A Characteristic Factor for the 3-Term IP Roth Theorem in $\mathbb{Z}_{3}^{\mathbb{N}}$

Randall McCutcheon Alistair Windsor
Department of Mathematical Sciences
The University of Memphis
Tennessee, U.S.A.
rmcctchn@memphis.edu awindsor@memphis.edu

Submitted: Sep 12, 2013; Accepted: Jun 21, 2014; Published: Jul 3, 2014
Mathematics Subject Classifications: 05D10, 37A15

Abstract

Let $\Omega=\bigoplus_{i=1}^{\infty} \mathbb{Z}_{3}$ and $e_{i}=(0, \ldots, 0,1,0, \ldots)$ where the 1 occurs in the i-th coordinate. Let $\mathscr{F}=\{\alpha \subset \mathbb{N}: \varnothing \neq \alpha, \alpha$ is finite $\}$. There is a natural inclusion of \mathscr{F} into Ω where $\alpha \in \mathscr{F}$ is mapped to $e_{\alpha}=\sum_{i \in \alpha} e_{i}$. We give a new proof that if $E \subset \Omega$ with $d^{*}(E)>0$ then there exist $\omega \in \Omega$ and $\alpha \in \mathscr{F}$ such that $$
\left\{\omega, \omega+e_{\alpha}, \omega+2 e_{\alpha}\right\} \subset E .
$$

Our proof establishes that for the ergodic reformulation of the problem there is a characteristic factor that is a one step compact extension of the Kronecker factor.

1 Introduction

Let $\Omega=\bigoplus_{i=1}^{\infty} \mathbb{Z}_{3}$. Ω is an abelian group and hence amenable. Let $e_{i}=(0, \ldots, 0,1,0, \ldots)$ where the 1 occurs in the i-th coordinate. For a set S let

$$
\mathscr{F}(S)=\{\gamma \subset S: \gamma \text { is non-empty and finite }\} .
$$

We will denote $\mathscr{F}(\mathbb{N})$ by simply \mathscr{F} and endow it with the discrete topology. There is a natural inclusion of \mathscr{F} into Ω where $\alpha \in \mathscr{F}$ is mapped to $e_{\alpha}=\sum_{i \in \alpha} e_{i}$.

The upper Banach density of a set $E \subset \Omega$, denoted $d^{*}(E)$, is defined as

$$
d^{*}(E)=\sup _{\left(\Phi_{n}\right) \text { Følner }} \limsup _{n \rightarrow \infty} \frac{\left|E \cap \Phi_{n}\right|}{\left|\Phi_{n}\right|}
$$

where the supremum is taken over the set of Følner sequences, i.e. over the set of sequences of finite sets $\left(\Phi_{n}\right)_{n=1}^{\infty}$ in Ω such that for all $\omega \in \Omega$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left(\omega+\Phi_{n}\right) \triangle \Phi_{n}\right|}{\left|\Phi_{n}\right|}=0 .
$$

We give a new proof of the following theorem:
Theorem 1. Let $E \subset \Omega$ with $d^{*}(E)>0$. There exists $\omega \in \Omega$ and $\alpha \in \mathscr{F}$ such that

$$
\begin{equation*}
\left\{\omega, \omega+e_{\alpha}, \omega+2 e_{\alpha}\right\} \subset E . \tag{1}
\end{equation*}
$$

One can derive Theorem 1 from Furstenberg's correspondence principle and the following recurrence theorem.

Theorem 2. Let $\left(T_{\omega}\right)_{\omega \in \Omega}$ be a measure-preserving action of Ω on a probability space (X, \mathscr{A}, μ). If $A \in \mathscr{A}$ with $\mu(A)>0$ then there exists $\alpha \in \mathscr{F}$ such that

$$
\mu\left(A \cap T_{e_{\alpha}} A \cap T_{2 e_{\alpha}} A\right)>0
$$

Theorem 2 is not new; it follows from the Furstenberg-Katznelson IP-Szemerédi Theorem [FK85]. However, our proof identifies a characteristic factor that is a 1-step compact extension of the Kronecker factor of T_{ω}. Identifying a characteristic factor is suggestive of a first step in obtaining a decent quantitative result.

