A Characteristic Factor for the 3-Term IP Roth Theorem in $\mathbb{Z}_3^{\mathbb{N}}$

Randall McCutcheon Alistair Windsor

Department of Mathematical Sciences
The University of Memphis
Tennessee, U.S.A.

rmcctchn@memphis.edu

awindsor@memphis.edu

Submitted: Sep 12, 2013; Accepted: Jun 21, 2014; Published: Jul 3, 2014 Mathematics Subject Classifications: 05D10, 37A15

Abstract

Let $\Omega = \bigoplus_{i=1}^{\infty} \mathbb{Z}_3$ and $e_i = (0, \dots, 0, 1, 0, \dots)$ where the 1 occurs in the *i*-th coordinate. Let $\mathscr{F} = \{\alpha \subset \mathbb{N} : \varnothing \neq \alpha, \alpha \text{ is finite}\}$. There is a natural inclusion of \mathscr{F} into Ω where $\alpha \in \mathscr{F}$ is mapped to $e_{\alpha} = \sum_{i \in \alpha} e_i$. We give a new proof that if $E \subset \Omega$ with $d^*(E) > 0$ then there exist $\omega \in \Omega$ and $\alpha \in \mathscr{F}$ such that

$$\{\omega, \omega + e_{\alpha}, \omega + 2e_{\alpha}\} \subset E$$
.

Our proof establishes that for the ergodic reformulation of the problem there is a characteristic factor that is a one step compact extension of the Kronecker factor.

1 Introduction

Let $\Omega = \bigoplus_{i=1}^{\infty} \mathbb{Z}_3$. Ω is an abelian group and hence amenable. Let $e_i = (0, \dots, 0, 1, 0, \dots)$ where the 1 occurs in the *i*-th coordinate. For a set S let

$$\mathscr{F}(S) = \{ \gamma \subset S : \gamma \text{ is non-empty and finite} \}.$$

We will denote $\mathscr{F}(\mathbb{N})$ by simply \mathscr{F} and endow it with the discrete topology. There is a natural inclusion of \mathscr{F} into Ω where $\alpha \in \mathscr{F}$ is mapped to $e_{\alpha} = \sum_{i \in \alpha} e_i$.

The upper Banach density of a set $E \subset \Omega$, denoted $d^*(E)$, is defined as

$$d^*(E) = \sup_{(\Phi_n) \text{ Følner}} \limsup_{n \to \infty} \frac{|E \cap \Phi_n|}{|\Phi_n|}$$

where the supremum is taken over the set of Følner sequences, i.e. over the set of sequences of finite sets $(\Phi_n)_{n=1}^{\infty}$ in Ω such that for all $\omega \in \Omega$

$$\lim_{n \to \infty} \frac{|(\omega + \Phi_n) \triangle \Phi_n|}{|\Phi_n|} = 0.$$

We give a new proof of the following theorem:

Theorem 1. Let $E \subset \Omega$ with $d^*(E) > 0$. There exists $\omega \in \Omega$ and $\alpha \in \mathscr{F}$ such that

$$\{\omega, \omega + e_{\alpha}, \omega + 2e_{\alpha}\} \subset E.$$
 (1)

One can derive Theorem 1 from Furstenberg's correspondence principle and the following recurrence theorem.

Theorem 2. Let $(T_{\omega})_{\omega \in \Omega}$ be a measure-preserving action of Ω on a probability space (X, \mathscr{A}, μ) . If $A \in \mathscr{A}$ with $\mu(A) > 0$ then there exists $\alpha \in \mathscr{F}$ such that

$$\mu(A \cap T_{e_{\alpha}}A \cap T_{2e_{\alpha}}A) > 0.$$

Theorem 2 is not new; it follows from the Furstenberg-Katznelson IP-Szemerédi Theorem [FK85]. However, our proof identifies a characteristic factor that is a 1-step compact extension of the Kronecker factor of T_{ω} . Identifying a characteristic factor is suggestive of a first step in obtaining a decent quantitative result.

2 Ultrafilter Preliminaries

We will be working with the Stone-Čech compactification of \mathscr{F} , $\beta\mathscr{F}$. Since \mathscr{F} is discrete we may identify points of $\beta\mathscr{F}$ with ultrafilters on \mathscr{F} . An ultrafilter \mathfrak{p} on \mathscr{F} is a subset $\mathfrak{p} \subset \mathscr{P}(\mathscr{F})$ that satisfies the following axioms

- 1. $\emptyset \notin \mathfrak{p}$,
- 2. If $A \subset B$ and $A \in \mathfrak{p}$ then $B \in \mathfrak{p}$.
- 3. If $A, B \in \mathfrak{p}$ then $A \cap B \in \mathfrak{p}$.
- 4. if $A \subset \mathscr{F}$ then either $A \in \mathfrak{p}$ or $A^c \in \mathfrak{p}$.

We identify $\alpha \in \mathscr{F}$ with the principal ultrafilter $\mathfrak{p}_{\alpha} = \{A \subset \mathscr{F} : \alpha \in A\}$. We can endow $\beta \mathscr{F}$ with the Stone topology, that is for $A \subset \mathscr{F}$, we define $\overline{A} = \{\mathfrak{p} \in \beta \mathscr{F} : A \in \mathfrak{p}\}$, and the set $\{\overline{A} : A \subset \mathscr{F}\}$ is a basis for the closed sets of $\beta \mathscr{F}$. Indeed, from the ultrafilter property $\overline{A}^c = \overline{A}^c$ and so this is also a basis for the open sets.

