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Abstract

Let @ = @;2,Z3 and ¢; = (0,...,0,1,0,...) where the 1 occurs in the i-th
coordinate. Let .# = {o C N: @ # a, « is finite}. There is a natural inclusion of
Z into Q where a € .% is mapped to e = > ;. €;- We give a new proof that if
E C Q with d*(E) > 0 then there exist w €  and « € .# such that

{w,w+ eq,w+2e,} C E.

Our proof establishes that for the ergodic reformulation of the problem there is a
characteristic factor that is a one step compact extension of the Kronecker factor.

1 Introduction

Let Q = @@;°, Z3.  is an abelian group and hence amenable. Let e; = (0,...,0,1,0,...)
where the 1 occurs in the i-th coordinate. For a set S let

F(S) ={y C S :~is non-empty and finite}.

We will denote .# (N) by simply . and endow it with the discrete topology. There is a
natural inclusion of . into Q where o € .% is mapped to e, = >, €.
The upper Banach density of a set E C 2, denoted d*(F), is defined as

End,
d*(E)= sup limsup [E0®,|
(®5) Fglner n—o0 ‘(I)n|
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where the supremum is taken over the set of Fglner sequences, i.e. over the set of sequences
of finite sets ($,,)9%; in € such that for all w € Q

n=1

O I)AD
lim |(W+ n) n|

n—0o0 |CI>n|

= 0.

We give a new proof of the following theorem:

Theorem 1. Let E C Q with d*(E) > 0. There exists w € 2 and o € F such that
{w,w+eq,w+2e,} C E. (1)

One can derive Theorem 1 from Furstenberg’s correspondence principle and the fol-
lowing recurrence theorem.

Theorem 2. Let (T,,)uecq be a measure-preserving actz’on of 1 on a probability space
(X, o, p). If A€ o with u(A) > 0 then there exists « € F such that

pw(ANT, ANTs, A) > 0.

Theorem 2 is not new; it follows from the Furstenberg-Katznelson IP-Szemerédi Theo-
rem [FK85]. However, our proof identifies a characteristic factor that is a 1-step compact
extension of the Kronecker factor of T,,. Identifying a characteristic factor is suggestive
of a first step in obtaining a decent quantitative result.

2 Ultrafilter Preliminaries

We will be working with the Stone-Cech compactiﬁcation of &, B.%. Since f is discrete
we may identify points of 5.% with ultrafilters on .%#. An ultrafilter p on .% is a subset
p C P(.F) that satisfies the following axioms

L0y,
2. f AC Band A € p then B € p.

3. f A,B €pthen ANDB € p.
4. if A C .# then either A € p or A° € p.

We identify o € . with the principal ultrafilter p, = {A C F : « € A}. We can endow
B.% with the Stone topology, that is for A C .%, we define A = {p € B.F : A € p}, and
the set {A A C Z} is a basis for the closed sets of 5.#. Indeed, from the ultrafilter
property A° = A¢ and so this is also a basis for the open sets.

For o, € .# we write a < fif maxa < min . When a < 8 we define ax§ = aUS and
we leave ax § undefined otherwise. This makes (%, %) into an adequate partial semigroup
in the sense of [BBH94| (see also [HMO1]]). Briefly this means that * maps a subset of
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F x F to Z, is associative for all triples where defined, and for any ay,...,q, € Z#
there exists 5 € .% such that a; % 5 is defined for all 1 < ¢ < n. Notice that if & < § then

CaxB = €q T €3.

In the case of a semi-group .# the operation extends to an operation on B.% that
makes (5.% a semi-group. In our case however .# is only a partial semi-group and
does not extend to all of 5.% x .%. We extend the operation * to a partial semi-group
operation on 5.% using the same definition as for semi-groups

Aecpxq <= {p:{q¢:pxqeAlcqleyp

where p* ¢ € A means both that p * ¢ is defined and p * ¢ € A. This extends the existing
operation x in the following sense: if o, 3 € .# then p, * pj is defined if a * 3 is defined,
and in this case P, * pg = Pass. If we let F, =.Z ({n+1,n+2,...}) then we can define
6.7 =N . F, C BF. If we wish p* q to be defined for all p € 8. then it turns out that
we must have q € §.7.

