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Abstract

A linear equation is r-regular, if, for every r-coloring of the positive integers, there
exist positive integers of the same color which satisfy the equation. In 2005, Fox
and Radoićič conjectured that the equation x1 +2x2 + · · ·+2n−2xn−1−2n−1xn = 0,
for any n > 2, has a degree of regularity of n−1, which would verify a conjecture of
Rado from 1933. Rado’s conjecture has since been verified with a different family
of equations. In this paper, we show that Fox and Radoićič’s family of equations
indeed have a degree of regularity of n− 1. We also prove a few extensions of this
result.
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1 Introduction

In 1927, van der Waerden [1] proved his seminal theorem stating that, for any finite col-
oring of the positive integers, there always exists a monochromatic arithmetic progression
of arbitrary length. Subsequently, in 1933, Rado [2] expanded on this theorem, find-
ing a necessary and sufficient condition for the partition regularity of systems of linear
homogeneous equations. In the case of a single linear homogeneous equation of the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn = 0 : ai 6= 0, ai ∈ Z, (1)

given any finite coloring of the integers, Rado proved that there exist positive monochro-
matic integers (x1, x2, . . . , xn) that satisfy the equation if and only if a nonempty subset of
{a1, a2, . . . , an} sums to 0. An equation for which there exists a monochromatic solution
given any finite coloring is defined as regular.

Not all linear homogeneous equations are regular, however. Those that are not regular
are classified as follows: given a positive integer r, a linear homogeneous equation is called
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r-regular if, for every coloring of the positive integers with r colors, there always exists a
monochromatic solution x1, x2, . . . , xn to the equation. The degree of regularity of a linear
homogeneous equation is defined as the largest positive integer r such that the equation
is r-regular.

Rado [2] conjectured in 1933 that for every positive integer n, there exists a linear
homogeneous equation with degree of regularity equal to n. This conjecture was open for
a long time until it was proven in 2009 by Alexeev and Tsimerman [3]. Specifically, they
proved that for each n the equation(

1−
n−1∑
i=1

2i

2i − 1

)
x1 +

n−1∑
i=1

2i

2i − 1
xi+1 = 0 (2)

is (n − 1)-regular but not n-regular. To show that these equations are (n − 1)-regular,
they noted that there must be an i, 0 < i < n, such that x and 2ix are the same
color. Otherwise, the n integers x, 2x, 4x, . . . 2n−1x would all be different colors, which is
impossible in an (n− 1)-coloring. Alexeev and Tsimerman then noted that the following
is a monochromatic solution to (2):

x1 = x2 = · · · = xi = xi+2 = · · · = xn = 2ix

xi+1 = x.

Before Alexeev and Tsimerman’s proof, it was conjectured in 2005 by Fox and
Radoićič [4] that the simpler family of equations

x1 + 2x2 + · · ·+ 2n−2xn−1 − 2n−1xn = 0 (3)

is (n− 1)-regular. This was shown by Alexeev, Fox, and Graham [5] for n 6 7. We prove
Fox and Radoićič’s conjecture for all n:

Theorem 1. Given any positive integer n > 2, the equation

x1 + 2x2 + · · ·+ 2n−2xn−1 − 2n−1xn = 0 (4)

is (n− 1)-regular.

Fox and Radoićič [4] showed that the equations (4) are not n-regular. Our proof
therefore provides an alternate proof of Rado’s conjecture.

To prove that (4) is (n− 1)-regular, we use a similar strategy to Alexeev and Tsimer-
man. Specifically, we use the fact that in an (n − 1)-coloring of the positive integers,
one can find 0 < i < n such that x and 2ix are the same color. We then introduce
some lemmas which use van der Waerden’s theorem to prove that one can find monochro-
matic arithmetic progressions centered at x and 2ix. Finally, we find a monochromatic
parametrization of x1, . . . , xn which includes the progressions centered at x and 2ix.

The organization of this paper is as follows: In Section 2 we prove some important
lemmas. In Section 3, we prove our main result, Theorem 1. In Section 4, we prove some
extensions of Theorem 1.
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2 Lemmas

The below lemmas are very similar to lemmas in Graham, Rothschild, and Spencer [6]
used in the proof of Rado’s Theorem. The main difference is that the hypotheses are
relaxed to a family of sets being r-regular instead of regular, and as a result, the lemmas
apply to an r-coloring of the positive integers, and not any finite coloring. Similar versions
of these lemmas [7] have also been used to strengthen the proof of Rado’s conjecture [3].
A few definitions are needed beforehand.

Definition 2. A family S of subsets of N is defined to be homogeneous, if for any set
A ∈ S and for all k ∈ N, the set Ak, defined as {ka : a ∈ A}, also belongs to S. S is
r-regular, if for any r-coloring of the positive integers, there exists a monochromatic set
in S.

Lemma 3. Let S be a homogeneous family of subsets of N which is r-regular, where r is
a positive integer. If the positive integers are colored with r colors, then for any M > 0,
there exist B ∈ S and a positive integer d so that all

b+ λd : b ∈ B, |λ| 6M

have the same color.

