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Abstract

Let Ω =
⊕∞

i=1 Z3 and ei = (0, . . . , 0, 1, 0, . . . ) where the 1 occurs in the i-th
coordinate. Let F = {α ⊂ N : ∅ 6= α, α is finite}. There is a natural inclusion of
F into Ω where α ∈ F is mapped to eα =

∑
i∈α ei. We give a new proof that if

E ⊂ Ω with d∗(E) > 0 then there exist ω ∈ Ω and α ∈ F such that

{ω, ω + eα, ω + 2eα} ⊂ E.

Our proof establishes that for the ergodic reformulation of the problem there is a
characteristic factor that is a one step compact extension of the Kronecker factor.

1 Introduction

Let Ω =
⊕∞

i=1 Z3. Ω is an abelian group and hence amenable. Let ei = (0, . . . , 0, 1, 0, . . . )
where the 1 occurs in the i-th coordinate. For a set S let

F (S) = {γ ⊂ S : γ is non-empty and finite}.

We will denote F (N) by simply F and endow it with the discrete topology. There is a
natural inclusion of F into Ω where α ∈ F is mapped to eα =

∑
i∈α ei.

The upper Banach density of a set E ⊂ Ω, denoted d∗(E), is defined as

d∗(E) = sup
(Φn) Følner

lim sup
n→∞

|E ∩ Φn|
|Φn|
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where the supremum is taken over the set of Følner sequences, i.e. over the set of sequences
of finite sets (Φn)∞n=1 in Ω such that for all ω ∈ Ω

lim
n→∞

|(ω + Φn)4Φn|
|Φn|

= 0.

We give a new proof of the following theorem:

Theorem 1. Let E ⊂ Ω with d∗(E) > 0. There exists ω ∈ Ω and α ∈ F such that

{ω, ω + eα, ω + 2eα} ⊂ E. (1)

One can derive Theorem 1 from Furstenberg’s correspondence principle and the fol-
lowing recurrence theorem.

Theorem 2. Let (Tω)ω∈Ω be a measure-preserving action of Ω on a probability space
(X,A , µ). If A ∈ A with µ(A) > 0 then there exists α ∈ F such that

µ(A ∩ TeαA ∩ T2eαA) > 0.

Theorem 2 is not new; it follows from the Furstenberg-Katznelson IP-Szemerédi Theo-
rem [FK85]. However, our proof identifies a characteristic factor that is a 1-step compact
extension of the Kronecker factor of Tω. Identifying a characteristic factor is suggestive
of a first step in obtaining a decent quantitative result.

2 Ultrafilter Preliminaries

We will be working with the Stone-Čech compactification of F , βF . Since F is discrete
we may identify points of βF with ultrafilters on F . An ultrafilter p on F is a subset
p ⊂P(F ) that satisfies the following axioms

1. ∅ 6∈ p,

2. If A ⊂ B and A ∈ p then B ∈ p.

3. If A,B ∈ p then A ∩B ∈ p.

4. if A ⊂ F then either A ∈ p or Ac ∈ p.

We identify α ∈ F with the principal ultrafilter pα = {A ⊂ F : α ∈ A}. We can endow
βF with the Stone topology, that is for A ⊂ F , we define A = {p ∈ βF : A ∈ p}, and
the set {A : A ⊂ F} is a basis for the closed sets of βF . Indeed, from the ultrafilter
property A

c
= Ac and so this is also a basis for the open sets.

For α, β ∈ F we write α < β if maxα < min β. When α < β we define α∗β = α∪β and
we leave α∗β undefined otherwise. This makes (F , ∗) into an adequate partial semigroup
in the sense of [BBH94] (see also [HM01]]). Briefly this means that ∗ maps a subset of
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F × F to F , is associative for all triples where defined, and for any α1, . . . , αn ∈ F
there exists β ∈ F such that αi ∗ β is defined for all 1 6 i 6 n. Notice that if α < β then

eα∗β = eα + eβ.

