Counting the Palstars

L. Bruce Richmond
Combinatorics and Optimization
University of Waterloo
Waterloo, ON N2L 3G1
Canada
lbrichmo@uwaterloo.ca

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1
Canada
shallit@cs.uwaterloo.ca

Submitted: Jun 12, 2014; Accepted: Jul 28, 2014; Published: Aug 13, 2014
Mathematics Subject Classifications: 05A05, 05A15, 05A16, 68R15

Abstract

A palstar (after Knuth, Morris, and Pratt) is a concatenation of even-length palindromes. We show that, asymptotically, there are $D_{k} \alpha_{k}^{n}$ palstars of length $2 n$ over a k-letter alphabet, where D_{k} and α_{k} are positive constants with $2 k-1<\alpha_{k}<$ $2 k-\frac{1}{2}$. In particular, $\alpha_{2} \doteq 3.33513193$.

Keywords: palindrome, palstar, prime palstar unique factorization, generating function, enumeration.

1 Introduction

We are concerned with finite strings over a finite alphabet Σ_{k} having $k \geqslant 2$ letters. A palindrome is a string x equal to its reversal x^{R}, like the English word radar. If T, U are sets of strings over Σ_{k} then (as usual) $T U=\{t u: t \in T, u \in U\}$. Also $T^{i}=\overbrace{T T \cdots T}^{i}$ and $T^{*}=\bigcup_{i \geqslant 0} T^{i}$ and $T^{+}=\bigcup_{i \geqslant 1} T^{i}$.

We define

$$
P=\left\{x x^{R}: x \in \Sigma_{k}^{+}\right\}
$$

the language of nonempty even-length palindromes. Following Knuth, Morris, and Pratt [3], we call a string x a palstar if it belongs to P^{*}, that is, if it can be written as the concatenation of elements of P. Clearly every palstar is of even length.

We call x a prime palstar if it is a nonempty palstar, but not the concatenation of two or more palstars; alternatively, if $x \in P^{+}-P^{2} P^{*}$ where - is set difference. Thus, for example, the the English word noon is a prime palstar, but the English word appall and the French word assailli are palstars that are not prime. Knuth, Morris, and Pratt [3]
proved that no prime palstar is a proper prefix of another prime palstar, and, consequently, every palstar has a unique factorization as a concatenation of prime palstars.

A nonempty string x is a border of a string y if x is both a prefix and a suffix of y and $x \neq y$. We say a string y is bordered if it has a border. Thus, for example, the English word ionization is bordered with border ion. Otherwise a word is unbordered. Rampersad et al. [6] recently gave a bijection between the unbordered strings of length n and the prime palstars of length $2 n$. As a consequence they obtained a formula for the number of prime palstars.

Despite some interest in the palstars themselves [4, 1], it seems no one has enumerated them. Here we observe that the bijection mentioned previously, together with the unique factorization of palstars, provides an asymptotic enumeration for the number of palstars.

2 Generating function for the palstars

Again, let $k \geqslant 2$ denote the size of the alphabet. Let $p_{k}(n)$ denote the number of palstars of length $2 n$, and let $u_{k}(n)$ denote the number of unbordered strings of length n.

Lemma 1. For $n \geqslant 1$ and $k \geqslant 2$ we have

$$
p_{k}(n)=\sum_{1 \leqslant i \leqslant n} u_{k}(i) p_{k}(n-i) .
$$

Proof. Consider a palstar of length $2 n>0$. Either it is a prime palstar, and by [6] there are $u_{k}(n)=u_{k}(n) p_{k}(0)$ of them, or it is the concatenation of two or more prime palstars. In the latter case, consider the length of this first factor; it can potentially be $2 i$ for $1 \leqslant i \leqslant n$. Removing this first factor, what is left is also a palstar. This gives $u_{k}(i) p_{k}(n-i)$ distinct palstars for each i. Since factorization into prime palstars is unique, the result follows.