2 Ultrafilter Preliminaries

We will be working with the Stone-Čech compactification of $\mathscr{F}, \beta \mathscr{F}$. Since \mathscr{F} is discrete we may identify points of $\beta \mathscr{F}$ with ultrafilters on \mathscr{F}. An ultrafilter \mathfrak{p} on \mathscr{F} is a subset $\mathfrak{p} \subset \mathscr{P}(\mathscr{F})$ that satisfies the following axioms

1. $\emptyset \notin \mathfrak{p}$,
2. If $A \subset B$ and $A \in \mathfrak{p}$ then $B \in \mathfrak{p}$.
3. If $A, B \in \mathfrak{p}$ then $A \cap B \in \mathfrak{p}$.
4. if $A \subset \mathscr{F}$ then either $A \in \mathfrak{p}$ or $A^{c} \in \mathfrak{p}$.

We identify $\alpha \in \mathscr{F}$ with the principal ultrafilter $\mathfrak{p}_{\alpha}=\{A \subset \mathscr{F}: \alpha \in A\}$. We can endow $\beta \mathscr{F}$ with the Stone topology, that is for $A \subset \mathscr{F}$, we define $\bar{A}=\{\mathfrak{p} \in \beta \mathscr{F}: A \in \mathfrak{p}\}$, and the set $\{\bar{A}: A \subset \mathscr{F}\}$ is a basis for the closed sets of $\beta \mathscr{F}$. Indeed, from the ultrafilter property $\bar{A}^{c}=\overline{A^{c}}$ and so this is also a basis for the open sets.

For $\alpha, \beta \in \mathscr{F}$ we write $\alpha<\beta$ if $\max \alpha<\min \beta$. When $\alpha<\beta$ we define $\alpha * \beta=\alpha \cup \beta$ and we leave $\alpha * \beta$ undefined otherwise. This makes $(\mathscr{F}, *)$ into an adequate partial semigroup in the sense of [BBH94] (see also [HM01]]). Briefly this means that $*$ maps a subset of
$\mathscr{F} \times \mathscr{F}$ to \mathscr{F}, is associative for all triples where defined, and for any $\alpha_{1}, \ldots, \alpha_{n} \in \mathscr{F}$ there exists $\beta \in \mathscr{F}$ such that $\alpha_{i} * \beta$ is defined for all $1 \leqslant i \leqslant n$. Notice that if $\alpha<\beta$ then

$$
e_{\alpha * \beta}=e_{\alpha}+e_{\beta} .
$$

In the case of a semi-group \mathscr{F} the operation extends to an operation on $\beta \mathscr{F}$ that makes $\beta \mathscr{F}$ a semi-group. In our case however \mathscr{F} is only a partial semi-group and $*$ does not extend to all of $\beta \mathscr{F} \times \beta \mathscr{F}$. We extend the operation $*$ to a partial semi-group operation on $\beta \mathscr{F}$ using the same definition as for semi-groups

$$
A \in \mathfrak{p} * \mathfrak{q} \Longleftrightarrow\{p:\{q: p * q \in A\} \in \mathfrak{q}\} \in \mathfrak{p}
$$

where $p * q \in A$ means both that $p * q$ is defined and $p * q \in A$. This extends the existing operation $*$ in the following sense: if $\alpha, \beta \in \mathscr{F}$ then $\mathfrak{p}_{\alpha} * \mathfrak{p}_{\beta}$ is defined if $\alpha * \beta$ is defined, and in this case $\mathfrak{p}_{\alpha} * \mathfrak{p}_{\beta}=\mathfrak{p}_{\alpha * \beta}$. If we let $\mathscr{F}_{n}=\mathscr{F}(\{n+1, n+2, \ldots\})$ then we can define $\delta \mathscr{F}=\cap_{n=1}^{\infty} \overline{\mathscr{F}}_{n} \subset \beta \mathscr{F}$. If we wish $\mathfrak{p} * \mathfrak{q}$ to be defined for all $\mathfrak{p} \in \beta \mathscr{F}$ then it turns out that we must have $\mathfrak{q} \in \delta \mathscr{F}$.