For $\alpha, \beta \in \mathscr{F}$ we write $\alpha < \beta$ if $\max \alpha < \min \beta$. When $\alpha < \beta$ we define $\alpha * \beta = \alpha \cup \beta$ and we leave $\alpha * \beta$ undefined otherwise. This makes $(\mathscr{F}, *)$ into an adequate partial semigroup in the sense of [BBH94] (see also [HM01]]). Briefly this means that * maps a subset of

 $\mathscr{F} \times \mathscr{F}$ to \mathscr{F} , is associative for all triples where defined, and for any $\alpha_1, \ldots, \alpha_n \in \mathscr{F}$ there exists $\beta \in \mathscr{F}$ such that $\alpha_i * \beta$ is defined for all $1 \leq i \leq n$. Notice that if $\alpha < \beta$ then

$$e_{\alpha*\beta} = e_{\alpha} + e_{\beta}.$$

In the case of a semi-group \mathscr{F} the operation extends to an operation on $\beta\mathscr{F}$ that makes $\beta\mathscr{F}$ a semi-group. In our case however \mathscr{F} is only a partial semi-group and * does not extend to all of $\beta\mathscr{F} \times \beta\mathscr{F}$. We extend the operation * to a partial semi-group operation on $\beta\mathscr{F}$ using the same definition as for semi-groups

$$A \in \mathfrak{p} * \mathfrak{q} \iff \{p : \{q : p * q \in A\} \in \mathfrak{q}\} \in \mathfrak{p}$$

where $p * q \in A$ means both that p * q is defined and $p * q \in A$. This extends the existing operation * in the following sense: if $\alpha, \beta \in \mathscr{F}$ then $\mathfrak{p}_{\alpha} * \mathfrak{p}_{\beta}$ is defined if $\alpha * \beta$ is defined, and in this case $\mathfrak{p}_{\alpha} * \mathfrak{p}_{\beta} = \mathfrak{p}_{\alpha * \beta}$. If we let $\mathscr{F}_n = \mathscr{F}(\{n+1, n+2, \dots\})$ then we can define $\delta \mathscr{F} = \bigcap_{n=1}^{\infty} \overline{\mathscr{F}_n} \subset \beta \mathscr{F}$. If we wish $\mathfrak{p} * \mathfrak{q}$ to be defined for all $\mathfrak{p} \in \beta \mathscr{F}$ then it turns out that we must have $\mathfrak{q} \in \delta \mathscr{F}$.

Given an ultrafilter $\mathfrak p$ on $\mathscr F$ we say that a sequence $(x_\alpha)_{\alpha\in\mathscr F}$ in a Banach space X $\mathfrak p$ -converges to L in norm if for every $\epsilon>0$ we have $\{\alpha\in\mathscr F:\|x_\alpha-L\|<\epsilon\}\in\mathfrak p$. Since the limit, if it exists, is unique we write $\mathfrak p$ - $\lim x_\alpha=L$. It can be shown that every pre-compact sequence $\mathfrak p$ -converges. Given an ultrafilter $\mathfrak p$ on $\mathscr F$ we say that a sequence $(x_\alpha)_{\alpha\in\mathscr F}$ in a Hilbert space H $\mathfrak p$ -converges to L weakly if for every $x\in H$ we have $\mathfrak p$ - $\lim \langle x_\alpha,x\rangle=\langle L,x\rangle$.

It may be shown that $(\delta \mathscr{F}, *)$ is a compact Hausdorff right topological semigroup. An idempotent ultrafilter \mathfrak{p} is one that satisfies $\mathfrak{p} * \mathfrak{p} = \mathfrak{p}$. For $E \subset \mathscr{F}$ write

$$\overline{d}(E) = \limsup_{n \to \infty} \frac{|E \cap \mathscr{F}(\{1, \dots, n\})|}{2^n}.$$

An ultrafilter $\mathfrak{p} \in \delta \mathscr{F}$ is called essential if for every $A \in \mathfrak{p}$ we have $\bar{d}(A \cap \mathscr{F}_n) > 0$. By [BM12, Proposition 2.1] there exists an essential idempotent ultrafilter in $\delta \mathscr{F}$.

3 Factors and Joinings

Crucial to our proof will be the following theorem. It is a combination of [BM12, Theorem 3.3] and [BM12, Theorem 4.3]. In [BM12] Theorem 4.3 is derived from [BKMP88, Corollary 1]; in our case, where we need only consider $\bigoplus_{n=1}^{\infty} \mathbb{Z}_3$, one may derive the appropriate version of [BM12, Theorem 4.3] from [BM83, Proposition 2.7], which is a direct consequence of a result of Woodall in [Woo77]. This theorem is the only place where the fact that \mathfrak{p} is an essential ultrafilter is used.