Proof. By the Compactness principle [6], we can find a constant R such that for any r-
coloring of [1, R], there exists a monochromatic set in S which is a subset of [1, R]. Now,
let ω be an r-coloring of N. We define an rR coloring on N, namely ω′, by

ω′(α) = ω′(β) iff ω(αi) = ω(βi) for 1 6 i 6 R.

We define K = MRn−1. Recall that van der Waerden’s theorem [1] states that in any
finite coloring of the positive integers, there exists an arbitrarily long monochromatic
arithmetic progression. By van der Waerden’s theorem, within the coloring ω′, we can
find a monochromatic arithmetic progression P of length 2K + 1 of the form

a+ λd : |λ| 6 K. (5)

Note that for the original coloring ω, this means that P , 2 ·P ,. . . , R ·P are all monochro-
matic. Since S is homogeneous, the r-coloring ω of {a, 2a, . . . , Ra} yields a monochromatic
set in S, namely B.

Now we let n be the size of B and let ab1, . . . , abn be the elements of B. Moreover, we
let y be the least common multiple of b1, . . . , bn and d′ = dy. Therefore,

abi + λd′ = abi + λdy = bi

(
a+ λd

(
y

bi

))
.

Notice that if |λ| 6M , then since y
bi
6 b1 . . . bi−1bi+1 . . . bn 6 Rn−1, we have |λy/bi| 6 K.

Thus, a+ λdy/bi belongs to P for |λ| 6M , which implies that

ω′
(
a+ λd

(
y

bi

))
= ω′(a),
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and thus, by our definition of ω′,

ω(abi + λd′) = ω(abi).

Since ω(abi) is constant for 1 6 i 6 n, ω(abi + λd′) is constant for 1 6 i 6 n and
|λ| 6M .

Corollary 4. Let S be a homogeneous family of subsets of N which is r-regular, where
r is a positive integer. Let q and M be any positive integers. If the positive integers are
colored with r colors, then there exist B ∈ S, d > 0 such that all of

b+ λd : b ∈ B, |λ| 6M (6)

and
qd (7)

have the same color.

Proof. We use induction on the number of colors. Let p be a positive integer less than or
equal to r. The case p = 1 is trivial since then any set of positive integers is monochro-
matic. Assume that there exists T = T (p − 1,M, q) so that if [1, T ] is (p − 1)-colored,
there exist B ∈ S and d satisfying (6) and (7). Now consider any p-coloring of the positive
integers. By Lemma 3, and since p 6 r, there exist B ∈ S and d′ > 0 such that all

b+ λd′ : b ∈ B, |λ| 6 TM

are the same color, suppose red. If there exists an integer u 6 T where uqd′ is also
colored red then we let d = ud′, which would satisfy (6) and (7). Otherwise, the integers
qd′, 2qd′, . . . , T qd′ are each colored with one of p − 1 colors. Therefore, (6) and (7) are
satisfied by induction.

3 Proof of Main Theorem

In this section we prove Theorem 1.

Proof. Consider any (n − 1)-coloring c : N → {1, . . . , n − 1} of the positive integers. By
the pigeonhole principle, among the set of integers {20, 21, . . . , 2n−1}, there must be 2
integers of the same color. Therefore, among the first 2n−1 positive integers, there are
integers j, 1 6 j 6 n − 1, and x, such that c(x) = c(2jx). We now define the set S, a
family of ordered pairs by:

S =
{

(a, b) ∈ N2 : a = 2jb where 1 6 j 6 n− 1
}
.

Notice that S is homogeneous, Moreover, by the argument above, S is (n− 1)-regular on
N; specifically, a monochromatic set in S can be found on any (n− 1)-coloring of the first
2n−1 integers. We now let M = 2n.
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By Corollary 4, for any (n− 1)-coloring of N there exist (a, b) ∈ S, d > 0, where all

a+ l1d : |l1| 6M

b+ l2d : |l2| 6M

2n−1d

are the same color. By the definition of S, there exists a positive integer j such that
a = 2jb. We now form the following parametrization of x1, . . . , xn:

xi =


2n−1d : 1 6 i 6 n, i 6= n− j, i 6= n

2jb+ λ1d : i = n− j
b+ λ2d : i = n

(8)

where λ1 and λ2 are integers in the range −M 6 λ1, λ2 6 M , whose exact values are
to be determined. Notice that by the above, all of the xi are 2n−1d except xn−j and xn.
Clearly, each of the values assigned to x1, . . . , xn is the same color, regardless of the values
of λ1, λ2. In order for the above values of x1, . . . , xn to satisfy (4), we must have:

2n−1d(2n−1 − 1− 2n−1−j) + 2n−1−j(2jb+ λ1d)− 2n−1(b+ λ2d) = 0,

which implies that

22n−2 − 2n−1 − 22n−2−j + 2n−1−jλ1 − 2n−1λ2 = 0.

Rearranging terms and dividing out by 2n−1−j, we see that

λ1 − 2jλ2 = 2n−1 + 2j − 2n−1+j.