Given an ultrafilter p on .# we say that a sequence (x4)q.cs in a Banach space X p-
converges to L in norm if for every ¢ > 0 we have {a € .F : ||z, — L|| < €} € p. Since the
limit, if it exists, is unique we write p-limz, = L. It can be shown that every pre-compact
sequence p-converges. Given an ultrafilter p on # we say that a sequence (x4)acs in a
Hilbert space H p-converges to L weakly if for every = € H we have p-lim(z,,z) = (L, x).

It may be shown that (6.7, %) is a compact Hausdorff right topological semigroup. An
idempotent ultrafilter p is one that satisfies p x p = p. For F C . write

o
() = lim sup |[ENnZ({1,... ,n})|

n—oo 271

An ultrafilter p € 0.% is called essential if for every A € p we have d(A N Z#,) > 0. By
[BM12, Proposition 2.1] there exists an essential idempotent ultrafilter in 6.7 .

3 Factors and Joinings

Crucial to our proof will be the following theorem. It is a combination of [BM12, The-
orem 3.3] and [BM12, Theorem 4.3]. In [BM12] Theorem 4.3 is derived from [BKMPS88,
Corollary 1J; in our case, where we need only consider @) | Z3, one may derive the ap-
propriate version of [BM12, Theorem 4.3] from [BM83, Proposition 2.7], which is a direct
consequence of a result of Woodall in [Woo77|. This theorem is the only place where the
fact that p is an essential ultrafilter is used.

Theorem 3. [Ber03, Corollary 4.6] Let (T,,)weq be a measure-preserving action of Q on
a probability space (X, </, ). The action T extends to a unitary action on L*(X, <, ).
Let p be an essential idempotent ultrafilter in §.%. Define an operator P on L*(X, <, )

by
p-lim T, f = Pf weakly
aEF
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for f € L*( X, ,u). The operator P is the orthogonal projection onto the Kronecker
factor

K = {f € LA(X, o, p): {T,,f :w € Q} is norm precompact}.

Now we observe that K = L*(X,. %, u) for some sub-o-algebra % C & with &
being T, invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). Let (u;)zex be
the disintegration of p over the Kronecker algebra | so that

[ Fdn = E(11) (@) = Pf(a) ae.

where F ( fl# ) is the conditional expectation of f over £ and P is the orthogonal
projection onto K. To see that these are equal we observe that if f € L*(X, <, u) with
E(f|#) =0then [ fgdu=0forall g € K.

Using the measures u, on X we may define a family of norms on X indexed by x € X
as follows

190 = ([ 17Pdu) .

We will use || - || without any subscript to denote the appropriate L? norm.

Definition 4. A function f € L*(X, <, u) is called almost periodic over K, or AP over
K for short, if for all € > 0 there exist g, ..., g, € L*(X, 7, i) such that for almost every
x € X and every w € (Q there exists 1 < i = i(z,w) < k such that

1T f = gills <e.

One may show that the bounded AP over K functions are dense in the AP over K
functions, the constant functions are AP over K, sums and products of bounded AP over
K functions are again bounded AP over K functions. Therefore, the closure of the set of
AP over K functions is of the form L?*(X, %, i) for some o-algebra # C o/ with % being
T, invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). One may also observe
that any bounded f € K is AP over K and hence any f € K is %-measurable, so that

H C AB. We observe that if E(f|#) =0 then E(f|#¢)= Pf =0.
Consider the relative product measure i on X x X defined by

mm-/WMMmmmm
so that

/f(x)g(y) dfiz,y) = /P(f)(w)P(g)(ir) dp(x).

This measure is invariant under Tw =T, x T, for every w € €. If p is an essential
idempotent ultrafilter in §.# then by Theorem 3

p-limT, h=p-limTh h = Qh,
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where @ is the orthogonal projection onto the Kronecker factor of 7.

Given H € L*( X x X, o/ ® 4/, i), where &7 ® &/ denotes the (completion of the) sigma
algebra generated by the rectangles {A; x Ay @ A1, Ay € &/}, and ¢ € L>®(X, o, 1) we
may define

H x ¢(x /Ha:s S) dpiy(s).