Theorem 3. [Ber03, Corollary 4.6] Let $(T_{\omega})_{\omega \in \Omega}$ be a measure-preserving action of Ω on a probability space (X, \mathscr{A}, μ) . The action T extends to a unitary action on $L^2(X, \mathscr{A}, \mu)$. Let \mathfrak{p} be an essential idempotent ultrafilter in $\delta \mathscr{F}$. Define an operator P on $L^2(X, \mathscr{A}, \mu)$ by

$$\mathfrak{p}$$
 - $\lim_{\alpha \in \mathscr{F}} T_{e_{\alpha}} f = Pf$ weakly

for $f \in L^2(X, \mathcal{A}, \mu)$. The operator P is the orthogonal projection onto the Kronecker factor

$$K = \{ f \in L^2(X, \mathcal{A}, \mu) : \{ T_{\omega}f : \omega \in \Omega \} \text{ is norm precompact} \}.$$

Now we observe that $K = L^2(X, \mathcal{K}, \mu)$ for some sub- σ -algebra $\mathcal{K} \subset \mathcal{A}$ with \mathcal{K} being T_{ω} invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). Let $(\mu_x)_{x \in X}$ be the disintegration of μ over the Kronecker algebra \mathcal{K} , so that

$$\int f d\mu_x = E(f|\mathcal{K})(x) = Pf(x) \text{ a.e.},$$

where $E(f|\mathcal{K})$ is the conditional expectation of f over \mathcal{K} and P is the orthogonal projection onto K. To see that these are equal we observe that if $f \in L^2(X, \mathcal{A}, \mu)$ with $E(f|\mathcal{K}) = 0$ then $\int f g d\mu = 0$ for all $g \in K$.

Using the measures μ_x on X we may define a family of norms on X indexed by $x \in X$ as follows

$$||f||_x = \left(\int |f|^2 d\mu_x\right)^{\frac{1}{2}}.$$

We will use $\|\cdot\|$ without any subscript to denote the appropriate L^2 norm.

Definition 4. A function $f \in L^2(X, \mathcal{A}, \mu)$ is called almost periodic over K, or AP over K for short, if for all $\epsilon > 0$ there exist $g_1, \ldots, g_k \in L^2(X, \mathcal{A}, \mu)$ such that for almost every $x \in X$ and every $\omega \in \Omega$ there exists $1 \leq i = i(x, \omega) \leq k$ such that

$$||T_{\omega}f - g_i||_x \leqslant \epsilon.$$

One may show that the bounded AP over K functions are dense in the AP over K functions, the constant functions are AP over K, sums and products of bounded AP over K functions are again bounded AP over K functions. Therefore, the closure of the set of AP over K functions is of the form $L^2(X, \mathcal{B}, \mu)$ for some σ -algebra $\mathcal{B} \subset \mathcal{A}$ with \mathcal{B} being T_{ω} invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). One may also observe that any bounded $f \in K$ is AP over K and hence any $f \in K$ is \mathcal{B} -measurable, so that $\mathcal{K} \subset \mathcal{B}$. We observe that if $E(f|\mathcal{B}) = 0$ then $E(f|\mathcal{K}) = Pf = 0$.

Consider the relative product measure $\tilde{\mu}$ on $X \times X$ defined by

$$\tilde{\mu}(A) = \int (\mu_x \times \mu_x)(A) \, d\mu(x)$$

so that

$$\int f(x)g(y) \, d\tilde{\mu}(x,y) = \int P(f)(x)P(g)(x) \, d\mu(x).$$

This measure is invariant under $\tilde{T}_{\omega} = T_{\omega} \times T_{\omega}$ for every $\omega \in \Omega$. If \mathfrak{p} is an essential idempotent ultrafilter in $\delta \mathscr{F}$ then by Theorem 3

$$\mathfrak{p}$$
 - $\lim_{\alpha} \tilde{T}_{e_{\alpha}} h = \mathfrak{p}$ - $\lim_{\alpha} \tilde{T}_{2e_{\alpha}} h = Qh$,

where Q is the orthogonal projection onto the Kronecker factor of \tilde{T} .

Given $H \in L^2(X \times X, \mathscr{A} \otimes \mathscr{A}, \tilde{\mu})$, where $\mathscr{A} \otimes \mathscr{A}$ denotes the (completion of the) sigma algebra generated by the rectangles $\{A_1 \times A_2 : A_1, A_2 \in \mathscr{A}\}$, and $\phi \in L^{\infty}(X, \mathscr{A}, \mu)$ we may define

 $H \star \phi(x) = \int H(x,s)\phi(s) d\mu_x(s).$

Lemma 5. If QH = H then for all $\phi \in L^{\infty}(X, \mathcal{A}, \mu)$ $H \star \phi$ is \mathcal{B} -measurable.

Proof. Since Q is the projection onto the Kronecker factor of $(X \times X, \tilde{T}_{\omega}, \tilde{\mu})$ we have that H is expressible as a countable sum of eigenfunctions for \tilde{T}_{ω} . Without loss of generality we may assume that H is an eigenfunction, i.e. that

$$(\tilde{T}_{\omega}H)(t,s) = H(T_{\omega}t, T_{\omega}s) = \lambda(\omega) H(t,s)$$

where $\lambda:\Omega\to S^1$ is a character. Notice that

$$(T_{\omega}(H \star \phi))(x) = (H \star \phi)(T_{\omega}x)$$

$$= \int H(T_{\omega}x, s)\phi(s) d\mu_{T_{\omega}x}(s)$$

$$= \int H(T_{\omega}x, T_{\omega}s)\phi(T_{\omega}s) d\mu_{x}(s)$$

$$= \lambda(\omega) \int H(x, s)T_{\omega}\phi(s) d\mu_{x}(s)$$

$$= \lambda(\omega) (H \star T_{\omega}\phi)(x).$$
(2)

