1

A combinatorial proof of the
non-vanishing of Hankel determinants
of the Thue—Morse sequence

Yann Bugeaud Guo-Niu Han

Institut de Recherche Mathématique Avancée
Université de Strasbourg et CNRS
Strasbourg, France

{bugeaud,guoniu}@math.unistra.fr

Submitted: Oct 21, 2013; Accepted: Aug 7, 2014; Published: Aug 21, 2014
Mathematics Subject Classifications: 05A05, 11J82

Abstract

In 1998, Allouche, Peyriere, Wen and Wen established that the Hankel deter-
minants associated with the Thue-Morse sequence on {—1,1} are always nonzero.
Their proof depends on a set of sixteen recurrence relations. We present an alterna-
tive, purely combinatorial proof of the same result. We also re-prove a recent result
of Coons on the non-vanishing of the Hankel determinants associated to two other
classical integer sequences.
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Introduction

Let C(z) be a power series in one variable with rational coefficients,

C(z) = Z a2, o e Q.

k>0
For k> 1 and p > 0, let
cp Cp1 -+ Cpik—1
c c .. cC
HP(C) = 'p+1 %n+2 ' ptk
Cp+k—1 Cp+k - Cpt2k—2
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be the (p, k)-order Hankel determinant associated to C(z). For simplicity, we write Hy(C)
instead of HY(C). The study of the non-vanishing of (p, k)-order Hankel determinants is
an interesting question on its own, and this is the purpose of the present paper for the
sequence (c)g=o being the Thue-Morse sequence. However, we start the introduction by
pointing out a motivation coming from Diophantine approximation and concerning the
study of rational approximation to the real numbers C(1/b), where b > 2 is an integer.

Let ¢ be an irrational, real number. The irrationality exponent u(&) of £ is the supre-
mum of the real numbers i such that the inequality

q q*

has infinitely many solutions in rational numbers p/q. It follows from the theory of contin-
ued fractions that u(&) is always greater than or equal to 2, and an easy covering argument
shows that p(€) is equal to 2 for almost all real numbers £ (with respect to the Lebesgue
measure). Furthermore, Roth’s theorem asserts that the irrationality exponent of every
algebraic irrational number is equal to 2. The reader is directed to the monograph [5]
for proofs and refinements of these assertions. It is in general a very difficult problem to
determine the irrationality exponent of a given transcendental real number &, unless £ is
given by its continued fraction expansion. Apart from more or less ad hoc constructions,
there are only very few examples of transcendental numbers ¢ whose irrationality expo-
nent is known. When they can be applied, the current techniques allow us most often
only to get an upper bound for p(§).

Recently, Bugeaud [2] developed a method for computing p(§) when £ is a Thue—
Morse-Mahler number. Let

t=totity... =1 -1 —11—-111 -1 —111 —1...

denote the Thue-Morse word on {—1,1} defined by tg = 1, tor, = tx and top 1 = —t for
k > 0. Alternatively, ¢, = 1 (resp. —1) if the number of 1’s in the binary expansion of k

is even (resp. is odd). Let
T(z) = Z tp2"

k>0

be the generating function of (tx)r>0. It is proved in [2] that, for every integer b > 2, the
irrationality exponent of the real number

t 1 1 1 1 1
=l-s -t gt t

T(l/ b) = b_"? b b2 b3 bt

k>0

is equal to 2. There are two main ingredients in the proof.
A first one is the fact that 7 (z) satisfies a functional equation, namely

T(z)= (1T =[] -=*),

n=0
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a key tool in Mahler’s proof [4] that T (1/b) is transcendental.
A second one is the non-vanishing of Hankel determinants associated with t, a result
established by Allouche, Peyriere, Wen and Wen [1].

Theorem (APWW). For every positive integer k, the Hankel determinant Hy(T) is non-
zero.

The proof given in [1] is long and difficult. It depends on a set of sixteen recurrence
relations involving the (p, k)-order Hankel determinants and gives additional results on
the values of the Hankel determinants HE (7).

Subsequently, Coons [3] considered the functions

o0 2271 o0 22"
F) =) fi =) o ad 00)=) g =) 7 (L)
k>1 n=0 k>1 n=0

He proved that, for every integer b > 2, the irrationality exponent of F(1/b) and G(1/b)
is equal to 2. To this end, he followed the method of [2], replacing the use of Theorem
APWW by that of the next result (Theorem 2 of [3]).