Now we define generating functions as follows:

$$
\begin{aligned}
P_{k}(X) & =\sum_{n \geqslant 0} p_{k}(n) X^{n} \\
U_{k}(X) & =\sum_{n \geqslant 0} u_{k}(n) X^{n} .
\end{aligned}
$$

The first few terms are as follows:

$$
\begin{aligned}
& P_{k}(X)=1+k X+\left(2 k^{2}-k\right) X^{2}+\left(4 k^{3}-3 k^{2}\right) X^{3}+\left(8 k^{4}-8 k^{3}+k\right) X^{4}+\cdots \\
& U_{k}(X)=1+k X+\left(k^{2}-k\right) X^{2}+\left(k^{3}-k^{2}\right) X^{3}+\left(k^{4}-k^{3}-k^{2}+k\right) X^{4}+\cdots
\end{aligned}
$$

Theorem 2.

$$
P_{k}(X)=\frac{1}{2-U_{k}(X)} .
$$

Proof. From Lemma 1, we have

$$
\begin{aligned}
U_{k}(X) P_{k}(X) & =\left(\sum_{n \geqslant 0} u_{k}(n) X^{n}\right)\left(\sum_{n \geqslant 0} p_{k}(n) X^{n}\right) \\
& =1+\sum_{n \geqslant 1}\left(\sum_{0 \leqslant i \leqslant n} u_{k}(i) p_{k}(n-i)\right) X^{n} \\
& =1+\left(\sum_{n \geqslant 1} \sum_{1 \leqslant i \leqslant n} u_{k}(i) p_{k}(n-i) X^{n}\right)+\sum_{n \geqslant 1} p_{k}(n) X^{n} \\
& =1+\left(\sum_{n \geqslant 1} p_{k}(n) X^{n}\right)+\sum_{n \geqslant 1} p_{k}(n) X^{n} \\
& =2 P_{k}(X)-1,
\end{aligned}
$$

from which the result follows immediately.

3 The main result

Theorem 3. For all $k \geqslant 2$ there are positive constants D_{k} and α_{k}, with $2 k-1<\alpha_{k}<$ $2 k-\frac{1}{2}$, such that the number of palstars of length $2 n$ is asymptotically $D_{k} \alpha_{k}^{n}$.

Proof. From Theorem 2 and the "First Principle of Coefficient Asymptotics" [2, p. 260], it follows that the asymptotic behavior of $\left[X^{n}\right] P_{k}(X)$, the coefficient of X^{n} in $P_{k}(X)$, is controlled by the behavior of the roots of $U_{k}(X)=2$. Since $u_{k}(0)=1$ and $U_{k}(X) \rightarrow \infty$ as $X \rightarrow \infty$, the equation $U_{k}(X)=2$ has a single positive real root, which is $\rho=\rho_{k}=\alpha_{k}^{-1}$. We first show that $2 k-1<\alpha_{k}<2 k-\frac{1}{2}$.

Recalling that $u_{k}(n)$ is the number of unbordered strings of length n over a k-letter alphabet, we see that $u_{k}(n) \leqslant k^{n}-k^{n-1}$ for $n \geqslant 2$, since k^{n} counts the total number of strings of length n, and k^{n-1} counts the number of strings with a border of length 1 . Similarly

$$
u_{k}(n) \geqslant \begin{cases}k^{n}-k^{n-1}-\cdots-k^{n / 2}, & \text { if } n \geqslant 2 \text { is even } \\ k^{n}-k^{n-1}-\cdots-k^{(n+1) / 2}, & \text { if } n \geqslant 2 \text { is odd }\end{cases}
$$

since this quantity represents removing strings with borders of lengths $1,2, \ldots, n / 2$ (resp., $1,2, \ldots,(n-1) / 2)$ if n is even (resp., odd) from the total number. Here we use the classical fact that if a word of length n has a border, it has one of length $\leqslant n / 2$.

It follows that for real $X>0$ we have

$$
\begin{aligned}
U_{k}(X)=\sum_{n \geqslant 0} u_{k}(n) X^{n}=1+k X+\sum_{n \geqslant 2} u_{k}(n) X^{n} & \leqslant 1+k X+\sum_{n \geqslant 2}\left(k^{n}-k^{n-1}\right) X^{n} \\
& =\frac{k X^{2}-1}{k X-1} .
\end{aligned}
$$

Similarly for real $X>0$ we have

$$
\begin{aligned}
U_{k}(X) & =\sum_{n \geqslant 0} u_{k}(n) X^{n} \\
& =1+k X+\sum_{l \geqslant 1} u_{k}(2 l) X^{2 l}+\sum_{m \geqslant 1} u_{k}(2 m+1) X^{2 m+1} \\
& \geqslant 1+k X+\sum_{l \geqslant 1}\left(k^{2 l}-k^{2 l-1}-\cdots-k^{l}\right) X^{2 l}+\sum_{m \geqslant 1}\left(k^{2 m+1}-\cdots-k^{m+1}\right) X^{2 m+1} \\
& =\frac{1-2 k X^{2}}{(k X-1)\left(k X^{2}-1\right)} .
\end{aligned}
$$