Now for almost every $y \in X$ we have $\phi \mapsto H \star \phi$ is a compact operator on $L^2(X, \mathscr{A}, \mu_y)$ and range (λ) is finite so (2) shows that $\{T_\omega(H \star \phi) : \omega \in \Omega\}$ is precompact in $L^2(X, \mathscr{A}, \mu_y)$. Hence for almost every $y \in X$ and every $\epsilon > 0$ there exists $M(y, \epsilon)$ such that $\{T_\omega(H \star \phi) : \omega \in \text{span}\{e_1, \ldots, e_{M(y, \epsilon)}\}\}$ is ϵ -dense in $\{T_\omega(H \star \phi) : \omega \in \Omega\}$ in $L^2(X, \mathscr{A}, \mu_y)$. Let $\epsilon > 0$ be arbitrary. Choose M_n sufficiently large that $M_n > M(y, \frac{1}{n})$ except for $y \in E_n$ where $E_n \in \mathscr{K}$ and $\mu(E_n) \leqslant \epsilon 2^{-n}$. Define

$$f_{\epsilon}(x) = \begin{cases} 0 & \text{if } x \in \bigcup_{n=1}^{\infty} E_n, \\ H \star \phi(x) & \text{otherwise.} \end{cases}$$

It can be easily shown that $||f_{\epsilon} - H \star \phi|| < ||H||_{\infty} ||\phi||_{\infty} \epsilon$. Thus it suffices to show that f_{ϵ} is almost periodic over K. From the construction it is easy to observe that $\{0\} \cup \{T_{\omega}(H \star \phi) : \omega \in \text{span}\{e_1, \dots, e_{M_n}\}\}$ is $\frac{1}{n}$ -dense in $\{T_{\omega}f_{\epsilon} : \omega \in \Omega\}$ in $L^2(\mu_y)$ for almost every $y \in X$. Thus f_{ϵ} is almost periodic over K as required. Since $H \star \phi$ lies in the closure of the functions that are almost periodic over K, $H \star \phi$ is \mathcal{B} -measurable. \square

4 Projection Results

We now give applications of our results on joinings to the projections of products.

Lemma 6. Let \mathfrak{p} be an essential idempotent in $\delta \mathscr{F}$ and let $f \in L^{\infty}(X, \mathscr{A}, \mu)$. If $E(f|\mathscr{B}) = 0$ then

$$\mathfrak{p} - \lim_{\alpha} \|P(f T_{e_{\alpha}} f)\| = \mathfrak{p} - \lim_{\alpha} \|P(f T_{2e_{\alpha}} f)\| = 0.$$

Proof. Let $f, g \in L^{\infty}(X, \mathcal{A}, \mu)$. One has

$$\mathfrak{p} - \lim_{\alpha} \|P(g(T_{e_{\alpha}}f))\|^{2} \\
= \mathfrak{p} - \lim_{\alpha} \int \left(P(g(T_{e_{\alpha}}f))(x)\right)^{2} d\mu(x) \\
= \mathfrak{p} - \lim_{\alpha} \int \left(\int g(t) \left(T_{e_{\alpha}}f\right)(t) d\mu_{x}(t)\right)^{2} d\mu(x) \\
= \mathfrak{p} - \lim_{\alpha} \int \left(\int g(t) \left(T_{e_{\alpha}}f\right)(t) d\mu_{x}(t)\right) \\
\left(\int g(s) \left(T_{e_{\alpha}}f\right)(s) d\mu_{x}(s)\right) d\mu(x) \\
= \mathfrak{p} - \lim_{\alpha} \int (g \otimes g) \tilde{T}_{e_{\alpha}}(f \otimes f) d\tilde{\mu} \\
= \int (g \otimes g) Q(f \otimes f) d\tilde{\mu}, \tag{3}$$

and the same equality holds for \mathfrak{p} - $\lim_{\alpha} \|P(f(T_{2e_{\alpha}}f))\|^2$. Clearly $Q(f \otimes f)(t,s) = Q(f \otimes f)(s,t)$ and $Q(f \otimes f)$ is (essentially) bounded. We thus have that $Q(f \otimes f)$ is a positive definite symmetric kernel in the sense of [FK91, Section 3.6]. By [FK91, equation (3.6)] $Q(f \otimes f)(t,s) = \sum_k \lambda_k(t)\phi_k(t)\phi_k(s)$ where λ_k is \mathscr{K} -measurable (so that $\lambda_k(s) = \lambda_k(t)$ for $\tilde{\mu}$ -almost every (t,s)), and for almost every $y \in X$ $\{\phi_k\}$ is orthonormal in $L^2(\mu_y)$. One may then check that $Q(f \otimes f) \star \phi_k = \lambda_k \phi_k$, so by Lemma 5 $\lambda_k \phi_k$ is \mathscr{B} -measurable.

Applying (3) with g = f, we get

$$\mathfrak{p} - \lim_{\alpha} \|P(f(T_{e_{\alpha}}f))\|^{2} = \int (f \otimes f) Q(f \otimes f) d\tilde{\mu}$$

$$= \int f(t) f(s) \left(\sum_{k} \lambda_{k}(t) \phi_{k}(t) \phi_{k}(s)\right) d\tilde{\mu}$$

$$= \sum_{k} \int f(t) f(s) \lambda_{k}(t) \phi_{k}(t) \phi_{k}(s) d\tilde{\mu}$$

$$= \sum_{k} \int P(f \lambda_{k} \phi_{k}) P(f \phi_{k}) d\mu.$$

However, since $\lambda_k \phi_k$ is \mathscr{B} -measurable we have

$$E(f \lambda_k \phi_k | \mathscr{B}) = \lambda_k \phi_k E(f | \mathscr{B}) = 0$$

and consequently $P(f \lambda_k \phi_k) = 0$.

