ci−1

j | = d+ 4− i for

j > d− i+ 2, and |Ci−1
j | = d+ 3− i otherwise.

Let qi be a point of Xi−1, and the boundary hyperplane – that is crossed transversally
– be spanned by a subset Hi of Xi−1 such that Gi = Hi∪{qi} is rainbow. Gi is a d-element
set, and the number of colors is d+ 1. We distinguish two cases:

Case (i,1) Gi ∩ Ci−1
j1

= ∅ for j1 ∈ [d− i+ 2, d].

Case (i,2) Gi ∩ Ci−1
j2

= ∅ for j2 ∈ [0, d− i+ 1].

In Case (i,1), one of the larger color classes Ci−1
j1

misses Gi, and in the other case,

one of the smaller color classes Ci−1
j2

. As our arguments are independent of j1, j2, and of
the order in which they show up, we assume without restriction that j1 = d− i+ 2, and
j2 = d− i+ 1. This assumption simplifies our notation.

In Case (i,1), we show that a pairing for the colored Birch partitions shows up: For
every point r ∈ Ci−1

d−i+2, the property of containing the origin changes for the colored
d-simplices Gi ∪ {r} while qi crosses the hyperplane through Hi, due to (1). A d-simplex
Gi ∪ {r} contributes to the number of colored Birch partitions if the rest admits a Birch
partition into d+ 2− i blocks. The latter property is independent of the current moving
process. In fact, Gi ∪ {r} contributes a summand to

cBPd+3−i (Xi−1 \ {s1, s2, . . . si−2, si−1}) ,

where s1 ∈ Ci−1
d , s2 ∈ Ci−1

d−1, . . . , si−1 ∈ Ci−1
d−i+2, and r 6= si−1, in a positive, or negative

way. This contribution can be concretized to be

cBPd+2−i (Xi−1 \ (Gi ∪ {s1, s2, . . . , si−1, r})) .

But the same contribution shows up for the colored d-simplex Gi ∪ {si−1} in the
summand

cBPd+3−i (Xi−1 \ {s1, s2, . . . , si−2, r}) ,

again in a positive, or negative way. In any case, the parity of cBPd+3−i(Xi−1) remains
unchanged.

In Case (i,2), let r be the unique point in Gi ∩ Ci−1
d−i+2. Then all summands

cBPd+3−i (Xi−1 \ {s1, s2, . . . , si−2, r})

do not change, as any colored d-simplex not containing Gi is not affected.
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We fix a point s ∈ Ci−1
d−i+2, such that s 6= r. For every point t ∈ Ci−1

d−i+1, the property
of containing the origin changes for the colored d-simplex Gi ∪ {t}, when qi crosses the
hyperplane through Hi. Every simplex Gi ∪ {t} contributes

cBPd+2−i (Xi−1 \ (Gi ∪ {s, t}))

to cBPd+3−i (Xi−1 \ {s}) in a positive, or negative way.
Hence, it is sufficient for Case (i,2) to show that all these contributions sum up to an

even number:

cBPd+2−i(Xi) =
∑

s1∈Ci
d,s2∈C

i
d−1,...,si∈C

i
d−i+1

cBPd+2−i (Xi \ {s1, s2, . . . , si}) ,

where Xi = Xi−1 \Gi. Xi has color classes Ci
j, where Ci

j is obtained from Ci−1
j by deleting

the point of color j in Gi for all 0 6 j 6 d. Note that |Ci
j| = d+ 3− i, for j > d− i+ 1;

otherwise |Ci
j| = d+ 2− i.

Case (i,2) of Step i reduces our original problem in the following way: The parameter
k = d+ 3− i is reduced by 1 to k = d+ 2− i, and the number of points is reduced by d.

After step d: The outcome of this procedure is a colored set Xd with the color class
Cd

0 of size 2, and color classes Cd
1 to Cd

d of size 3. It remains to prove that

cBP2(Xd) =
∑

s1∈Cd
d ,s2∈C

d
d−1,...,sd∈C

d
1

cBP2 (Xd \ {s1, s2, . . . , sd}) is even.

For this, let qd+1 be a point of Xd, and the boundary hyperplane – that is crossed
transversally – be spanned by a subset Hd+1 of Xd such that Gd+1 = Hd+1 ∪ {qd+1} is
rainbow. We distinguish two cases

Case (d+1,1) Gd+1 ∩ Cd
j = ∅ for j ∈ [1, d].