Lemma 5. If QH = H then for all ¢ € L>(X, <7, pu) H x ¢ is B-measurable.

Proof. Since @ is the projection onto the Kronecker factor of (X x X, T.,, i) we have that
H is expressible as a countable sum of eigenfunctions for T,,. Without loss of generality
we may assume that H is an eigenfunction, i.e. that

(TLH)(t,s) = H(T.t, T,s) = \w) H(t, s)
where )\ : Q — S is a character. Notice that

(T(H 9)) (x) = (H x 6)(T.x)

Now for almost every y € X we have ¢ — Hx¢ is a compact operator on L?(X, <7, j1,) and
range()) is finite so (2) shows that {T,,(H x ¢) : w € Q} is precompact in L*(X, <, ).
Hence for almost every y € X and every e > 0 there exists M (y, €) such that {T,,(H x¢) :
w € span{er, ..., en(ye}} is edense in {T,(H *¢) : w € Q} in L(X, o, p,)). Let e >0
be arbitrary. Choose M,, sufficiently large that M, > M(y, %) except for y € F,, where
E, € % and u(E,) < €27". Define

0 ifoel), E,,
fe(x) = L.Jnil
H % ¢(x) otherwise.

It can be easily shown that || fe — H * ¢|| < ||H|le ||@]|loc €. Thus it suffices to show
that f. is almost periodic over K. From the construction it is easy to observe that
{0}y U{T,(H  ¢) : w € spanfey,...,en,}} is t-dense in {T,,f. : w € Q} in L?(p,) for
almost every y € X. Thus f, is almost periodic over K as required. Since H * ¢ lies in
the closure of the functions that are almost periodic over K, H x ¢ is #-measurable. []

4 Projection Results

We now give applications of our results on joinings to the projections of products.
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Lemma 6. Let p be an essential idempotent in 0.F and let f € L>®(X, o/, ). If E(f|A) =

0 then
p-timn [ P(f T, )| = p-lim | P(f Ty, /)] = 0.
Proof. Letf,g € L>(X, <, ). One has

p-lingP( (Teaf))llz

Zp—h;n/ /g (Teo () dpra( )) dp(z)
— p-tin [ ([ 90) (T P0) dist))

([ 95 T da(s)) dita)
—p-lin [ (9®0)T., (7 1) dip
- [egeure .

and the same equality holds for p-lim, HP(f(Tgeaf)) |?. Clearly Q(f ® f)(t,s)

=Q(f®

f)(s,t) and Q(f ® f) is (essentially) bounded. We thus have that Q(f ® f) is a positive
definite symmetric kernel in the sense of [FK91, Section 3.6]. By [FK91, equation (3.6)]
QUf @ f)(t,s) = >, Me(t)Pr(t)pr(s) where Ay is £ -measurable (so that A\g(s) = Ag(t) for
f-almost every (¢,s)), and for almost every y € X {¢x} is orthonormal in L*(y,). One

may then check that Q(f ® f) * ¢pr = Apd, so by Lemma 5 Aoy is B-measurable.

Applying (3) with g = f, we get

p-lim [P/ (D) = [ (@ Q@ i

_ / 056 (et 1(0) ) d

—Z/f oult) 91(5) df
=Y [P AP 60) du

However, since Ay is #-measurable we have

E(f M ¢x|B) = Ax o1 E(f| ) =0

and consequently P(f \x ¢) =
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Lemma 7. Let p be an essential idempotent on F. If f,g € L™(X, o7, u) with either
E(f|#) =0 or E(g|#) =0 then p-lim, T, f Ts., g = 0 weakly.

As is common in proofs of this type, a version of the Van der Corput lemma is crucial.
This version appears as [BM12, Theorem 3.5].

Lemma 8 (Van der Corput Lemma). Let (z4)acs be a bounded F -sequence of vectors
in a Hilbert space and let p € 0.F be an idempotent. If p-lim, p-limg(za.s, v5) = 0 then
p-lim, z, = 0 weakly.

We now use this Van der Corput Lemma to prove Lemma 7.