Theorem (C). For every positive integer k, the Hankel determinants HY(F) and HE(G)
are nonzero.

Coons’ proof of Theorem C is of the same level of difficulty as the one of Theorem
APWW. It is long and hard to follow.

The aim of this note is to provide a unified, combinatorial proof of both Theorems
APWW and C. We believe that our approach is much simpler than that of [1, 3].

Our paper is organized as follows. The key combinatorial result, namely Theorem J, is
stated in Section 2, along with three equivalent lemmas. Complete proofs of these lemmas
and theorem are given in Section 3. We gather in Section 4 some additional statements,
which follow from our approach. Then, in Section 5, we show how Theorems APWW and
C can be easily derived from Theorem J.

When nothing else is specified, the notation a = b means that the integers a and b are
congruent modulo 2.

2 Permutations and involutions
Throughout this text, N denotes the set of non-negative integers. We introduce the sets

J={2n+1)2* —1|n,k e N} ={0,2,3,4,6,8,10,11,.. .},

and
K=N\J=1{1,57913,17,...} = {(2n + 1)2**™ —1 | n,k € N}.

Let &,, = &yo1,..m—1} be the set of all permutations on {0,1,...,m — 1}. In this
section we prove the following result.
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Theorem (J). (J1) For every integer m > 1, the number of permutations o € &,, such
that i+ o(i) € J fori=0,1,...,m — 1, is an odd number.

(J2) For every integer m > 1, the number of permutations o € &,, such that i+0o(i) €
J fori=0,1,...,m —2 (no constraint on m — 1+ o(m —1) € N) is an odd number.

The proof is based on some combinatorial techniques. Since we want to enumerate
permutations modulo 2, we can delete suitable pairs of permutations and the result will
not be changed. The problem is then how to associate a given permutation with another
to form a pair. Two methods are used in the present paper:

(1) taking the inverse o~! of a given permutation o;

(2) exchanging two values by letting o (i) := o(j) and o(j) := o ().

Those two methods are fully described in the proof of Theorem (J1).

Throughout this paper we use three representations for permutations: the one-line,
two-lines and the product of disjoint cycles. For example, we write

012345678
o € Gy = 516280374 = (516280374) = (0,5)(1)(2,6,3)(4,8)(7).

We choose to separate the elements of a cycle by commas.

Sometimes we write a list of sets under the two-line representations. If the set A is
under the index 4, this means that i + o(i) € A. For example, the permutations in (J1)
and (J2) are

01 2 3 45 6 7 8

J J J J J J J J J
and

01 2 3 45 6 7 8

J J J J J J J J N
respectively.

An involution is a permutation o such that ¢ = ¢~!. In the cycle representation of an
involution every cycle is either a fized point (b) or a transposition (c,d). For every set A,
a transposition (¢, d) is said to be an A-transposition if c4+ d € A and ¢ + d is odd. This
means also that there is an even number and an odd number in every A-transposition.
Generally the order of the two numbers in a transposition does not matter. However,

throughout this paper, we always write the even number before the odd number in every
A-transposition.

For finite sets of positive integers A, B and a non-negative integer f, let v(A, f, B)
be the number of involutions in & 4 such that all transpositions are B-transpositions and
have exactly f fixed points. Also let v(A, f/g, B) = v(A, f, B)+v(A, g, B). For an infinite
set A let Al,, be the set composed of the m smallest integers in A.

We state below three equivalent lemmas. The first (resp. second, third) assertion of
any of these is equivalent to the first (resp. second, third) assertion of any of the other
two lemmas.
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Lemma (N). For m > 1 we have

V(N|pn,0/1, K) = 1; (N1)
I/(N’mel,l“]) = 1, (N2)
v(Nlam,0/2,J) = 1. (N3)
Let
P={0,3,4,7,811,...} ={k | k=0,3 (mod 4)}
and

Q=1{1,2,56,9,10,...} ={k | k=1,2 (mod 4)}.

We define three transformations:

BN N ks k/2 ?fk:?seven
(k—1)/2 if kis odd
VP N R k/4 ?fk:?seven
(k—3)/4 if kis odd
0: N — N,

k+1 if k£ is even
kE— o

k-1 it k£ is odd
The transformation S is extended to the involutions o on N|,, such that all transpositions
are K-transpositions, by applying # on every number in the cycle representation of o.
The transformation § for involutions is reversible, even though 5 on N is not reversible.
For example

A(7)(0,5)(6,3)(2)(8,1)(4)) = (3)(0,2)(3,1)(1)(4, 0)(2).