Given an ultrafilter \mathfrak{p} on \mathscr{F} we say that a sequence $\left(x_{\alpha}\right)_{\alpha \in \mathscr{F}}$ in a Banach space $X \mathfrak{p}$ converges to L in norm if for every $\epsilon>0$ we have $\left\{\alpha \in \mathscr{F}:\left\|x_{\alpha}-L\right\|<\epsilon\right\} \in \mathfrak{p}$. Since the limit, if it exists, is unique we write $\mathfrak{p}-\lim x_{\alpha}=L$. It can be shown that every pre-compact sequence \mathfrak{p}-converges. Given an ultrafilter \mathfrak{p} on \mathscr{F} we say that a sequence $\left(x_{\alpha}\right)_{\alpha \in \mathscr{F}}$ in a Hilbert space $H \mathfrak{p}$-converges to L weakly if for every $x \in H$ we have $\mathfrak{p}-\lim \left\langle x_{\alpha}, x\right\rangle=\langle L, x\rangle$.

It may be shown that $(\delta \mathscr{F}, *)$ is a compact Hausdorff right topological semigroup. An idempotent ultrafilter \mathfrak{p} is one that satisfies $\mathfrak{p} * \mathfrak{p}=\mathfrak{p}$. For $E \subset \mathscr{F}$ write

$$
\bar{d}(E)=\limsup _{n \rightarrow \infty} \frac{|E \cap \mathscr{F}(\{1, \ldots, n\})|}{2^{n}}
$$

An ultrafilter $\mathfrak{p} \in \delta \mathscr{F}$ is called essential if for every $A \in \mathfrak{p}$ we have $\bar{d}\left(A \cap \mathscr{F}_{n}\right)>0$. By [BM12, Proposition 2.1] there exists an essential idempotent ultrafilter in $\delta \mathscr{F}$.

3 Factors and Joinings

Crucial to our proof will be the following theorem. It is a combination of [BM12, Theorem 3.3] and [BM12, Theorem 4.3]. In [BM12] Theorem 4.3 is derived from [BKMP88, Corollary 1]; in our case, where we need only consider $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{3}$, one may derive the appropriate version of [BM12, Theorem 4.3] from [BM83, Proposition 2.7], which is a direct consequence of a result of Woodall in [Woo77]. This theorem is the only place where the fact that \mathfrak{p} is an essential ultrafilter is used.

Theorem 3. [Ber03, Corollary 4.6] Let $\left(T_{\omega}\right)_{\omega \in \Omega}$ be a measure-preserving action of Ω on a probability space (X, \mathscr{A}, μ). The action T extends to a unitary action on $L^{2}(X, \mathscr{A}, \mu)$. Let \mathfrak{p} be an essential idempotent ultrafilter in $\delta \mathscr{F}$. Define an operator P on $L^{2}(X, \mathscr{A}, \mu)$ by

$$
\mathfrak{p -} \lim _{\alpha \in \mathscr{F}} T_{e_{\alpha}} f=\operatorname{Pf} \text { weakly }
$$

for $f \in L^{2}(X, \mathscr{A}, \mu)$. The operator P is the orthogonal projection onto the Kronecker factor

$$
K=\left\{f \in L^{2}(X, \mathscr{A}, \mu):\left\{T_{\omega} f: \omega \in \Omega\right\} \text { is norm precompact }\right\} .
$$

Now we observe that $K=L^{2}(X, \mathscr{K}, \mu)$ for some sub- σ-algebra $\mathscr{K} \subset \mathscr{A}$ with \mathscr{K} being T_{ω} invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). Let $\left(\mu_{x}\right)_{x \in X}$ be the disintegration of μ over the Kronecker algebra \mathscr{K}, so that

$$
\int f d \mu_{x}=E(f \mid \mathscr{K})(x)=P f(x) \text { a.e., }
$$

where $E(f \mid \mathscr{K})$ is the conditional expectation of f over \mathscr{K} and P is the orthogonal projection onto K. To see that these are equal we observe that if $f \in L^{2}(X, \mathscr{A}, \mu)$ with $E(f \mid \mathscr{K})=0$ then $\int f g d \mu=0$ for all $g \in K$.