Lemma 7. Let \mathfrak{p} be an essential idempotent on \mathscr{F} . If $f, g \in L^{\infty}(X, \mathscr{A}, \mu)$ with either $E(f|\mathscr{B}) = 0$ or $E(g|\mathscr{B}) = 0$ then \mathfrak{p} - $\lim_{\alpha} T_{e_{\alpha}} f T_{2e_{\alpha}} g = 0$ weakly.

As is common in proofs of this type, a version of the Van der Corput lemma is crucial. This version appears as [BM12, Theorem 3.5].

Lemma 8 (Van der Corput Lemma). Let $(x_{\alpha})_{\alpha \in \mathscr{F}}$ be a bounded \mathscr{F} -sequence of vectors in a Hilbert space and let $\mathfrak{p} \in \delta \mathscr{F}$ be an idempotent. If $\mathfrak{p} - \lim_{\alpha} \mathfrak{p} - \lim_{\beta} \langle x_{\alpha * \beta}, x_{\beta} \rangle = 0$ then $\mathfrak{p} - \lim_{\alpha} x_{\alpha} = 0$ weakly.

We now use this Van der Corput Lemma to prove Lemma 7.

Proof of Lemma 7. Let $x_{\alpha} = T_{e_{\alpha}} f T_{2e_{\alpha}} g$. Then

$$\begin{split} \mathfrak{p} - \lim_{\beta} \mathfrak{p} - \lim_{\alpha} \langle x_{\alpha*\beta}, x_{\alpha} \rangle \\ &= \mathfrak{p} - \lim_{\beta} \mathfrak{p} - \lim_{\alpha} \int T_{e_{\alpha}} T_{e_{\beta}} f \, T_{2e_{\alpha}} T_{2e_{\beta}} g \, T_{e_{\alpha}} f \, T_{2e_{\alpha}} g \, d\mu \\ &= \mathfrak{p} - \lim_{\beta} \mathfrak{p} - \lim_{\alpha} \int T_{e_{\beta}} f \, T_{e_{\alpha}} T_{2e_{\beta}} g \, f \, T_{e_{\alpha}} g \, d\mu \\ &= \mathfrak{p} - \lim_{\beta} \mathfrak{p} - \lim_{\alpha} \int \left(f \, T_{e_{\beta}} f \right) T_{e_{\alpha}} \left(g \, T_{2e_{\beta}} g \right) d\mu \\ &= \mathfrak{p} - \lim_{\beta} \int P \left(f \, T_{e_{\beta}} f \right) P \left(g \, T_{2e_{\beta}} g \right) d\mu \\ &\leqslant \mathfrak{p} - \lim_{\beta} \| P \left(f T_{e_{\beta}} f \right) \| \| P \left(g T_{2e_{\beta}} g \right) \| = 0 \end{split}$$

since either \mathfrak{p} - $\lim_{\beta} ||P(fT_{e_{\beta}}f)|| = 0$ or \mathfrak{p} - $\lim_{\beta} ||P(gT_{2e_{\beta}}g)|| = 0$ by Lemma 6. Hence by the conclusion of the Van der Corput lemma we obtain that

$$\mathfrak{p}$$
 - $\lim_{\alpha} T_{e_{\alpha}} f T_{2e_{\alpha}} g = 0$ weakly,

as required. \Box

5 Proof of Theorem 2

Our goal is to show that for $A \in \mathcal{A}$ with $\mu(A) > 0$,

$$\mathfrak{p} - \lim_{\alpha} \mu(A \cap T_{e_{\alpha}}A \cap T_{2e_{\alpha}}A) > 0.$$

It is equivalent that for $A \in \mathscr{A}$ with $\mu(A) > 0$ the characteristic function $f = \mathbbm{1}_A$ satisfies

$$\mathfrak{p} - \lim_{\alpha} \int f \ T_{e_{\alpha}} f \ T_{2e_{\alpha}} f \ d\mu > 0.$$

To show this we will decompose f into

$$f_1 = E(f|\mathscr{B}),$$

 $f_2 = f - E(f|\mathscr{B}).$

Clearly $E(f_2|\mathscr{B}) = 0$. Expanding, we get

$$\int f \, T_{e_{\alpha}} f \, T_{2e_{\alpha}} f \, d\mu$$

$$= \int f \, T_{e_{\alpha}} (f_1 + f_2) \, T_{2e_{\alpha}} (f_1 + f_2) \, d\mu,$$

$$= \int f \, T_{e_{\alpha}} f_1 \, T_{2e_{\alpha}} f_1 \, d\mu + \int f \, T_{e_{\alpha}} f_1 \, T_{2e_{\alpha}} f_2 \, d\mu$$

$$+ \int f \, T_{e_{\alpha}} f_2 \, T_{2e_{\alpha}} f_1 \, d\mu + \int f \, T_{e_{\alpha}} f_2 \, T_{2e_{\alpha}} f_2 \, d\mu.$$

From Lemma 7 we have

$$\begin{split} &\mathfrak{p} - \lim_{\alpha} \int f \ T_{e_{\alpha}} f_1 \ T_{2e_{\alpha}} f_2 \ d\mu = 0, \\ &\mathfrak{p} - \lim_{\alpha} \int f \ T_{e_{\alpha}} f_2 \ T_{2e_{\alpha}} f_1 \ d\mu = 0, \ \text{and} \\ &\mathfrak{p} - \lim_{\alpha} \int f \ T_{e_{\alpha}} f_2 \ T_{2e_{\alpha}} f_2 \ d\mu = 0. \end{split}$$

so the only term which contributes is

$$\mathfrak{p}-\lim_{\alpha}\int f\ T_{e_{\alpha}}f_1\ T_{2e_{\alpha}}f_1\ d\mu.$$