In the case of a semi-group F the operation extends to an operation on βF that
makes βF a semi-group. In our case however F is only a partial semi-group and ∗
does not extend to all of βF × βF . We extend the operation ∗ to a partial semi-group
operation on βF using the same definition as for semi-groups

A ∈ p ∗ q ⇐⇒ {p : {q : p ∗ q ∈ A} ∈ q} ∈ p

where p ∗ q ∈ A means both that p ∗ q is defined and p ∗ q ∈ A. This extends the existing
operation ∗ in the following sense: if α, β ∈ F then pα ∗ pβ is defined if α ∗ β is defined,
and in this case pα ∗ pβ = pα∗β. If we let Fn = F

(
{n+ 1, n+ 2, . . . }

)
then we can define

δF = ∩∞n=1Fn ⊂ βF . If we wish p ∗ q to be defined for all p ∈ βF then it turns out that
we must have q ∈ δF .

Given an ultrafilter p on F we say that a sequence (xα)α∈F in a Banach space X p-
converges to L in norm if for every ε > 0 we have {α ∈ F : ‖xα−L‖ < ε} ∈ p. Since the
limit, if it exists, is unique we write p - limxα = L. It can be shown that every pre-compact
sequence p-converges. Given an ultrafilter p on F we say that a sequence (xα)α∈F in a
Hilbert space H p-converges to L weakly if for every x ∈ H we have p - lim〈xα, x〉 = 〈L, x〉.

It may be shown that (δF , ∗) is a compact Hausdorff right topological semigroup. An
idempotent ultrafilter p is one that satisfies p ∗ p = p. For E ⊂ F write

d(E) = lim sup
n→∞

|E ∩F ({1, . . . , n})|
2n

.

An ultrafilter p ∈ δF is called essential if for every A ∈ p we have d̄(A ∩Fn) > 0. By
[BM12, Proposition 2.1] there exists an essential idempotent ultrafilter in δF .

3 Factors and Joinings

Crucial to our proof will be the following theorem. It is a combination of [BM12, The-
orem 3.3] and [BM12, Theorem 4.3]. In [BM12] Theorem 4.3 is derived from [BKMP88,
Corollary 1]; in our case, where we need only consider

⊕∞
n=1 Z3, one may derive the ap-

propriate version of [BM12, Theorem 4.3] from [BM83, Proposition 2.7], which is a direct
consequence of a result of Woodall in [Woo77]. This theorem is the only place where the
fact that p is an essential ultrafilter is used.

Theorem 3. [Ber03, Corollary 4.6] Let (Tω)ω∈Ω be a measure-preserving action of Ω on
a probability space (X,A , µ). The action T extends to a unitary action on L2(X,A , µ).
Let p be an essential idempotent ultrafilter in δF . Define an operator P on L2(X,A , µ)
by

p - lim
α∈F

Teαf = Pf weakly
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for f ∈ L2(X,A , µ). The operator P is the orthogonal projection onto the Kronecker
factor

K =
{
f ∈ L2(X,A , µ) : {Tωf : ω ∈ Ω} is norm precompact

}
.

Now we observe that K = L2(X,K , µ) for some sub-σ-algebra K ⊂ A with K
being Tω invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). Let (µx)x∈X be
the disintegration of µ over the Kronecker algebra K , so that∫

f dµx = E
(
f |K

)
(x) = Pf(x) a.e.,

where E
(
f |K

)
is the conditional expectation of f over K and P is the orthogonal

projection onto K. To see that these are equal we observe that if f ∈ L2(X,A , µ) with
E
(
f |K

)
= 0 then

∫
f g dµ = 0 for all g ∈ K.

Using the measures µx on X we may define a family of norms on X indexed by x ∈ X
as follows

‖f‖x =
(∫
|f |2dµx

) 1
2 .

We will use ‖ · ‖ without any subscript to denote the appropriate L2 norm.

Definition 4. A function f ∈ L2(X,A , µ) is called almost periodic over K, or AP over
K for short, if for all ε > 0 there exist g1, . . . , gk ∈ L2(X,A , µ) such that for almost every
x ∈ X and every ω ∈ Ω there exists 1 6 i = i(x, ω) 6 k such that

‖Tωf − gi‖x 6 ε.

One may show that the bounded AP over K functions are dense in the AP over K
functions, the constant functions are AP over K, sums and products of bounded AP over
K functions are again bounded AP over K functions. Therefore, the closure of the set of
AP over K functions is of the form L2(X,B, µ) for some σ-algebra B ⊂ A with B being
Tω invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). One may also observe
that any bounded f ∈ K is AP over K and hence any f ∈ K is B-measurable, so that
K ⊂ B. We observe that if E(f |B) = 0 then E(f |K ) = Pf = 0.