Case (d+1,2) Gd+1 ∩ Cd
0 = ∅.

In Case (d+1,1), a pairing shows up as in the previous steps. In Case (d+1,2), let
Cd

0 = {t1, t2}. The property of containing the origin changes for the two d-simplices
Gd+1 ∪ {t1}, and Gd+1 ∪ {t2}. The d-simplex Gd+1 ∪ {tj} contributes

cBP1 (Xd \ (Gi ∪ {tj}))

to the above sum. The expression cBP1 (Xd \ (Gi ∪ {tj})) reduces to the number of
colored d-simplices containing the origin. If we sum up both contributions this leads
to the number colored d-simplices containing the origin for the set Xd \ Gd+1. Finally,
Lemma 4 implies evenness for this set.

Proof of Property (i) implies Properties (iii) and (iv). For d > 2, let us first prove

cBPk(X) > 0 =⇒ cBPk(X) > 2k−d−1 for d > 2 and k > d+ 2, (3)

the electronic journal of combinatorics 21(3) (2014), #P3.23 8



via an induction on k > d+ 2. This settles Property (iv).
Property (i) implies the base case k = d+ 2:

cBPk(X) > 0 =⇒ cBPk(X) > 2 = 2k−d−1.

Let now k > d + 3, and be cBPk(X) > 0. Then there is a colored Birch partition
B1, B2, . . . , Bk of X. For 1 6 i 6 k, let xi be the point of color 0 such that xi ∈ Bi. Note
that for any non-empty subset I of the index set [k], the set

⋃
i∈I Bi has again a colored

Birch partition.
Using the base case for

⋃
i∈[4]Bi, we obtain a second colored Birch partitionB′1, B

′
2, B

′
3, B

′
4

such that xi ∈ B′i for all i ∈ [4]. Without loss of generality, we can assume B1 6= B′1.
Applying the assumption to the set X \ B1, we obtain at least 2k−d−2 colored Birch par-
titions of X starting with B1. Finally, applying the assumption to the set X \ B′1, we
obtain again at least 2k−d−2 Birch partitions of X starting with B′1. The construction of
the sets B1 and B′1 leads to the factor of 2.

To prove Property (iii), we show in the two subsequent paragraphs that a third set
B′′1 can be constructed for d = 2, and k > 7 so that all three sets a) contain a fixed point
x, and b) are pairwise distinct. Therefore, the factor 3 shows up in the lower bound for
d = 2 and k > 7.

For x1 ∈ B1, the set B′1 can be constructed as above. Now B′1 contains a point
y 6= x1 that is not in B1, and without loss of generality we can assume y ∈ B2. Therefore
B2 6= B′2. The set {4, 5, 6, 7} has

(
4
2

)
= 6 subsets I with two elements. For every subset

I = {i1, i2}, we apply the base case to B1 ∪ B3 ∪ Bi1 ∪ Bi2 so that we obtain each time
a new colored Birch partition BI

1 , B
I
3 , B

I
i1
, BI

i2
, such that x1 ∈ BI

1 , x3 ∈ BI
3 , and xj ∈ BI

j

for both j ∈ I. If B1 6= BI
1 for one subset I, then B′1 and BI

1 are distinct by construction.
Choosing B′′1 = BI

1 completes our proof.
If B1 = BI

1 for all subsets I, then we proceed as follows: For every I, there is a pair of
(i, j) from I ∪{3} so that Bi 6= F I

i and Bj 6= BI
j . A pair of the form (3, j) is the outcome

of at most three index sets, and a pair of the form (i, j) of at most two index sets, where
i, j ∈ {4, 5, 6, 7}. As we have in total 6 pairs of indices, one index j ∈ {3, 4, 5, 6, 7}
shows up in at least two pairs for two subsets I1, I2. Choosing the sets Bj, B

I1
j , and BI2

j

completes our proof.

4 On minimal point configurations

Let us conclude this paper with a discussion on lower bounds for the number of colored
Tverberg partitions in the affine setting of Theorem 1. The table below shows minimal
numbers based on four different approaches for d = 2, and r up to 8.

Remark on Theorem 2. In general, our lower bounds for the number of colored
Tverberg partitions might not be optimal as we assumed that there is (1) only one colored
Tverberg point being (2) the intersection point of d partition blocks of exactly d points
each. We have not found any (uncolored) example having both properties at the same
time. Assuming that the colored Tverberg point is one of the vertices of ∆N leads to a
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lower bound of 8 · 3r−7 resp. 2r−d−2 for sufficiently large r. This observation is based on
our computer experiments. In the table, there is a quite a gap between our lower bounds,
and the minimal numbers.