Using the measures μ_{x} on X we may define a family of norms on X indexed by $x \in X$ as follows

$$
\|f\|_{x}=\left(\int|f|^{2} d \mu_{x}\right)^{\frac{1}{2}} .
$$

We will use $\|\cdot\|$ without any subscript to denote the appropriate L^{2} norm.
Definition 4. A function $f \in L^{2}(X, \mathscr{A}, \mu)$ is called almost periodic over K, or AP over K for short, if for all $\epsilon>0$ there exist $g_{1}, \ldots, g_{k} \in L^{2}(X, \mathscr{A}, \mu)$ such that for almost every $x \in X$ and every $\omega \in \Omega$ there exists $1 \leqslant i=i(x, \omega) \leqslant k$ such that

$$
\left\|T_{\omega} f-g_{i}\right\|_{x} \leqslant \epsilon
$$

One may show that the bounded AP over K functions are dense in the AP over K functions, the constant functions are AP over K, sums and products of bounded AP over K functions are again bounded AP over K functions. Therefore, the closure of the set of AP over K functions is of the form $L^{2}(X, \mathscr{B}, \mu)$ for some σ-algebra $\mathscr{B} \subset \mathscr{A}$ with \mathscr{B} being T_{ω} invariant (see [FK91, Lemma 3.1] or [McC00, Theorem 2.7]). One may also observe that any bounded $f \in K$ is AP over K and hence any $f \in K$ is \mathscr{B}-measurable, so that $\mathscr{K} \subset \mathscr{B}$. We observe that if $E(f \mid \mathscr{B})=0$ then $E(f \mid \mathscr{K})=P f=0$.

Consider the relative product measure $\tilde{\mu}$ on $X \times X$ defined by

$$
\tilde{\mu}(A)=\int\left(\mu_{x} \times \mu_{x}\right)(A) d \mu(x)
$$

so that

$$
\int f(x) g(y) d \tilde{\mu}(x, y)=\int P(f)(x) P(g)(x) d \mu(x)
$$

This measure is invariant under $\tilde{T}_{\omega}=T_{\omega} \times T_{\omega}$ for every $\omega \in \Omega$. If \mathfrak{p} is an essential idempotent ultrafilter in $\delta \mathscr{F}$ then by Theorem 3

$$
\mathfrak{p}-\lim _{\alpha} \tilde{T}_{e_{\alpha}} h=\mathfrak{p}-\lim _{\alpha} \tilde{T}_{2 e_{\alpha}} h=Q h,
$$

where Q is the orthogonal projection onto the Kronecker factor of \tilde{T}.
Given $H \in L^{2}(X \times X, \mathscr{A} \otimes \mathscr{A}, \tilde{\mu})$, where $\mathscr{A} \otimes \mathscr{A}$ denotes the (completion of the) sigma algebra generated by the rectangles $\left\{A_{1} \times A_{2}: A_{1}, A_{2} \in \mathscr{A}\right\}$, and $\phi \in L^{\infty}(X, \mathscr{A}, \mu)$ we may define

$$
H \star \phi(x)=\int H(x, s) \phi(s) d \mu_{x}(s) .
$$

Lemma 5. If $Q H=H$ then for all $\phi \in L^{\infty}(X, \mathscr{A}, \mu) H \star \phi$ is \mathscr{B}-measurable.
Proof. Since Q is the projection onto the Kronecker factor of $\left(X \times X, \tilde{T}_{\omega}, \tilde{\mu}\right)$ we have that H is expressible as a countable sum of eigenfunctions for \tilde{T}_{ω}. Without loss of generality we may assume that H is an eigenfunction, i.e. that