Consider the relative product measure µ̃ on X ×X defined by

µ̃(A) =

∫
(µx × µx)(A) dµ(x)

so that ∫
f(x)g(y) dµ̃(x, y) =

∫
P (f)(x)P (g)(x) dµ(x).

This measure is invariant under T̃ω = Tω × Tω for every ω ∈ Ω. If p is an essential
idempotent ultrafilter in δF then by Theorem 3

p - lim
α
T̃eαh = p - lim

α
T̃2eαh = Qh,
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where Q is the orthogonal projection onto the Kronecker factor of T̃ .
Given H ∈ L2(X×X,A ⊗A , µ̃), where A ⊗A denotes the (completion of the) sigma

algebra generated by the rectangles {A1 × A2 : A1, A2 ∈ A }, and φ ∈ L∞(X,A , µ) we
may define

H ? φ(x) =

∫
H(x, s)φ(s) dµx(s).

Lemma 5. If QH = H then for all φ ∈ L∞(X,A , µ) H ? φ is B-measurable.

Proof. Since Q is the projection onto the Kronecker factor of (X×X, T̃ω, µ̃) we have that
H is expressible as a countable sum of eigenfunctions for T̃ω. Without loss of generality
we may assume that H is an eigenfunction, i.e. that(

T̃ωH
)
(t, s) = H

(
Tωt, Tωs) = λ(ω)H(t, s)

where λ : Ω→ S1 is a character. Notice that(
Tω(H ? φ)

)
(x) = (H ? φ)(Tωx)

=

∫
H(Tωx, s)φ(s) dµTωx(s)

=

∫
H(Tωx, Tωs)φ(Tωs) dµx(s)

= λ(ω)

∫
H(x, s)Tωφ(s) dµx(s)

= λ(ω)
(
H ? Tωφ

)
(x).

(2)

Now for almost every y ∈ X we have φ 7→ H?φ is a compact operator on L2(X,A , µy) and
range(λ) is finite so (2) shows that {Tω(H ? φ) : ω ∈ Ω} is precompact in L2(X,A , µy).
Hence for almost every y ∈ X and every ε > 0 there exists M(y, ε) such that

{
Tω(H ?φ) :

ω ∈ span{e1, . . . , eM(y,ε)}
}

is ε-dense in {Tω(H ? φ) : ω ∈ Ω} in L2(X,A , µy). Let ε > 0
be arbitrary. Choose Mn sufficiently large that Mn > M(y, 1

n
) except for y ∈ En where

En ∈ K and µ(En) 6 ε2−n. Define

fε(x) =

{
0 if x ∈

⋃∞
n=1En,

H ? φ(x) otherwise.

It can be easily shown that ‖fε − H ? φ‖ < ‖H‖∞ ‖φ‖∞ ε. Thus it suffices to show
that fε is almost periodic over K. From the construction it is easy to observe that
{0} ∪

{
Tω(H ? φ) : ω ∈ span{e1, . . . , eMn}

}
is 1

n
-dense in {Tωfε : ω ∈ Ω} in L2(µy) for

almost every y ∈ X. Thus fε is almost periodic over K as required. Since H ? φ lies in
the closure of the functions that are almost periodic over K, H ? φ is B-measurable.

4 Projection Results

We now give applications of our results on joinings to the projections of products.
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Lemma 6. Let p be an essential idempotent in δF and let f ∈ L∞(X,A , µ). If E(f |B) =
0 then

p - lim
α
‖P (f Teαf)‖ = p - lim

α
‖P (f T2eαf)‖ = 0.

Proof. Letf, g ∈ L∞(X,A , µ). One has

p - lim
α
‖P
(
g(Teαf)

)
‖2

= p - lim
α

∫ (
P
(
g(Teαf)

)
(x)
)2

dµ(x)

= p - lim
α

∫ (∫
g(t) (Teαf)(t) dµx(t)

)2

dµ(x)

= p - lim
α

∫ (∫
g(t) (Teαf)(t) dµx(t)

)
(∫

g(s) (Teαf)(s) dµx(s)
)
dµ(x)

= p - lim
α

∫
(g ⊗ g) T̃eα(f ⊗ f) dµ̃

=

∫
(g ⊗ g)Q(f ⊗ f) dµ̃,

(3)

and the same equality holds for p - limα ‖P
(
f(T2eαf)

)
‖2. Clearly Q(f ⊗ f)(t, s) = Q(f ⊗

f)(s, t) and Q(f ⊗ f) is (essentially) bounded. We thus have that Q(f ⊗ f) is a positive
definite symmetric kernel in the sense of [FK91, Section 3.6]. By [FK91, equation (3.6)]
Q(f ⊗ f)(t, s) =

∑
k λk(t)φk(t)φk(s) where λk is K -measurable (so that λk(s) = λk(t) for

µ̃-almost every (t, s)), and for almost every y ∈ X {φk} is orthonormal in L2(µy). One
may then check that Q(f ⊗ f) ? φk = λkφk, so by Lemma 5 λkφk is B-measurable.