We do not know a priori whether the fixed point 3 is obtained from 6 or from 7. We must
look at the transposition (3, 1) first. It is obtained from the permutation (6,3) since we
know that an even number is always before an odd number in the transposition. Thus, we
can recover the K-transpositions (6,3)(0,5)(8,1). All the other numbers are fixed points,
so these are (7)(2)(4). If (¢,d) is a K-transposition, then

c+d—1  (2n+1)2%+1 —1-1

> 5 =@2n+1)2% -1¢€ J

Ble) + B(d) =

In the same way, the transformation v is extended to the involutions o on P|,, such
that all transpositions are J-transpositions, by applying v on every number in the cycle
representation of o. Again, the transformation ~ for involutions is reversible, even though
v on P|,, is not reversible. For example

7((15)(0,11)(12,7)(4)(16, 3)(8)) = (3)(0,2)(3, 1)(1)(4, 0)(2).
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If (¢,d) is a J-transposition and ¢,d € P, then

c+d—3 (2n+1)22*-1-3
4 4

y(c) +(d) = =@2n+1)2% 2 _1¢J

In fact we can check that the image sets of 5 and ~ are identical, thus the transformation

~v~18 is well defined. The above comments are still valid if J and K are exchanged. By
the bijection y~!f, the following lemma is equivalent to Lemma N.

Lemma (P). Form > 1 we have

v(P|y,,0/1,J) = 1; (P1)
v(Plom-1,1, K) = 1, (P2)
v(Plam,0/2, K) = 1. (P3)

The third transformation § is extended to the set of involutions ¢ on P|,, such that
all the transpositions are J-transpositions, by applying é on every number in the cycle
representation of o. The transformation 0 for involutions is reversible since § for N is
reversible. For example

5((15)(0,11)(12, 7)(4)(16, 3)(8)) = (14)(1,10)(13,6)(5)(17,2)(9)

If (¢, d) is a J-transposition then (d(c), d(d)) is still a J-transposition since ¢+ d = d(c) +
d(d).

The above comments are still valid if J and K are exchanged. Using the bijection ¢,
we see that the following lemma is equivalent to Lemma P.

Lemma (Q). For m > 1 we have

v(Qlm,0/1,J) = 1; (Q1)
V(Q|2m_1, 17K) = ]_, (QZ)
v(Qlam,0/2, K) = 1. (Q3)

Since Lemmas N, P and @) are equivalent, we prove (P1), (N2), (N3) in Section 3.

3 The proofs

We begin with several comments. The proofs of all the theorems and lemmas are based on
induction on the lengths of the permutations. Small values of m can be easily checked by
hand. The proof of (N2) uses (P1), the proof of (P1) uses (J2), and the proof of (J2) uses
again (IN2). This is not a circular reasoning, because the length of permutations is smaller
than the length of the original permutations. For every permutation o, we say that o
contains a column (:j‘ei) (in the two-line representation) if there is some odd number j

such that o(j) is even. We make a similar definition for (<), (¢7}) and (233). For short
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we say that a permutation o is “in (J1)” if o satisfies the conditions described in the
statement of Theorem (J1), and that an involution ¢ is “in (P1)” if ¢ is an involution on
the set P|,, having 0 or 1 fixed point, and all transpositions are J-transpositions. The
following basic facts are easy to verify:

(FJ1) The set J contains all even numbers;

(FJ2) If an odd number x is in J, then z =3 (mod 4).

Proof of (J1). We count the permutations in (J1) modulo 2. If o contains more than two

columns (ggcdl) in the two-line representation, select the first two such columns (;) and

(;2) We define another permutation 7 obtained from ¢ by exchanging j; and js in the
bottom line. This procedure is reversible. By (FJ1), it is easy to verify that 7 is also a
valid permutation in (J1). So that we can delete the pair o and 7, and there only remain
the permutations containing 0 or 1 column (233), in particular, having 0 or 1 odd fixed
point. Similarly with an even number, there only remain permutations containing 0 or 1
column (£"). Consequently, the only remaining permutations have 0, 1 or 2 fixed points.
Thanks to the bijection o — o~ !, we need only consider the involutions. We can check
that all transpositions are .J-transpositions. If m is odd, then the involution contains one
fixed point, and the number of such involutions is v(N|,,,1,J) = 1 by Lemma (N2). If
m is even, then the involution may contain 0 or 2 fixed points, and in the case of 2 fixed
points, we can check that there are exactly one odd and one even fixed point. Hence the

number of such involutions is v(N|,,,0/2,J) = 1 by Lemma (N3). O

Proof of (N2) and (N3). By (FJ2) the two numbers in every J-transposition are either
both in P or both in ). This means that no J-transposition takes one number in P and
another in Q). The involutions in (N2) and (N3) are of type