$$
\left(\tilde{T}_{\omega} H\right)(t, s)=H\left(T_{\omega} t, T_{\omega} s\right)=\lambda(\omega) H(t, s)
$$

where $\lambda: \Omega \rightarrow S^{1}$ is a character. Notice that

$$
\begin{align*}
\left(T_{\omega}(H \star \phi)\right)(x) & =(H \star \phi)\left(T_{\omega} x\right) \\
& =\int H\left(T_{\omega} x, s\right) \phi(s) d \mu_{T_{\omega} x}(s) \\
& =\int H\left(T_{\omega} x, T_{\omega} s\right) \phi\left(T_{\omega} s\right) d \mu_{x}(s) \tag{2}\\
& =\lambda(\omega) \int H(x, s) T_{\omega} \phi(s) d \mu_{x}(s) \\
& =\lambda(\omega)\left(H \star T_{\omega} \phi\right)(x) .
\end{align*}
$$

Now for almost every $y \in X$ we have $\phi \mapsto H \star \phi$ is a compact operator on $L^{2}\left(X, \mathscr{A}, \mu_{y}\right)$ and range (λ) is finite so (2) shows that $\left\{T_{\omega}(H \star \phi): \omega \in \Omega\right\}$ is precompact in $L^{2}\left(X, \mathscr{A}, \mu_{y}\right)$. Hence for almost every $y \in X$ and every $\epsilon>0$ there exists $M(y, \epsilon)$ such that $\left\{T_{\omega}(H \star \phi)\right.$: $\left.\omega \in \operatorname{span}\left\{e_{1}, \ldots, e_{M(y, \epsilon)}\right\}\right\}$ is ϵ-dense in $\left\{T_{\omega}(H \star \phi): \omega \in \Omega\right\}$ in $L^{2}\left(X, \mathscr{A}, \mu_{y}\right)$. Let $\epsilon>0$ be arbitrary. Choose M_{n} sufficiently large that $M_{n}>M\left(y, \frac{1}{n}\right)$ except for $y \in E_{n}$ where $E_{n} \in \mathscr{K}$ and $\mu\left(E_{n}\right) \leqslant \epsilon 2^{-n}$. Define

$$
f_{\epsilon}(x)= \begin{cases}0 & \text { if } x \in \bigcup_{n=1}^{\infty} E_{n} \\ H \star \phi(x) & \text { otherwise }\end{cases}
$$

It can be easily shown that $\left\|f_{\epsilon}-H \star \phi\right\|<\|H\|_{\infty}\|\phi\|_{\infty} \epsilon$. Thus it suffices to show that f_{ϵ} is almost periodic over K. From the construction it is easy to observe that $\{0\} \cup\left\{T_{\omega}(H \star \phi): \omega \in \operatorname{span}\left\{e_{1}, \ldots, e_{M_{n}}\right\}\right\}$ is $\frac{1}{n}$-dense in $\left\{T_{\omega} f_{\epsilon}: \omega \in \Omega\right\}$ in $L^{2}\left(\mu_{y}\right)$ for almost every $y \in X$. Thus f_{ϵ} is almost periodic over K as required. Since $H \star \phi$ lies in the closure of the functions that are almost periodic over $K, H \star \phi$ is \mathscr{B}-measurable.

4 Projection Results

We now give applications of our results on joinings to the projections of products.

Lemma 6. Let \mathfrak{p} be an essential idempotent in $\delta \mathscr{F}$ and let $f \in L^{\infty}(X, \mathscr{A}, \mu)$. If $E(f \mid \mathscr{B})=$ 0 then

$$
\mathfrak{p}-\lim _{\alpha}\left\|P\left(f T_{e_{\alpha}} f\right)\right\|=\mathfrak{p}-\lim _{\alpha}\left\|P\left(f T_{2 e_{\alpha}} f\right)\right\|=0
$$