Applying (3) with g = f , we get

p - lim
α
‖P
(
f (Teαf)

)
‖2 =

∫
(f ⊗ f)Q(f ⊗ f) dµ̃

=

∫
f(t) f(s)

(∑
k

λk(t)φk(t)φk(s)
)
dµ̃

=
∑
k

∫
f(t) f(s)λk(t)φk(t)φk(s) dµ̃

=
∑
k

∫
P (f λk φk)P (f φk) dµ.

However, since λkφk is B-measurable we have

E(f λk φk|B) = λk φk E(f |B) = 0

and consequently P (f λk φk) = 0.

the electronic journal of combinatorics 21(3) (2014), #P3.3 6



Lemma 7. Let p be an essential idempotent on F . If f, g ∈ L∞(X,A , µ) with either
E(f |B) = 0 or E(g|B) = 0 then p - limα Teαf T2eαg = 0 weakly.

As is common in proofs of this type, a version of the Van der Corput lemma is crucial.
This version appears as [BM12, Theorem 3.5].

Lemma 8 (Van der Corput Lemma). Let (xα)α∈F be a bounded F -sequence of vectors
in a Hilbert space and let p ∈ δF be an idempotent. If p - limα p - limβ〈xα∗β, xβ〉 = 0 then
p - limα xα = 0 weakly.

We now use this Van der Corput Lemma to prove Lemma 7.

Proof of Lemma 7. Let xα = TeαfT2eαg. Then

p - lim
β

p - lim
α
〈xα∗β, xα〉

= p - lim
β

p - lim
α

∫
TeαTeβf T2eαT2eβg Teαf T2eαg dµ

= p - lim
β

p - lim
α

∫
Teβf TeαT2eβg f Teαg dµ

= p - lim
β

p - lim
α

∫ (
f Teβf

)
Teα
(
g T2eβg

)
dµ

= p - lim
β

∫
P
(
f Teβf

)
P
(
g T2eβg

)
dµ

6 p - lim
β
‖P (fTeβf)‖ ‖P (gT2eβg)‖ = 0

since either p - limβ ‖P (fTeβf)‖ = 0 or p - limβ ‖P (gT2eβg)‖ = 0 by Lemma 6. Hence by
the conclusion of the Van der Corput lemma we obtain that

p - lim
α
Teαf T2eαg = 0 weakly,

as required.

5 Proof of Theorem 2

Our goal is to show that for A ∈ A with µ(A) > 0,

p - lim
α
µ(A ∩ TeαA ∩ T2eαA) > 0.

It is equivalent that for A ∈ A with µ(A) > 0 the characteristic function f = 1A satistfies

p - lim
α

∫
f Teαf T2eαf dµ > 0.
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To show this we will decompose f into

f1 = E(f |B),

f2 = f − E(f |B).

Clearly E(f2|B) = 0. Expanding, we get∫
f Teαf T2eαf dµ

=

∫
f Teα

(
f1 + f2

)
T2eα

(
f1 + f2

)
dµ,

=

∫
f Teαf1 T2eαf1 dµ+

∫
f Teαf1 T2eαf2 dµ

+

∫
f Teαf2 T2eαf1 dµ+

∫
f Teαf2 T2eαf2 dµ.

From Lemma 7 we have

p - lim
α

∫
f Teαf1 T2eαf2 dµ = 0,

p - lim
α

∫
f Teαf2 T2eαf1 dµ = 0, and

p - lim
α

∫
f Teαf2 T2eαf2 dµ = 0.

so the only term which contributes is

p - lim
α

∫
f Teαf1 T2eαf1 dµ.

Proposition 9. Let f = 1A for A ∈ A with µ(A) > 0 and let f1 = E(f |B). Then

p - lim
α

∫
f Teαf1 T2eαf1 dµ > 0.