P Q
(o)(e0)(e0)(ee) | (o)(e)(e0)(00)(00)(e0)

The two parts composed by numbers from P and from ) are “independent”. The car-
dinalities of the two parts and the number of fixed points in each side are characterized
by m. If m = 2k + 1 is odd, then every involution o in (N2) has exactly one fixed point,
in Pl or Q|x41, according to the parity of k. Hence

V<N‘2k+17 17 J) = V(P’kao/la J) X V(Q|k+170/17 J) =1L

The last equality follows from Lemmas (P1) and (Q1). If m = 2k is even and k is odd,
then the cardinalities of P|; and Q| are odd. So that there is one fixed point in P|; and
one in Q. Hence v(N|a,0,J) = 0 and

V(N|ok, 2, J) = v(Pl, 1, J) X v(Qlr, 1, J) = 1.

Again, the last equality follows from Lemmas (P1) and (Q1). If m = 2k is even and k is
even, then the cardinalities of P|; and Q| are even. Three situations may occur:
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(i) no fixed point neither in P|; nor in Q|;

(ii) two fixed points in P|; and no fixed point in Q|;
(iii) two fixed points in Q| and no fixed point in P|.
Hence, we get

V(N|ax, 0, J) = v(Plx, 0, J) x v(Qlx,0,J) =1,
v(N|ox,2,J) = v(Pli,0,J) X v(Qlx,2,J) + V(Plx, 2, J) X v(Q|x,0,J) = 0.

The first equality follows from Lemmas (P1) and (Q1). The second equality is proved by
using the bijection ¢ described in Section 2. n

Proof of (P1). When m = 2k is even, the image 7 = (o) by v (described in Section 2) of
every permutation o in (P1) can be identified with a permutation p on {0,1,...,k — 1}
such that i + p(i) € J for i = 0,1,...,k — 1. For example, taking o = (0, 3)(7,8)(4, 11),
we have 7 = (o) = 7((0,3)(8,7)(4,11)) = (0,0)(2,1)(1,2) which can be identified with
the permutation on {0, 1,2} given by

(01 2
P=\o 2 1)

The number of such permutations is odd by Theorem (J1).

When m = 2k + 1 is odd, every permutation o in (P1) has one fixed point. Apply the
transformation v to o, then replace the unique singleton b (which is obtained from the
fixed point of o) by (k,b) or (b, k) to form a pair. There is a unique way to choose between
(k,b) and (b, k) such that 7 can be identified to a permutation p on {0,1,...,k}. For
example take o = (0,11)(7,8)(3,12)(4), we have 7 = v(o) = v((0,11)(8,7)(12,3)(4)) =
(0,2)(2,1)(3,0)(1), the single element is b = 1, we need replace (1) by (1,3) (not (3,1) of
course). So that 7 is identified to the following permutation on {0, 1,2, 3}

0o 1 2 3
p=12 3 1 0
J N J J
or its inverse
01 2 3
p ' =13 2 0 1
J J J N

We can verify that one of the two permutations p and p~! is in (J2) (look at the letter
N at the third line in the above examples). The number of such permutions is odd by
Theorem (J2). O
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Proof of (J2). For every permutation o in (J2), i+ o(i) € J for i <m —2. If o(m — 1)

is odd and o contains a (233) column, let (agj)) be the first (233) column. We then define

another permutation 7 obtained from ¢ by exchanging o(7) and o(m —1). This procedure
is reversible. We can delete the pair ¢ and 7. Similarly we can delete every permutation
o such that o(m — 1) is even and o contains an (&) column. There only remain two
types of permutations. If o(m — 1) is odd, then every number under an odd number in
the two-line representation is even. If o(m — 1) is even, then every number under an even

number is odd, as shown here:
(12345---|m—1> (01234---|m—1>
and
e e e | 0 0 0 o - | e
The letter “e” and “o” represent an even and odd numbers respectively. There are two
cases to be considered.