Sierkma’s configuration with colors. The point configuration due to
Sierksma [8, Sect. 6.6] given by r − 1 points clustered around each of the vertices of
a standard d-simplex in Rd plus one point in its center seemed to be a good candidate for
a minimal configuration, also in the colored case. The uncolored Sierksma configuration
is extremal in two ways: It has one only Tverberg point, but this Tverberg point comes
with a large number of Birch partitions. Colors force points to end up in different parti-
tions blocks. Note that points of the same cluster end up in different blocks anyway. Any
colored Tverberg partition is a Tverberg partition of the uncolored configuration.

Our aim is to distribute every color as much as possible among the clusters so that
the color constraint is most “harmful”. The coloring of the Sierksma configuration which
seems to lead to the smallest number of colored Tverberg partitions is obtained as follows:
The point in the center is of color d + 1. The r − 1 points of every vertex are colored
so that each of the colors 0, 1, . . . , d shows up (r − 1)/(d+ 1) times, or d(r − 1)/(d+ 1)e
resp. b(r − 1)/(d+ 1)c if r is not a multiple of d+ 1. In that case, the remaining (r − 1)
modulo (d + 1) points of vertex i, where 0 6 i 6 d, are colored in a cyclic way with
colors i, i+ 1, . . . (modulo d). The number of colored Tverberg partitions for this colored
configuration can be calculated for every dimension d via recursion formulas. We give the
recursion for d = 2. The generalization to higher dimensions is straightforward.

Let cs(r1, g1, b1, r2, g2, b2, r3, g3, b3) be the number of colored Tverberg partitions of
the Sierksma configuration equipped with the coloring from above, such that in cluster i
there are ri points of color red, gi points of color green, bi points of color blue. Due to the
natural symmetry of the standard d-simplex, the numbers cs(r1, g1, b1, r2, g2, b2, r3, g3, b3)
are invariant under permutations of the symmetric group Σ3. For r1 > 0 and any σ ∈ Σ3,
the numbers cs(r1, g1, b1, r2, g2, b2, r3, g3, b3) have the following properties:

cs(1, 0, 0, 0, 1, 0, 0, 0, 1) = 1,

cs(1, 1, 0, 1, 0, 1, 0, 1, 1) = 1,

cs(r1, g1, b1, r2, g2, b2, r3, g3, b3) = g2 · b3 · cs(r1 − 1, g1, b1, r2, g2 − 1, b2, r3, g3, b3 − 1)

+ b2 · g3 · cs(r1 − 1, g1, b1, r2, g2, b2 − 1, r3, g3 − 1, b3),

cs(r1, g1, b1, r2, g2, b2, r3, g3, b3) = cs(rσ(1), . . . , bσ(3)).

The numbers cs(1, 0, 0, 0, 1, 0, 0, 0, 1) up to cs(3, 3, 2, 3, 2, 3, 2, 3, 3) are shown in the table
below.

Polygonal configurations in the plane. Linda Kleist [7] who wrote her bachelor
thesis under the supervision of Ziegler studied colored point configurations for r 6 6,
and d = 2: The vertices of a regular 3(r-1)-gon plus its center point. Minimizing over
all colorings, this construction led to larger numbers than Sierkma’s configuration with
colors. Her minimal numbers are shown below.

Random configurations in the plane. While placing colored points randomly in
a square, we obtained minimal numbers shown in the table below. Looking at 100000
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examples for r = 5 has led to five colored sets with 10 colored Tverberg partitions. All
minimal examples have several Tverberg points: One of the points of X, and intersection
points of two segments. We have not been able to detect another common pattern. These
examples kept us from coming up with a conjecture for the number of colored Tverberg
partitions based on Sierksma’s configuration, and the coloring from above. All Java files,
and examples of this project are available on request via email.

r
Minimum for Minimum for poly- Minimum for Lower bound

colored Sierksma gonal configurations random of
configurations due to Kleist configurations Theorem 2

2 1 1 1 1
3 1 1 1 1
4 2 2 2 -
5 12 16 10 1
6 80 80 80 -
7 640 - 864 4
8 9216 - > 10000 -

In conclusion, our discussion suggests 1) that finding minimal colored configurations
is not easy, 2) that random configurations do not lead to minimal examples for r > 6,
and 3) that our lower bound is not tight.
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