Proof. Let $f, g \in L^{\infty}(X, \mathscr{A}, \mu)$. One has

$$
\begin{align*}
& \mathfrak{p}-\lim _{\alpha}\left\|P\left(g\left(T_{e_{\alpha}} f\right)\right)\right\|^{2} \\
&=\mathfrak{p}-\lim _{\alpha} \int\left(P\left(g\left(T_{e_{\alpha}} f\right)\right)(x)\right)^{2} d \mu(x) \\
&= \mathfrak{p}-\lim _{\alpha} \int\left(\int g(t)\left(T_{e_{\alpha}} f\right)(t) d \mu_{x}(t)\right)^{2} d \mu(x) \\
& \quad= \mathfrak{p}-\lim _{\alpha} \int\left(\int g(t)\left(T_{e_{\alpha}} f\right)(t) d \mu_{x}(t)\right) \tag{3}\\
& \quad\left(\int g(s)\left(T_{e_{\alpha}} f\right)(s) d \mu_{x}(s)\right) d \mu(x) \\
& \quad=\mathfrak{p}-\lim _{\alpha} \int(g \otimes g) \tilde{T}_{e_{\alpha}}(f \otimes f) d \tilde{\mu} \\
&=\int(g \otimes g) Q(f \otimes f) d \tilde{\mu},
\end{align*}
$$

and the same equality holds for $\mathfrak{p}-\lim _{\alpha}\left\|P\left(f\left(T_{2 e_{\alpha}} f\right)\right)\right\|^{2}$. Clearly $Q(f \otimes f)(t, s)=Q(f \otimes$ $f)(s, t)$ and $Q(f \otimes f)$ is (essentially) bounded. We thus have that $Q(f \otimes f)$ is a positive definite symmetric kernel in the sense of [FK91, Section 3.6]. By [FK91, equation (3.6)] $Q(f \otimes f)(t, s)=\sum_{k} \lambda_{k}(t) \phi_{k}(t) \phi_{k}(s)$ where λ_{k} is \mathscr{K}-measurable (so that $\lambda_{k}(s)=\lambda_{k}(t)$ for $\tilde{\mu}$-almost every (t, s)), and for almost every $y \in X\left\{\phi_{k}\right\}$ is orthonormal in $L^{2}\left(\mu_{y}\right)$. One may then check that $Q(f \otimes f) \star \phi_{k}=\lambda_{k} \phi_{k}$, so by Lemma $5 \lambda_{k} \phi_{k}$ is \mathscr{B}-measurable.

Applying (3) with $g=f$, we get

$$
\begin{aligned}
\mathfrak{p}-\lim _{\alpha}\left\|P\left(f\left(T_{e_{\alpha}} f\right)\right)\right\|^{2} & =\int(f \otimes f) Q(f \otimes f) d \tilde{\mu} \\
& =\int f(t) f(s)\left(\sum_{k} \lambda_{k}(t) \phi_{k}(t) \phi_{k}(s)\right) d \tilde{\mu} \\
& =\sum_{k} \int f(t) f(s) \lambda_{k}(t) \phi_{k}(t) \phi_{k}(s) d \tilde{\mu} \\
& =\sum_{k} \int P\left(f \lambda_{k} \phi_{k}\right) P\left(f \phi_{k}\right) d \mu .
\end{aligned}
$$

However, since $\lambda_{k} \phi_{k}$ is \mathscr{B}-measurable we have

$$
E\left(f \lambda_{k} \phi_{k} \mid \mathscr{B}\right)=\lambda_{k} \phi_{k} E(f \mid \mathscr{B})=0
$$

and consequently $P\left(f \lambda_{k} \phi_{k}\right)=0$.

Lemma 7. Let \mathfrak{p} be an essential idempotent on \mathscr{F}. If $f, g \in L^{\infty}(X, \mathscr{A}, \mu)$ with either $E(f \mid \mathscr{B})=0$ or $E(g \mid \mathscr{B})=0$ then $\mathfrak{p}-\lim _{\alpha} T_{e_{\alpha}} f T_{2 e_{\alpha}} g=0$ weakly.