Proof. By the decomposition of measures f1(x) > 0 for µ-a.e. x ∈ A. So for some a > 0,
if we let

A′ = {x ∈ X : f1(x)2 > a}

then there exist b > 0 and a set B1 ∈ K with µ(B1) = 5ξ > 0 such that for all y ∈ B1

we have µy(A
′) > b.

Note that
∫
f f1 f1 dµy > ab for all y ∈ B1.

Let ε = a
36

. Now f1 is B-measurable and thus is in the closure of the AP over
K functions. Hence we may choose an almost periodic over K function φ1 such that
‖f1− φ1‖ < ε

√
ξ. This means that ‖f1− φ1‖y < ε for every y ∈ X \C1, where µ(C1) < ξ.

Since ‖f1− φ1‖y is a K -measurable function of y we have that C1 is K -measurable. We
let B2 = B1 \ C1. We have µ(B2) > 4ξ and ‖f1 − φ1‖y < ε for y ∈ B2.

the electronic journal of combinatorics 21(3) (2014), #P3.3 8



Since φ1 is AP over K there exist g1, . . . , gM ∈ L2(X,µ) such that for a.e. y ∈ X and
all ω ∈ Ω one has i = i(ω, y) such that 1 6 i 6M and

‖Tωφ1 − gi‖y < ε.

We claim that p - limα

∫
f Teαf1 T2eαf1 dµ > abξ

4M2 .
Let E1 ∈ p be arbitrary. It suffices to find a single α ∈ E1 for which∫

fTeαf1 T2eαf1 dµ >
abξ

4M2
.

Let N = M2 + 1. Since B2 ∈ K we have p - limα Teα1B2 = 1B2 weakly. However
since there is no loss of norm we must have p - limα Teα1B2 = 1B2 in norm. Writing this
in terms of measure we immediately obtain p - limα µ(B24TeαB2) = 0, and hence there
exists E2 ∈ p such that for all α ∈ E2,

µ(B24TeαB2) <
ξ

2N
. (4)

The same holds true under T2eα , hence there exists E3 ∈ p such that for all α ∈ E3,

µ(B24T2eαB2) <
ξ

2N
. (5)

Now let E = E1 ∩ E2 ∩ E3 ⊂ E1. Since p - limα Teαh = p - limα Teαh = h in norm for all
h ∈ L2(X,K , µ), we have

p - lim
α
‖Teαh− T2eαh‖ = 0.

Taking h(y) = ‖f1 − T2eαf1‖y we obtain that for all α,

p - lim
β

∫ ∣∣‖f1 − T2eαf1‖Teβ y − ‖f1 − T2eαf1‖T2eβ y
∣∣2dµ(y) = 0.

Let

Aα =
{
β ∈ E :

∫ ∣∣‖f1 − T2eαf1‖Teβ y − ‖f1 − T2eαf1‖T2eβ y
∣∣2dµ(y) <

ε2ξ

2M2

}
.

We have Aα ∈ p for all α ∈ F . We will choose α1 < α2 < · · · < αN inductively such
that for all α, β ∈ FU(α1, . . . , αN), where FU(α1, . . . , αN) denotes all finite unions of sets
from {α1, . . . , αN}, with α < β one has β ∈ Aα i.e.∫ ∣∣‖f1 − T2eαf1‖Teβ y − ‖f1 − T2eαf1‖T2eβ y

∣∣2 dµ(y) <
ε2ξ

2M2
. (6)

We let α1 ∈ E2 be arbitrary. We have Aα1 ∈ p. Since p is idempotent we have Aα1 ∈ p∗p,
so that {γ ∈ F : γ−1Aα1 ∈ p} ∈ p. Intersecting this set with Aα1 ∈ p and Fmaxα1 ∈ p we
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get {γ ∈ Fmaxα1∩Aα1 : γ−1Aα1 ∈ p} ∈ p and consequently {γ ∈ Fmaxα1∩Aα1 : γ−1Aα1 ∈
p} 6= ∅. We choose α2 ∈ {γ ∈ Fmaxα1∩Aα1 : γ−1Aα1 ∈ p} so that α1 < α2, α2 ∈ Aα1 , and
α−1

2 Aα1 ∈ p. Our inductive hypothesis is that for all α, β ∈ FU(α1, . . . , αn) with α < β
we have β ∈ Aα and β−1Aα ∈ p. For conciseness we will write Fn = FU(α1, . . . , αn). By
the inductive hypothesis ⋂

α∈Fn

Aα ∩
⋂

α,β∈Fn
α<β

β−1Aα ∈ p.