Proposition 9. Let $f = \mathbb{1}_A$ for $A \in \mathscr{A}$ with $\mu(A) > 0$ and let $f_1 = E(f|\mathscr{B})$. Then

$$\mathfrak{p}-\lim_{\alpha}\int f\;T_{e_{\alpha}}f_1\;T_{2e_{\alpha}}f_1\;d\mu>0.$$

Proof. By the decomposition of measures $f_1(x) > 0$ for μ -a.e. $x \in A$. So for some a > 0, if we let

$$A' = \{x \in X : f_1(x)^2 > a\}$$

then there exist b > 0 and a set $B_1 \in \mathcal{K}$ with $\mu(B_1) = 5\xi > 0$ such that for all $y \in B_1$ we have $\mu_y(A') > b$.

Note that $\int f f_1 f_1 d\mu_y > ab$ for all $y \in B_1$.

Let $\epsilon = \frac{a}{36}$. Now f_1 is \mathscr{B} -measurable and thus is in the closure of the AP over K functions. Hence we may choose an almost periodic over K function ϕ_1 such that $||f_1 - \phi_1|| < \epsilon \sqrt{\xi}$. This means that $||f_1 - \phi_1||_y < \epsilon$ for every $y \in X \setminus C_1$, where $\mu(C_1) < \xi$. Since $||f_1 - \phi_1||_y$ is a \mathscr{K} -measurable function of y we have that C_1 is \mathscr{K} -measurable. We let $B_2 = B_1 \setminus C_1$. We have $\mu(B_2) > 4\xi$ and $||f_1 - \phi_1||_y < \epsilon$ for $y \in B_2$.

Since ϕ_1 is AP over K there exist $g_1, \ldots, g_M \in L^2(X, \mu)$ such that for a.e. $y \in X$ and all $\omega \in \Omega$ one has $i = i(\omega, y)$ such that $1 \le i \le M$ and

$$||T_{\omega}\phi_1 - g_i||_{y} < \epsilon.$$

We claim that \mathfrak{p} - $\lim_{\alpha} \int f \ T_{e_{\alpha}} f_1 \ T_{2e_{\alpha}} f_1 \ d\mu \geqslant \frac{ab\xi}{4M^2}$. Let $E_1 \in \mathfrak{p}$ be arbitrary. It suffices to find a single $\alpha \in E_1$ for which

$$\int f T_{e_{\alpha}} f_1 T_{2e_{\alpha}} f_1 d\mu > \frac{ab\xi}{4M^2}.$$

Let $N=M^2+1$. Since $B_2\in \mathscr{K}$ we have $\mathfrak{p}-\lim_{\alpha}T_{e_{\alpha}}\mathbb{1}_{B_2}=\mathbb{1}_{B_2}$ weakly. However since there is no loss of norm we must have $\mathfrak{p}-\lim_{\alpha}T_{e_{\alpha}}\mathbb{1}_{B_2}=\mathbb{1}_{B_2}$ in norm. Writing this in terms of measure we immediately obtain $\mathfrak{p}-\lim_{\alpha}\mu(B_2\triangle T_{e_{\alpha}}B_2)=0$, and hence there exists $E_2\in\mathfrak{p}$ such that for all $\alpha\in E_2$,

$$\mu(B_2 \triangle T_{e_\alpha} B_2) < \frac{\xi}{2^N}.\tag{4}$$

The same holds true under $T_{2e_{\alpha}}$, hence there exists $E_3 \in \mathfrak{p}$ such that for all $\alpha \in E_3$,

$$\mu(B_2 \triangle T_{2e_\alpha} B_2) < \frac{\xi}{2^N}.\tag{5}$$

Now let $E = E_1 \cap E_2 \cap E_3 \subset E_1$. Since \mathfrak{p} - $\lim_{\alpha} T_{e_{\alpha}} h = \mathfrak{p}$ - $\lim_{\alpha} T_{e_{\alpha}} h = h$ in norm for all $h \in L^2(X, \mathcal{K}, \mu)$, we have

$$\mathfrak{p} - \lim_{\alpha} \|T_{e_{\alpha}} h - T_{2e_{\alpha}} h\| = 0.$$

Taking $h(y) = ||f_1 - T_{2e_{\alpha}} f_1||_y$ we obtain that for all α ,

$$\mathfrak{p} - \lim_{eta} \int \left| \|f_1 - T_{2e_{lpha}} f_1\|_{T_{e_{eta}} y} - \|f_1 - T_{2e_{lpha}} f_1\|_{T_{2e_{eta}} y} \right|^2 d\mu(y) = 0.$$

Let

$$A_{\alpha} = \left\{ \beta \in E : \int \left| \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{e_{\beta}} y} - \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{2e_{\beta}} y} \right|^2 d\mu(y) < \frac{\epsilon^2 \xi}{2M^2} \right\}.$$