(I) If m is even, then m — 1 is odd. The number of odd numbers in N|,, is equal to
the number of even numbers in N|,,.

(I.1) If o(m — 1) is even, then the permutations are of the type

01 2 3 456 | 7
o e o e e o | e
J J J J J J J | N
which is equivalent to the product
0 2 4 6 1 3 5 7
0 o o o]lx|le e e e
J J J J J J J N

—~

N|m,0,J), and the second factor is equivalent to

1 )
€

The first factor is equal to v

el

3
e e
J J J
which counts v(N|,,-1,1,J) =1 by (N2).
(L.2) If o(m — 1) is odd, then there are as many even numbers as odd numbers. Since
the last column is (233), there is necessarily a unique column (£'"), which will be called
“Intruder”, and marked by the * sign. The permutations in (J2) are of type

01 203456 | 7
o e e e o e o | o

wen\J J J J J J J|N

The column 2 is the “intruder”, and the letter J under that column can be replaced by
N. Exchanging o(x) and o(m — 1) yields

012 34567
o e o e o e o | e
Yo \J J N J JJJ|N
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which is equivalent to the product

0 2" 4 6 1 3 5 7
ZOOOO Xle e e e
seen \J N J J J J J N

The first factor is equal to v(N|,,, 2, J) and the second one is equal to v(N|m,-1,1,J) =1
by (N2). By (I.1) and (I.2) the total number of permutations in this case is

V(N|pn,0,J) X v(N|pm-1,1,J) + v(N|m, 2, J) X V(N|pn-1,1,J) = v(N|n,0/2,J) =1,

where the last equality follows from (N3).

(IT) If m is odd, then m — 1 is even. The number of even numbers in N|,, is equal to
the number of odd numbers in N|,,, plus 1.

(IL.1) If o(m — 1) is even, then the permutations are of type

01 2 3 45 6 7
o e o e o e o e | e
J

J J J J J J J

which is equivalent to the product

0 2 4 6 1 3 5 7 8
o o o o|lxl|le e e e e
J J J J J J J J N

The first factor is equal to v(N|,,—1,0,J), and the second factor is equivalent to

1 3 5 7
e e e e e
J J J J

The number of such permutations is equal to v(N|,,, 1, J), which is odd, by (N2).
(I1.2) If o(m — 1) is odd, the permutations are of type

0123 456 7| 8
o e e e 0o e o e | o

Sewen\J J J J J J JJ|N

Exchanging o(*) and o(m — 1) yields

0 123 45 6 7| 8
Z o e o e o e o0 e | e
sewen \J J N J J J J J | N
which is equivalent to the product
0 2 4 6 1 3 5 7 8
Z o 0o 0 o Xx|le e e e e
xeven \J N J J J J J J N
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The first factor counts the number of involutions of N|,,_; with 2 fixed points. Their
number is equal to v(N|,,_1,2,J). The second factor is equal to v(N|,,,1,J) = 1 by

(N2). By (IL.1) and (I1.2) the total number of permutations in this case is

V(N|m-1,0,J) X v(N|m, 1, J) + V(N|m-1,2,J) X v(N|m,1,J) = v(N|n-1,0/2,J) =1,

where the last equality follows from (N3).

4 Further results

]

For subsets A, B,C, D of N let ‘é IB;‘ denote the number of permutations ¢ in &,,

such that

i+o(i)e

A, iti o) € [0,m—2]
B, ifie[0,m—2],0()=m—1
C, ifi=m-—1,0()€[0,m—2]
D, ifi=o(i)=m—1.

Theorem (D). For every m > 1, we have

7 szl,

J N _q

J Nm_ ’

J N

N Nl T
K K

K K =m+1,
K N

K K =m+1,
K N

N K =m+ 1.

Remark 1. The following basic facts are easy to verify:

(FK1) The set K contains no even integer;
(FK2) The set K contains all integers of the form 4n + 1;

Remark 2. Since J contains all even numbers, taking D = J is equivalent to taking
D = N; Since K does not contain any even number, taking D = K is equivalent to taking

D =1.

Remark 3. Formula (K1) implies that the Hankel determinants of the series
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satisfies H,,(K) =m + 1 for m > 1.