Proof of Lemma 7. Let v, =T, f15.,9. Then
p-limp-lim(zaus, 2a)
=p- liénp- ligl/TeaTerTzeaT%ﬁg Te, f Toe,gdp
—p-limp-lim [ 7,7, Ta0 T do
—p-limp-lim [ (/7.,1) .. (s Top0) do

—p-lin [ P(7T.,) P(gTan,0) do
< p-lim | PUT )l IP(9T30,) ] = 0

since either p-limg || P(fT¢, f)|| = 0 or p-limg || P(gT32,9)|| = 0 by Lemma 6. Hence by
the conclusion of the Van der Corput lemma we obtain that

p-lim T, fTs., g =0 weakly,

as required. O

5 Proof of Theorem 2
Our goal is to show that for A € o/ with pu(A) > 0,

p-limu(ANT, ANTy, A) > 0.

It is equivalent that for A € &7 with u(A) > 0 the characteristic function f = 14 satistfies

p-lim/fTeaszeaf dp > 0.
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To show this we will decompose f into

fl = E(.ﬂgg)v
fo=[f—E(f|2).

Clearly E(fs|%) = 0. Expanding, we get
[ T8 Tast
= /f Too (fr + f2) Toe. (f1 + f2) dps,
= /fTeafl Toe, J1 dM‘F/fTeafl Toe, fo dp
4 [T To it [ £ T T fo i
From Lemma 7 we have
potim [ £ .1 T fo dp =0,
p—li(gn/f T.. f2 Toe, f1 dp =0, and
potim [ £ T, fo T fo dp =0

so the only term which contributes is

potim [ £ T, fy T fr

Proposition 9. Let f = 1,4 for A € o/ with u(A) > 0 and let f, = E(f|#). Then

potims [ F T,y Ta, f du > .

Proof. By the decomposition of measures fi(x) > 0 for y-a.e. © € A. So for some a > 0,
if we let
A={reX: filx)*>a}

then there exist b > 0 and a set By € J# with u(B;) = 5§ > 0 such that for all y € By
we have 1, (A) > b.

Note that [ f fi fi du, > ab for all y € B.

Let ¢ = g%, Now f; is %-measurable and thus is in the closure of the AP over
K functions. Hence we may choose an almost periodic over K function ¢; such that

| f1 — ¢1]] < /€. This means that || f; — ¢1||, < € for every y € X \ C1, where u(C4) < &.
Since || f1 — ¢1]|, is a # -measurable function of y we have that Cy is J# -measurable. We
let By = By \ Cy. We have p(Bs) > 4€ and || f1 — ¢4, < € for y € Bs.
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Since ¢; is AP over K there exist gy, ..., gy € L*(X, u) such that for a.e. y € X and
all w € Q2 one has i = i(w,y) such that 1 <7 < M and

| Tup1 — gilly < e

We claim that p-lim, [ f T., fi Toe, f1 dp > 2%
Let E; € p be arbitrary. It suffices to find a single o € E; for which

ab&
402

/fTeafl The, f1 dp >

Let N = M? + 1. Since B, € # we have p-lim, T, 1p, = lp, weakly. However
since there is no loss of norm we must have p-lim, 7, 1p, = 1p, in norm. Writing this
in terms of measure we immediately obtain p-lim, u(BsAT,, Bs) = 0, and hence there
exists Fy € p such that for all a € Fj,

ILL(BQATBQBQ) < 2% (4)

The same holds true under 75, , hence there exists F5 € p such that for all a € Ej,

ILL(BQATQSQBQ) < i (5)

2N

Now let £ = Fy N Ey N Es C Ey. Since p-lim, T, h = p-lim, 7. h = h in norm for all
h € L*(X, %, u), we have

p-lim | T, h — To b = 0.

Taking h(y) = || fi — Tee. f1]|y we obtain that for all o,

. 2
P-hgﬂ/‘Hfl — Doeo fillryy = 1 = Toeo fill 7 | dia(y) = 0.