We have $A_{\alpha} \in \mathfrak{p}$ for all $\alpha \in \mathscr{F}$. We will choose $\alpha_1 < \alpha_2 < \cdots < \alpha_N$ inductively such that for all $\alpha, \beta \in FU(\alpha_1, \ldots, \alpha_N)$, where $FU(\alpha_1, \ldots, \alpha_N)$ denotes all finite unions of sets from $\{\alpha_1, \ldots, \alpha_N\}$, with $\alpha < \beta$ one has $\beta \in A_{\alpha}$ i.e.

$$\int \left| \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{e_{\beta}} y} - \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{2e_{\beta}} y} \right|^2 d\mu(y) < \frac{\epsilon^2 \xi}{2M^2}.$$
 (6)

We let $\alpha_1 \in E_2$ be arbitrary. We have $A_{\alpha_1} \in \mathfrak{p}$. Since \mathfrak{p} is idempotent we have $A_{\alpha_1} \in \mathfrak{p} * \mathfrak{p}$, so that $\{\gamma \in \mathscr{F} : \gamma^{-1} A_{\alpha_1} \in \mathfrak{p}\} \in \mathfrak{p}$. Intersecting this set with $A_{\alpha_1} \in \mathfrak{p}$ and $\mathscr{F}_{\max \alpha_1} \in \mathfrak{p}$ we

get $\{\gamma \in \mathscr{F}_{\max \alpha_1} \cap A_{\alpha_1} : \gamma^{-1} A_{\alpha_1} \in \mathfrak{p}\} \in \mathfrak{p}$ and consequently $\{\gamma \in \mathscr{F}_{\max \alpha_1} \cap A_{\alpha_1} : \gamma^{-1} A_{\alpha_1} \in \mathfrak{p}\} \neq \emptyset$. We choose $\alpha_2 \in \{\gamma \in \mathscr{F}_{\max \alpha_1} \cap A_{\alpha_1} : \gamma^{-1} A_{\alpha_1} \in \mathfrak{p}\}$ so that $\alpha_1 < \alpha_2, \alpha_2 \in A_{\alpha_1}$, and $\alpha_2^{-1} A_{\alpha_1} \in \mathfrak{p}$. Our inductive hypothesis is that for all $\alpha, \beta \in FU(\alpha_1, \ldots, \alpha_n)$ with $\alpha < \beta$ we have $\beta \in A_{\alpha}$ and $\beta^{-1} A_{\alpha} \in \mathfrak{p}$. For conciseness we will write $F_n = FU(\alpha_1, \ldots, \alpha_n)$. By the inductive hypothesis

$$\bigcap_{\alpha \in F_n} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_n \\ \alpha < \beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p}.$$

Since \mathfrak{p} is an idempotent we have

$$\left\{ \gamma \in \mathscr{F} : \gamma^{-1} \left(\bigcap_{\alpha \in F_n} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_n \\ \alpha < \beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p} \right) \right\} \in \mathfrak{p}$$

intersecting we then have

$$\left\{ \gamma \in \mathscr{F}_{\max \alpha_n} \cap \bigcap_{\alpha \in F_n} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_n \\ \alpha < \beta}} \beta^{-1} A_{\alpha} \right.$$
$$: \gamma^{-1} \left(\bigcap_{\alpha \in F_n} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_n \\ \alpha < \beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p} \right) \right\} \in \mathfrak{p}.$$

We choose α_{n+1} from this set. The reader should verify that all the conditions for the induction to continue are satisfied. We define $B_3 \in \mathcal{K}$ as

$$B_3 = B_2 \cap \bigcap_{\alpha \in F_N} (T_{e_\alpha}^{-1} B_2 \cap T_{2e_\alpha}^{-1} B_2).$$

Using (4) and (5) we have that $\mu(B_3) > \xi$. Also for all $y \in B_3$, $\alpha \in F_N$, $T_{e_{\alpha}}y \in B_2$ and $T_{2e_{\alpha}}y \in B_2$.

Since $N = M^2 + 1$ for all $y \in B_3$ there exists $\ell = \ell(y)$, m = m(y) with $1 \le \ell < m \le N$ such that

$$i(e_{\alpha_{\ell} \cup \dots \cup \alpha_{N}}, y) = i(e_{\alpha_{m} \cup \dots \cup \alpha_{N}}, y) \tag{7}$$

and

$$i(2e_{\alpha_{\ell}\cup\cdots\cup\alpha_{N}},y) = i(2e_{\alpha_{m}\cup\cdots\cup\alpha_{N}},y). \tag{8}$$

We may divide B_3 into at most M^2 cells on which both ℓ and m are constant. At least one of these cells must have measure at least $\mu(B_3)/M^2$. Let $B_4 \subset B_3$ be such a cell. Now $\mu(B_4) > \frac{\xi}{M^2}$. For conciseness we write $\beta_j = \alpha_j \cup \cdots \cup \alpha_N$.