Remark 4. The formulas in Theorem D can be used to derive other formulas, for
example

= 75

Proof of (Ez). We have
\]‘é ]@szé %!m—\j jmlzm—1 By (J3) and (J1)],  (Exl)
’j ]@szj %\m—lf jm_lzl—lzo, (Ex2)
TR e -
F N I -
i ?tgf?é é\m‘\j émEO—OEO’ (Ex5)
P P P
‘Ii Ijmzfi g’m+’j jmlz(m—l)ﬂzm. (Ex)

The first two identities (J1) and (J2) are simply reproduced from Theorem J.

Proof of (J3). By the same arguments as in the proof of (J1), the permutations to enu-
merate are the involutions ¢ such that

(i) o has 0,1, 2 fixed points;

(ii) every transposition in o is a J-transposition, except the one which contains m — 1,
if it exists;

(iii) If m — 1 is in a transposition (m — 1,b), then m — 1 + b is odd.

(J3.1) If m is odd, then there is exactly one fixed point. If m — 1 is this fixed point,
then the number of involutions is v(N|,,—1,0, J). If m —1 is in a transposition (b, m —1)
and the fixed point is (b2), then deleting m — 1 is a transformation reversible. We get
an involution of &,,_; with two fixed points by, by. The number of such involutions is
V(N|m-1,2,J). Hence the total number of involutions is v(N|,,—1,0, J)+v(N|m-1,2,J) =
V(N|m-1,0/2,J), which is an odd number by Theorem (N3).

(J3.2) If m is even, three situations have to be considered.
(i) If the involution has no fixed point, then the number of involutions is v(N|,,—1, 1, 0).
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(ii) If the involution ¢ has 2 fixed points and m — 1 is a fixed point, then the number
of involutions is also v(N|,,—1, 1,0).

(iii) If m — 1 is in a transposition (m — 1, b1) and the two fixed points are (by) and (b3),
then by + b3 is odd. Exchanging by with by (resp. bs) if by = by (mod 2) (resp. by = by
(mod 2)) is a transformation reversible. Hence the total number of involutions is equal
to v(Nl|m-1,1,0) + v(N|m-1,1,0) plus an even number, which is 0 modulo 2. O

Proof of (K1). By (FK1) every permutation in (K1) contains no fixed point. Since we
need only count the involutions, the number of such permutations is 0 if m is odd. If
m = 2k is even, the permutations are of type

0 1 2
o e o

3 4 5 6 7
e o e o e
K K K K K K K K

which is equivalent to the product

0 2 4 6 1 3 5 7
o 0o o o|x|le e e e
K K K K K K K K
The two factors are equal to v(N|,,,0, K) =1 by (N1). O

Proof of (K2). If m is even, all permutations ¢ in ‘g %‘ are of type

0O 1 2 3 4 5 6 7
o e o e o e o e
K K K K K K K N
which is equivalent to the product
0 2 4 6 1 3 5 7
o 0o o ol|lxle e e e
K K K K K K K N

The number of permutations of the type given by the first factor is equal to v(N|,,, 0, K) =
1 and that of the type given by the second one is equal to ¥(N|,,_1,1, K) = 1 by (N1).

If m is odd, all permutations o in ‘K N‘ are of type
K NI

8

e

1 2 3 4 5 6 7
e o e o0 e o e
K K K K K K K

= o o
=
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which is equivalent to the product

0 2 4 6 1 3 5 7 8
o 0o o o]|lx|le e e e e
K K K K K K K K N

The number of permutations of the type given by the first factor is equal to v(N|,,_1,0, K)
= 1 and that of the type given by the second one is equal to v(N|,,1, K) = 1 by (N1).
Hence

‘K N,
K NI —
and K N K N K K

‘K KmE)K Nm_‘K i =l-(m—-1+1)=m+1

m—1

]

Proof of (K3). We need only count the involutions without fixed points, so that the num-
ber of such permutations is 0 when m is odd. If m = 2k is even, all transpositions are
necessarily K-transpositions, except the one which contains m—1. Removing m — 1 yields
an involution with one fixed point. The number of such involutions is v(N|,,-1,1, K) =1
by (N1). O

Furthermore, in Lemma (N3) we have a mixed formula for 0 or 2 fixed points. From
the proof of (N2) and (N3) we can separate it into two more precise formulas.