As is common in proofs of this type, a version of the Van der Corput lemma is crucial. This version appears as [BM12, Theorem 3.5].

Lemma 8 (Van der Corput Lemma). Let $\left(x_{\alpha}\right)_{\alpha \in \mathscr{F}}$ be a bounded \mathscr{F}-sequence of vectors in a Hilbert space and let $\mathfrak{p} \in \delta \mathscr{F}$ be an idempotent. If $\mathfrak{p -} \lim _{\alpha} \mathfrak{p}-\lim _{\beta}\left\langle x_{\alpha * \beta}, x_{\beta}\right\rangle=0$ then $\mathfrak{p}-\lim _{\alpha} x_{\alpha}=0$ weakly.

We now use this Van der Corput Lemma to prove Lemma 7.
Proof of Lemma 7. Let $x_{\alpha}=T_{e_{\alpha}} f T_{2 e_{\alpha}} g$. Then

$$
\begin{aligned}
\mathfrak{p}-\lim _{\beta} \mathfrak{p}-\lim _{\alpha} & \left\langle x_{\alpha * \beta}, x_{\alpha}\right\rangle \\
& =\mathfrak{p}-\lim _{\beta} \mathfrak{p}-\lim _{\alpha} \int T_{e_{\alpha}} T_{e_{\beta}} f T_{2 e_{\alpha}} T_{2 e_{\beta}} g T_{e_{\alpha}} f T_{2 e_{\alpha}} g d \mu \\
& =\mathfrak{p}-\lim _{\beta} \mathfrak{p}-\lim _{\alpha} \int T_{e_{\beta}} f T_{e_{\alpha}} T_{2 e_{\beta}} g f T_{e_{\alpha}} g d \mu \\
& =\mathfrak{p}-\lim _{\beta} \mathfrak{p}-\lim _{\alpha} \int\left(f T_{e_{\beta}} f\right) T_{e_{\alpha}}\left(g T_{2 e_{\beta}} g\right) d \mu \\
& =\mathfrak{p}-\lim _{\beta} \int P\left(f T_{e_{\beta}} f\right) P\left(g T_{2 e_{\beta}} g\right) d \mu \\
& \leqslant \mathfrak{p}-\lim _{\beta}\left\|P\left(f T_{e_{\beta}} f\right)\right\|\left\|P\left(g T_{2 e_{\beta}} g\right)\right\|=0
\end{aligned}
$$

since either $\mathfrak{p}-\lim _{\beta}\left\|P\left(f T_{e_{\beta}} f\right)\right\|=0$ or $\mathfrak{p}-\lim _{\beta}\left\|P\left(g T_{2 e_{\beta}} g\right)\right\|=0$ by Lemma 6. Hence by the conclusion of the Van der Corput lemma we obtain that

$$
\mathfrak{p}-\lim _{\alpha} T_{e_{\alpha}} f T_{2 e_{\alpha}} g=0 \text { weakly },
$$

as required.

5 Proof of Theorem 2

Our goal is to show that for $A \in \mathscr{A}$ with $\mu(A)>0$,

$$
\mathfrak{p -}-\lim _{\alpha} \mu\left(A \cap T_{e_{\alpha}} A \cap T_{2 e_{\alpha}} A\right)>0 .
$$

It is equivalent that for $A \in \mathscr{A}$ with $\mu(A)>0$ the characteristic function $f=\mathbb{1}_{A}$ satistfies

$$
\mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f T_{2 e_{\alpha}} f d \mu>0
$$

To show this we will decompose f into

$$
\begin{aligned}
f_{1} & =E(f \mid \mathscr{B}), \\
f_{2} & =f-E(f \mid \mathscr{B}) .
\end{aligned}
$$