We may now choose λ2 = 2n−1 and λ1 = 2n−1 + 2j, both of which are less than or
equal to M . These values of λ1, λ2 produce x1, . . . , xn according to (8) which are both
monochromatic and satisfy (4).

4 Extensions

We can derive several extensions of our results. The first states that adding additional
terms to a linear homogeneous equation can not lower its degree of regularity.

Theorem 5. Assume the equation a1x1 + · · · + anxn = 0 is r-regular. Then, for any
positive integer k, and rationals b1, . . . , bk, the equation

a1x1 + · · ·+ anxn + b1xn+1 + · · ·+ bkxn+k = 0 (9)

is also r-regular.
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Proof. Given any r-coloring of the integers, we can find (x1, . . . , xn) of the same color
which satisfy

∑n
i=0 aixi = 0. By Corollary 4, for any positive integer M , there are

y1, . . . , yn, d > 0 where
∑n

i=0 aiyi = 0 and such that all of:

yi + λd : |λ| 6M

and
a1d

have the same color. We now consider the monochromatic parametrization:

x1 = y1 + λ1d
...

xn = yn + λnd

xn+1 = a1d
...

xn+k = a1d,

which is a solution to (9) if and only if:

a1λ1 + · · ·+ anλn + (b1 + · · ·+ bk)a1 = 0.

The above equation is satisfied if we let λ1 = −(b1 + · · ·+ bk), λ2 = · · · = λn = 0.

We next prove that given any linear homogeneous equation E of n variables, for any
(n− 1)-coloring of the positive integers, there exist monochromatic integers which satisfy
E with at most one of the signs of the coefficients changed. This is equivalent to stating
that for an (n− 1)-coloring of the positive integers, a monochromatic solution will always
be found on one of the n+ 1 hyperplanes defined by changing exactly 1 or 0 signs of the
coefficients of E.

Theorem 6. Suppose we are given the equation
∑n

i=1 aixi = 0. Then for any (n − 1)-
coloring of the positive integers, there exist x1, . . . , xn and a function f : {1, 2, . . . , n} →
{−1, 1}, where there is at most one i such that f(i) = −1, such that

f(1)a1x1 + · · ·+ f(n)anxn = 0. (10)

Proof. We define the family of sets

S : {(|ai|k, |aj|k) : k ∈ N, 1 6 i < j 6 n}.

S is clearly homogeneous. We claim that S is also (n− 1)-regular. To show this, consider
any (n− 1)-coloring of the positive integers. Then, by the pigeonhole principle, of the n
integers |a1|, . . . |an|, two must have the same color. The resulting set is monochromatic
and belongs to S. We define P = |a1a2 · · · an|.

the electronic journal of combinatorics 21(3) (2014), #P3.28 6



By Corollary 4, for any (n − 1)-coloring of N, and for any positive integer M , there
exist {|ai|k, |aj|k} ∈ S, d > 0, where all

|ai|k + l1d : |l1| 6M

|aj|k + l2d : |l2| 6M

Pd

have the same color.
If ai and aj have opposite signs, then we define f(1) = · · · = f(n) = 1. Otherwise, we

define f(1) = · · · = f(i− 1) = f(i+ 1) = · · · = f(n) = 1, f(i) = −1.
We now proceed almost identically as to in Theorem 1. We will prove that (10) has

a monochromatic solution. We consider the following monochromatic parametrization of
x1, . . . , xn:

xl =


Pd : 1 6 l 6 n, l 6= i, l 6= j

|aj|k + λ1d : l = i
|ai|k + λ2d : l = j

Notice that all of x1, . . . , xn are Pd except xi and xj. The above x1, . . . , xn satisfy (10) if
and only if

f(i)aiλ1 + ajλ2 + P (a1 + · · ·+ ai−1 + ai+1 + · · ·+ aj−1 + aj+1 + · · ·+ an) = 0.

We now choose λ2 = 0,

λ1 = −P (a1 + · · ·+ ai−1 + ai+1 + · · ·+ aj−1 + aj+1 + · · ·+ an)

f(i)ai
,

which is an integer, by the definition of P .

5 Conclusion

Both Theorem 1 and the result of Alexeev and Tsimerman [3] show that certain equations
of n variables are (n − 1)-regular. Rado [2] conjectured that the degree of regularity of
any linear homogeneous equation with n variables which is not regular is bounded above
by some function of n. Fox and Kleitman [8] proved this conjecture for n = 3. It seems
that there is also a nontrivial lower bound on the degree of regularity for most linear
homogeneous equations:

Conjecture 7. For each positive integer r there is an integer n(r) such that for any
n > n(r), any linear homogeneous equation in n variables with nonzero integer coefficients
not all of the same sign is r-regular.

The requirement that the linear homogeneous equation have coefficients not all of the
same sign is necessary even if we allow solutions to belong to all of the nonzero integers.
For instance, given the equation x1 + · · · + xn = 0, we can color the positive integers
blue and the negative integers red to exclude monochromatic solutions, meaning that the
equation’s degree of regularity is 1 for any n.
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