This gives, for $k \geqslant 2$, that

$$
2<\frac{(2 k-1)\left(4 k^{2}-6 k+1\right)}{(k-1)^{2}(4 k-1)} \leqslant U_{k}\left(\frac{1}{2 k-1}\right)
$$

and

$$
U_{k}\left(\frac{1}{2 k-\frac{1}{2}}\right) \leqslant \frac{16 k^{2}-12 k+1}{(4 k-1)(2 k-1)}<2 .
$$

It follows that $\frac{1}{2 k-\frac{1}{2}}<\rho_{k}<\frac{1}{2 k-1}$ and hence $2 k-1<\alpha_{k}<2 k-\frac{1}{2}$.
To understand the asymptotic behavior of $\left[X^{n}\right] P_{k}(X)$, we need to rule out other (complex) roots with the same magnitude as ρ. Here we follow the argument of the anonymous referee, which replaces our earlier and more complicated argument [7].

Suppose $X=-\rho$ is a solution. Then, since $u_{k}(n)>0$ for all n, we have

$$
2=\sum_{n \geqslant 0} u_{k}(n)(-\rho)^{n}<\sum_{n \geqslant 0} u_{k}(n) \rho^{n}=2 .
$$

This is a contradiction, so if there exists another solution it must be of the form

$$
X=\rho e^{i \psi}=\rho(\cos n \psi+i \sin n \psi)
$$

with $0<\psi<2 \pi$. Since $2-U_{k}(X)=0$, the imaginary part of $U_{k}\left(\rho e^{i \psi}\right)$ must equal 0 . Therefore

$$
\begin{aligned}
0 & =2-\sum_{n \geqslant 0} u_{k}(n) \rho^{n} \cos n \psi \\
& =2-\sum_{n \geqslant 0} u_{k}(n) \rho^{n}+\sum_{n \geqslant 0} u_{k}(n) \rho^{n}(1-\cos n \psi) \\
& =\sum_{n \geqslant 0} u_{k}(n) \rho^{n}(1-\cos n \psi) .
\end{aligned}
$$

Since $u_{k}(n)>0$ and $\rho^{n}>0$ for all n, we must have $1-\cos n \psi=0$ for all n. So for all n there exists an integer ℓ_{n} such that $n \psi=2 \pi \ell_{n}$. Hence

$$
\psi=(n+1) \psi-n \psi=2 \pi \ell_{n+1}-2 \pi \ell_{n}=2 \pi\left(\ell_{n+1}-\ell_{n}\right) .
$$

Since ℓ_{n+1} and ℓ_{n} are both integers, this contradicts the assumption $0<\psi<2 \pi$. Therefore $P_{k}(X)$ has only one singularity with $|X|=\rho$.

It remains to determine the order of the zero ρ. From above $U_{k}(X)=2$ has a solution α_{k}^{-1} which satisfies $2 k-1<\alpha_{k}<2 k-\frac{1}{2}$. Nielsen [5] showed that $u_{k}(n)=\Theta\left(k^{n}\right)$, and so $U_{k}(X)$ has radius of convergence $1 / k$. Therefore $1 / \alpha_{k}$ lies in the region where U_{k} is analytic. Hence $2-U_{k}(X)$ is analytic at $1 / \alpha_{k}$ and has a zero at $1 / \alpha_{k}$ of multiplicity m. If $m \geqslant 2$, then the derivative of $2-U_{k}(X)$ equals 0 at $X=1 / \alpha_{k}$. However $C_{k}:=U_{k}^{\prime}\left(\alpha_{k}^{-1}\right)>0$ since $u_{k}(n)>0$ for some n. Thus $2-U_{k}(X)$ has a simple zero at $X=1 / \alpha_{k}$, and so $P_{k}(X)$ has a simple pole at $X=1 / \alpha_{k}$. Near α_{k}^{-1} the generating function $U_{k}(X)$ has the expansion $2+C_{k}\left(X-\alpha_{k}^{-1}\right)+C_{k}^{\prime}\left(X-\alpha_{k}^{-1}\right)^{2}+\cdots$. Furthermore

$$
P_{k}(X)=\frac{1}{2-U_{k}(X)}=\frac{1}{-C_{k}\left(X-1 / \alpha_{k}\right)-C_{k}^{\prime}\left(X-1 / \alpha_{k}\right)^{2}+\cdots}
$$