Let

2
2M2°

A, = {B S /H|f1 —The, 1 Tegy — fi — T2eaf1||T2eBy|2dM(y) <

We have A, € p for all « € .%. We will choose a1 < g < -+ < ay inductively such

that for all a, § € FU (v, ..., ay), where FU(ay, ..., ay) denotes all finite unions of sets
from {aq,...,an}, with a < 8 one has § € A, i.e.
2 ¢
11 = Toco fillzyy = 11 = Toca il 0| dialy) < ek (6)

We let a; € E5 be arbitrary. We have A,, € p. Since p is idempotent we have A,, € px*p,
so that {y € . : v 1A,, € p} € p. Intersecting this set with A,, € p and Faxa, € p We
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get {7 € FPrmaxa; NAa, 1 7 1Ay, € p} € p and consequently {7y € Fraxa; NAa, 1 7 1 Aa, €
p} # @. We choose g € {7 € Prnaxay NAa, : 7 1 As, € p}sothat oy < ag, ag € A,,, and
a;'A,, € p. Our inductive hypothesis is that for all o, 8 € FU(ay, ..., a,) with a < 3
we have 3 € A, and 37'A, € p. For conciseness we will write F,, = FU(ay,...,a,). By

the inductive hypothesis
() Aun () B7'4a€p.

OZGFn a,ﬁan
a<f

Since p is an idempotent we have

{yeZ:y ()4 [) B '4acp)}eEp
a€EFy, a,ﬂegn
a<

intersecting we then have

{7 € Fuaxan 0 (VA0 (] 574

acFy, a,BEF,
a<f
() 4an ) B Aa € p)} € p.
acly, a,BEF,

a<f

We choose a,,11 from this set. The reader should verify that all the conditions for the
induction to continue are satisfied. We define Bs € % as

By=DB,N () (T..'B: N Ty, By).
acFyN

Using (4) and (5) we have that p(Bs) > £. Also for all y € B3, a € Fin, T,y € By and
Tge&y € BQ.

Since N = M?+1 for all y € Bs there exists £ = £(y), m = m(y) with 1 <l <m < N
such that

Z.(GOQU'“UO(N) y) = i(eamU"'UOlN7 y) (7)
and

i(zeaeu..,uaN, y) = ’i(2€amu,..UaN, y) (8)

We may divide Bs into at most M? cells on which both ¢ and m are constant. At least
one of these cells must have measure at least p(Bs)/M?. Let B, C Bs be such a cell. Now
w(By) > % For conciseness we write 5, = a; U--- U ay.

For y € B, we have

1T, 61— Tey, O1lly
<N Tep, 01 = Gitepnlly T Gites, ) — Teg, P1lly < 2€.
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Similarly,
||T265m¢1 - T2e,32¢1||y < 2e.

Since T, is measure-preserving, by (9) and (10) we have

H¢1 - TeaZU~~~Uam,1¢l
101 = Toea,iniiap_y 1l 12, y < 2€.

Tey v < 2e and

Since S, B¢ € Fiv we have T, y, T%y € By and consequently
o1 = fillz., v <€and [lgy = fillz, y <e

Now || T, ., y= /1=
and 8 = (,,. Now by the triangle inequality

fi— TeafIHTeﬁy < 4e.

apU---Uoy, 1 fl - Tea[UmUam_l ¢1

Similarly we can conclude that

||f1 - T2€af1||T2eBy < 46-
Since v < 3, by (6) we have
11 = Toeo fillrey = 12 = Taeo il ] < e

for all y € X \ Cy, where u(Cy) < 555. Let Bs = By \ Cy. Clearly u(Bs) > 5=

2M?2"

2M2"
y € Bs we can combine (14) with (13) to get

f1— TQeaflnTeBy < DE.

Now

/fTeaf1T2eaf1 dpuy
:/fm+a;ﬁ—mﬂﬁ+ﬁaﬁ—ﬁ»wy

_ /ffl f duy+/f(Teaf1 — A duy+/ff1 (Toor fy — F1)diy

+ /f(Teafl — f1) (Toe, f1 — f1) dpsy.

Using |f] < 1 and |fi| < 1 together with (12) and (15) we obtain
ab
[T T i > =180 > 5

for all y € Bs. Since u(Bs) > ﬁ we have

ab&
4M?

/fTeafl Toe,, f1 dp >

as claimed.
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(11)

Tes < e Writea = apU- - -Uayy,_1

(12)

(13)

(14)

For all

(15)
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