Since p is an idempotent we have{
γ ∈ F : γ−1

( ⋂
α∈Fn

Aα ∩
⋂

α,β∈Fn
α<β

β−1Aα ∈ p
)}
∈ p

intersecting we then have{
γ ∈ Fmaxαn ∩

⋂
α∈Fn

Aα ∩
⋂

α,β∈Fn
α<β

β−1Aα

: γ−1
( ⋂
α∈Fn

Aα ∩
⋂

α,β∈Fn
α<β

β−1Aα ∈ p
)}
∈ p.

We choose αn+1 from this set. The reader should verify that all the conditions for the
induction to continue are satisfied. We define B3 ∈ K as

B3 = B2 ∩
⋂
α∈FN

(
T−1
eα B2 ∩ T−1

2eαB2

)
.

Using (4) and (5) we have that µ(B3) > ξ. Also for all y ∈ B3, α ∈ FN , Teαy ∈ B2 and
T2eαy ∈ B2.

Since N = M2 + 1 for all y ∈ B3 there exists ` = `(y), m = m(y) with 1 6 ` < m 6 N
such that

i(eα`∪···∪αN , y) = i(eαm∪···∪αN , y) (7)

and

i(2eα`∪···∪αN , y) = i(2eαm∪···∪αN , y). (8)

We may divide B3 into at most M2 cells on which both ` and m are constant. At least
one of these cells must have measure at least µ(B3)/M2. Let B4 ⊂ B3 be such a cell. Now
µ(B4) > ξ

M2 . For conciseness we write βj = αj ∪ · · · ∪ αN .
For y ∈ B4 we have

‖Teβmφ1 − Teβ`φ1‖y
< ‖Teβmφ1 − gi(eβm ,y)‖y + ‖gi(eβ` ,y) − Teβ`φ1‖y < 2ε.

(9)
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Similarly,

‖T2eβm
φ1 − T2eβ`

φ1‖y < 2ε. (10)

Since Tω is measure-preserving, by (9) and (10) we have

‖φ1 − Teα`∪···∪αm−1
φ1‖Teβm y < 2ε and

‖φ1 − T2eα`∪···∪αm−1
φ1‖T2eβm y < 2ε.

(11)

Since βm, β` ∈ FN we have Teβmy, Teβ`y ∈ B2 and consequently

‖φ1 − f1‖Teβm y < ε and ‖φ1 − f1‖Teβ` y < ε.

Now ‖Teα`∪···∪αm−1
f1−Teα`∪···∪αm−1

φ1‖Teβm y = ‖f1−φ1‖Teβ` y < ε. Write α = α`∪· · ·∪αm−1

and β = βm. Now by the triangle inequality

‖f1 − Teαf1‖Teβ y < 4ε. (12)

Similarly we can conclude that

‖f1 − T2eαf1‖T2eβ y < 4ε. (13)

Since α < β, by (6) we have∣∣‖f1 − T2eαf1‖Teβ y − ‖f1 − T2eαf1‖T2eβ y
∣∣ < ε (14)

for all y ∈ X \ C2, where µ(C2) < ξ
2M2 . Let B5 = B4 \ C2. Clearly µ(B5) > ξ

2M2 . For all
y ∈ B5 we can combine (14) with (13) to get

‖f1 − T2eαf1‖Teβ y < 5ε. (15)

Now ∫
f Teαf1T2eαf1 dµy

=

∫
f
(
f1 + (Teαf1 − f1)

)(
f1 + (T2eαf1 − f1)

)
dµy

=

∫
f f1 f1 dµy +

∫
f (Teαf1 − f1) f1 dµy +

∫
f f1 (T2eαf1 − f1) dµy

+

∫
f (Teαf1 − f1) (T2eαf1 − f1) dµy.

Using |f | 6 1 and |f1| 6 1 together with (12) and (15) we obtain∫
f Teαf1T2eαf1 dµTeβ y > (a− 18ε)b >

ab

2

for all y ∈ B5. Since µ(B5) > ξ
2M2 we have∫

f Teαf1 T2eαf1 dµ >
abξ

4M2

as claimed.
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