For $y \in B_4$ we have

$$||T_{e_{\beta_m}}\phi_1 - T_{e_{\beta_\ell}}\phi_1||_y < ||T_{e_{\beta_m}}\phi_1 - g_{i(e_{\beta_m},y)}||_y + ||g_{i(e_{\beta_\ell},y)} - T_{e_{\beta_\ell}}\phi_1||_y < 2\epsilon.$$
(9)

The electronic journal of combinatorics $\mathbf{21(3)}$ (2014), #P3.3

Similarly,

$$||T_{2e_{\beta_m}}\phi_1 - T_{2e_{\beta_s}}\phi_1||_y < 2\epsilon. \tag{10}$$

Since T_{ω} is measure-preserving, by (9) and (10) we have

$$\|\phi_1 - T_{e_{\alpha_{\ell} \cup \dots \cup \alpha_{m-1}}} \phi_1\|_{T_{e_{\beta_m}} y} < 2\epsilon \text{ and}$$

$$\|\phi_1 - T_{2e_{\alpha_{\ell} \cup \dots \cup \alpha_{m-1}}} \phi_1\|_{T_{2e_{\beta_m}} y} < 2\epsilon.$$
(11)

Since $\beta_m, \beta_\ell \in F_N$ we have $T_{e_{\beta_m}}y, T_{e_{\beta_\ell}}y \in B_2$ and consequently

$$\|\phi_1 - f_1\|_{T_{e_{\beta_m}}y} < \epsilon \text{ and } \|\phi_1 - f_1\|_{T_{e_{\beta_e}}y} < \epsilon.$$

Now $||T_{e_{\alpha_{\ell} \cup \cdots \cup \alpha_{m-1}}} f_1 - T_{e_{\alpha_{\ell} \cup \cdots \cup \alpha_{m-1}}} \phi_1||_{T_{e_{\beta_m}} y} = ||f_1 - \phi_1||_{T_{e_{\beta_{\ell}}} y} < \epsilon$. Write $\alpha = \alpha_{\ell} \cup \cdots \cup \alpha_{m-1}$ and $\beta = \beta_m$. Now by the triangle inequality

$$||f_1 - T_{e_{\alpha}} f_1||_{T_{e_{\beta}} y} < 4\epsilon.$$
 (12)

Similarly we can conclude that

$$||f_1 - T_{2e_{\alpha}} f_1||_{T_{2e_{\alpha}} y} < 4\epsilon. \tag{13}$$

Since $\alpha < \beta$, by (6) we have

$$\left| \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{e_{\beta}} y} - \|f_1 - T_{2e_{\alpha}} f_1\|_{T_{2e_{\beta}} y} \right| < \epsilon \tag{14}$$

for all $y \in X \setminus C_2$, where $\mu(C_2) < \frac{\xi}{2M^2}$. Let $B_5 = B_4 \setminus C_2$. Clearly $\mu(B_5) > \frac{\xi}{2M^2}$. For all $y \in B_5$ we can combine (14) with (13) to get

$$||f_1 - T_{2e_{\alpha}} f_1||_{T_{e_{\beta}} y} < 5\epsilon.$$
 (15)

Now

$$\int f T_{e_{\alpha}} f_{1} T_{2e_{\alpha}} f_{1} d\mu_{y}$$

$$= \int f \left(f_{1} + (T_{e_{\alpha}} f_{1} - f_{1}) \right) \left(f_{1} + (T_{2e_{\alpha}} f_{1} - f_{1}) \right) d\mu_{y}$$

$$= \int f f_{1} f_{1} d\mu_{y} + \int f \left(T_{e_{\alpha}} f_{1} - f_{1} \right) f_{1} d\mu_{y} + \int f f_{1} \left(T_{2e_{\alpha}} f_{1} - f_{1} \right) d\mu_{y}$$

$$+ \int f \left(T_{e_{\alpha}} f_{1} - f_{1} \right) \left(T_{2e_{\alpha}} f_{1} - f_{1} \right) d\mu_{y}.$$

Using $|f| \leq 1$ and $|f_1| \leq 1$ together with (12) and (15) we obtain

$$\int f T_{e_{\alpha}} f_1 T_{2e_{\alpha}} f_1 d\mu_{T_{e_{\beta}} y} > (a - 18\epsilon)b > \frac{ab}{2}$$

for all $y \in B_5$. Since $\mu(B_5) > \frac{\xi}{2M^2}$ we have

$$\int f T_{e_{\alpha}} f_1 T_{2e_{\alpha}} f_1 d\mu > \frac{ab\xi}{4M^2}$$

as claimed. \Box

References

- [BBH94] Vitaly Bergelson, Andreas Blass, and Neil Hindman. Partition theorems for spaces of variable words. *Proc. London Math. Soc.* (3), 68(3):449–476, 1994.
- [Ber03] Vitaly Bergelson. Minimal idempotents and ergodic Ramsey theory. In *Topics in dynamics and ergodic theory*, volume 310 of *London Math. Soc. Lecture Note Ser.*, pages 8–39. Cambridge Univ. Press, Cambridge, 2003.
- [BKMP88] Gavin Brown, Michael S. Keane, William Moran, and Charles E. M. Pearce. An inequality, with applications to Cantor measures and normal numbers. *Mathematika*, 35(1):87–94, 1988.
- [BM83] Gavin Brown and William Moran. Raikov systems and radicals in convolution measure algebras. J. London Math. Soc. (2), 28(3):531–542, 1983.
- [BM12] Paul Balister and Randall McCutcheon. A concentration function estimate and intersective sets from matrices. *Israel J. Math.*, 189:413–436, 2012.
- [FK85] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J. Analyse Math., 45:117–168, 1985.
- [FK91] H. Furstenberg and Y. Katznelson. A density version of the Hales-Jewett theorem. J. Anal. Math., 57:64–119, 1991.
- [HM01] Neil Hindman and Randall McCutcheon. VIP systems in partial semigroups. Discrete Math., 240(1-3):45–70, 2001.
- [McC00] R. McCutcheon. A half-commutative IP Roth theorem. Acta Math. Univ. Comenian. (N.S.), 69(1):19–39, 2000.
- [Woo77] D. R. Woodall. A theorem on cubes. Mathematika, 24(1):60–62, 1977.