Lemma (N’). We have

V(N|o,0,J) =k +1, (N4)
V(N ok, 2,J) = k. (N5)

Using the transfomations 3,7, 9, we see that Lemma N’ is equivalent to

Lemma (P’). We have

v(Plo, 0, K) =k + 1, (P4)

v(P|oy, 2, K) = k. (P5)
Lemma (Q’). We have

v(Qlog, 0, K) =k + 1, (Q4)

v(Qlax, 2, K) = k. (Q5)
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5 Completion of the combinatorial proofs of Theo-
rems APWW and C

Recall that
J={2n+1)2* —1|n,k e N} ={0,2,3,4,6,8,10,11,...}

and
K=N\J=1{1,57913,17,...} = {(2n + 1)2**™ —1 | n,k € N}.

First, we notice that, for £ > 1, the integer g is equal to the 2—adic valuation of 2k,
known sometimes as the ruler function. For k > 1, we have the recursion

Gok+1 =1 and Gok = 1+ gk
This sequence starts as
(gr)e=1 = 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4, ...
The proofs of Theorems APWW and C combine Theorem J with the next two lemmas.
Lemma 1. For k > 0, the integer gy+1 1s odd if, and only if, k is in J.

Proof. Let k be a non-negative integer. It follows from (1.1) that gy, is equal to the
number of pairs (j,m) of integers 7 > 1, m > 0 such that j2™ = k + 1. In particular,
writing k£ 4+ 1 = jo2™° with jy, odd, we see that

E+1=jy2m = (2j0)2™ ' = ... = (2m5,)2°,

showing that gp.1 = mo + 1. Consequently, giy1 is odd if, and only if, mg is even, that
is, if and only if, k£ is in J. ]
Lemma 2. For k > 0, the integer 0 := (tpr1 — tx)/2 is odd if, and only if, k is in J.

Proof. For ¢ > 0, we have
090 = (tarr1 —t20) /2 = —ty = £1,
thus dgp is odd. For an odd integer j > 1 and an integer k > 1, we have

(5j22k_1 = (tj22k — tj22k_1)/2 = (tj22k71 -+ tj22k71_1>/2 = 1 —+ 5j22k—1_1 (mOd 2)

and, likewise,

6j22k71_1 = 1 + 5]'22(]“_1)71 (mOd 2)

Consequently, an immediate induction shows that, for any odd integer j and any integer
¢ > 0, the integer d5¢_; is odd if, and only if, £ is even, that is, if, and only if, 26 —1is
in J. This proves the lemma. [
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Proof of Theorem C. Let J(z) be the power series

J(2) :ijzk:1+z2+23+z4+z6—l—...
k>0
defined by 7, = 1 if £k € J and jr = 0 otherwise. Let k be a positive integer. By the
definition of the determinant, Hy(J) is equal to

Z (=1)"™ jo s o0 d140(1) * * Thmttolh—1)s

geGy,
where inv(o) is the number of inversions of 0. The product jois(0)J1+o(1) ** * Je—140(k-1)
is equal to 1 if i +o0(i) € J for i = 0,1,...,k — 1, and is equal to 0 otherwise. Hence,
the above Hankel determinant Hy(J) is equal modulo 2 to the number of permutations
o € &y such that i + o(i) € J for all i = 0,1,...,k — 1, which is equal to 1 modulo 2
by Theorem (J1). We deduce from Lemma 1 that H(J) = H}(G). Consequently, the
Hankel determinant H}(G) is always an odd integer. Furthermore, it follows from (1.1)
that the coefficients of the power series F(z) and G(z) are congruent modulo 2. This
implies that H} (F) = H}(G), proving that the Hankel determinant H} (F) is always an
odd integer. O

Proof of Theorem APWW. Let k be a positive integer and consider the Hankel determi-
nant Hy(7) of the matrix

to t1 ... tp_1
t1 ty ... tr
le—1 tk ... top—o

For j =1,...,k— 1, subtracting the (j + 1)-th column from the j-th column, we see that
H(T) is equal to the determinant of the matrix

lo — 11 ty =12 ... o —Tlp1 g
to—ty  ty—ts ... tpq—te 1
lk—1 —Tp T —tpp1 ... top—3 —top—2 Top_o

By Lemma 2, this determinant is equal to 2! times an integer which has the same parity
as the determinant of the matrix

Y R 2
JuoJ2 oo Jk—1 g
Je=1 Jk --- Jok—3 lor—o

where jg, 71, ... are defined in the proof of Theorem C. Now, we apply Theorem (J2) to
deduce that the determinant of the latter matrix is an odd integer. It then follows that
the Hankel determinant Hy(7) is a nonzero integer. O
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