As we have seen,

$$
P_{k}(X)-\frac{\alpha_{k}}{C_{k}}\left(\frac{1}{1-\alpha_{k} X}\right)
$$

has no singularity on the circle $|X|=1 / \alpha_{k}$, and so it has radius of convergence $>1 / \alpha_{k}$. Now

$$
P_{k}^{\prime}(X)=\frac{U_{k}^{\prime}(X)}{\left(2-U_{k}(X)\right)^{2}},
$$

so from standard results (e.g., [2, Thm. IV.7, p. 244]) there exists a positive δ such that

$$
\begin{aligned}
{\left[X^{n}\right] P_{k}(X) } & =\left[X^{n}\right] \frac{1}{C_{k}\left(1 / \alpha_{k}-X\right)}+\cdots \\
& =\left[X^{n}\right] \frac{\alpha_{k}}{C_{k}}\left(\frac{1}{1-\alpha_{k} X}\right)+\cdots \\
& =\frac{\alpha_{k}^{n+1}}{C_{k}}+O\left(\left(\alpha_{k}-\delta\right)^{n}\right) .
\end{aligned}
$$

Now, setting $D_{k}=\alpha_{k} / C_{k}$ completes the proof.

4 Numerical results

Here is a table giving the first few values of $P_{k}(n)$.

$n=$	0	1	2	3	4	5	6	7	8	9	10
$k=2$	1	2	6	20	66	220	732	2440	8134	27124	90452
$k=3$	1	3	15	81	435	2349	12681	68499	370023	1998945	10798821
$k=4$	1	4	28	208	1540	11440	84976	631360	4690972	34854352	258971536

By truncating the power series $U_{k}(X)$ and solving the equation $U_{k}(X)=2$ we get better and better approximations to α_{k}^{-1}. For example, for $k=2$ we have

$$
\begin{aligned}
\alpha_{2}^{-1} & \doteq 0.29983821359352690506155111814579603919303182364781730366339199333065202 \\
\alpha_{2} & \doteq 3.3351319300335793676678962610376244842363270634405611577104447308511860 \\
C_{2} & \doteq 6.278652437421018217684895562492005276088368718322063642652328654828673 \\
D_{2} & \doteq 0.5311859452764195757199152035728758998220694173731602615487298417
\end{aligned}
$$

To determine an asymptotic expansion for α_{k} as $k \rightarrow \infty$, we compute the Taylor series expansion for $P_{k}(n) / P_{k}(n+1)$, treating k as an indeterminate, for n large enough to cover the error term desired. For example, for $O\left(k^{-10}\right)$ it suffices to take $k=16$, which gives
$\alpha_{k}^{-1}=\frac{1}{2 k}+\frac{1}{8 k^{2}}+\frac{3}{32 k^{3}}+\frac{1}{16 k^{4}}+\frac{27}{512 k^{5}}+\frac{93}{2048 k^{6}}+\frac{83}{2048 k^{7}}+\frac{155}{4096 k^{8}}+\frac{4735}{131072 k^{9}}+O\left(k^{-10}\right)$
and hence

$$
\alpha_{k}=2 k-\frac{1}{2}-\frac{1}{4 k}-\frac{3}{32 k^{2}}-\frac{5}{64 k^{3}}-\frac{31}{512 k^{4}}-\frac{25}{512 k^{5}}-\frac{23}{512 k^{6}}-\frac{683}{16384 k^{7}}+O\left(k^{-8}\right) .
$$

Acknowledgment

We thank the anonymous referee for his/her very helpful report.

References

[1] Z. Galil and J. Seiferas. A linear-time on-line recognition algorithm for "palstar". J. ACM 25 (1978), 102-111.
[2] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
[3] D. E. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J. Comput. 6 (1977), 323-350.
[4] G. Manacher. A new linear-time "on-line" algorithm for finding the smallest initial palindrome of a string. J. ACM 22 (1975), 346-351.
[5] P. T. Nielsen. A note on bifix-free sequences. IEEE Trans. Info. Theory IT-19 (1973), 704-706.
[6] N. Rampersad, J. Shallit, and M.-w. Wang. Inverse star, borders, and palstars. Info. Proc. Letters 111 (2011), 420-422.
[7] L. B. Richmond and J. Shallit. Counting the palstars. Preprint, June 11 2014, available at arXiv:1311.2318.