Clearly $E\left(f_{2} \mid \mathscr{B}\right)=0$. Expanding, we get

$$
\begin{aligned}
& \int f T_{e_{\alpha}} f T_{2 e_{\alpha}} f d \mu \\
& \quad=\int f T_{e_{\alpha}}\left(f_{1}+f_{2}\right) T_{2 e_{\alpha}}\left(f_{1}+f_{2}\right) d \mu \\
& =\int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu+\int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{2} d \mu \\
& \quad \quad+\int f T_{e_{\alpha}} f_{2} T_{2 e_{\alpha}} f_{1} d \mu+\int f T_{e_{\alpha}} f_{2} T_{2 e_{\alpha}} f_{2} d \mu .
\end{aligned}
$$

From Lemma 7 we have

$$
\begin{aligned}
& \mathfrak{p -}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{2} d \mu=0, \\
& \mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{2} T_{2 e_{\alpha}} f_{1} d \mu=0, \text { and } \\
& \mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{2} T_{2 e_{\alpha}} f_{2} d \mu=0 .
\end{aligned}
$$

so the only term which contributes is

$$
\mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu .
$$

Proposition 9. Let $f=\mathbb{1}_{A}$ for $A \in \mathscr{A}$ with $\mu(A)>0$ and let $f_{1}=E(f \mid \mathscr{B})$. Then

$$
\mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu>0
$$

Proof. By the decomposition of measures $f_{1}(x)>0$ for μ-a.e. $x \in A$. So for some $a>0$, if we let

$$
A^{\prime}=\left\{x \in X: f_{1}(x)^{2}>a\right\}
$$

then there exist $b>0$ and a set $B_{1} \in \mathscr{K}$ with $\mu\left(B_{1}\right)=5 \xi>0$ such that for all $y \in B_{1}$ we have $\mu_{y}\left(A^{\prime}\right)>b$.

Note that $\int f f_{1} f_{1} d \mu_{y}>a b$ for all $y \in B_{1}$.
Let $\epsilon=\frac{a}{36}$. Now f_{1} is \mathscr{B}-measurable and thus is in the closure of the AP over K functions. Hence we may choose an almost periodic over K function ϕ_{1} such that $\left\|f_{1}-\phi_{1}\right\|<\epsilon \sqrt{\xi}$. This means that $\left\|f_{1}-\phi_{1}\right\|_{y}<\epsilon$ for every $y \in X \backslash C_{1}$, where $\mu\left(C_{1}\right)<\xi$. Since $\left\|f_{1}-\phi_{1}\right\|_{y}$ is a \mathscr{K}-measurable function of y we have that C_{1} is \mathscr{K}-measurable. We let $B_{2}=B_{1} \backslash C_{1}$. We have $\mu\left(B_{2}\right)>4 \xi$ and $\left\|f_{1}-\phi_{1}\right\|_{y}<\epsilon$ for $y \in B_{2}$.

Since ϕ_{1} is AP over K there exist $g_{1}, \ldots, g_{M} \in L^{2}(X, \mu)$ such that for a.e. $y \in X$ and all $\omega \in \Omega$ one has $i=i(\omega, y)$ such that $1 \leqslant i \leqslant M$ and

$$
\left\|T_{\omega} \phi_{1}-g_{i}\right\|_{y}<\epsilon .
$$

We claim that $\mathfrak{p}-\lim _{\alpha} \int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu \geqslant \frac{a b \xi}{4 M^{2}}$.
Let $E_{1} \in \mathfrak{p}$ be arbitrary. It suffices to find a single $\alpha \in E_{1}$ for which

$$
\int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu>\frac{a b \xi}{4 M^{2}}
$$

Let $N=M^{2}+1$. Since $B_{2} \in \mathscr{K}$ we have \mathfrak{p} - $\lim _{\alpha} T_{e_{\alpha}} \mathbb{1}_{B_{2}}=\mathbb{1}_{B_{2}}$ weakly. However since there is no loss of norm we must have $\mathfrak{p}-\lim _{\alpha} T_{e_{\alpha}} \mathbb{1}_{B_{2}}=\mathbb{1}_{B_{2}}$ in norm. Writing this in terms of measure we immediately obtain \mathfrak{p} - $\lim _{\alpha} \mu\left(B_{2} \triangle T_{e_{\alpha}} B_{2}\right)=0$, and hence there exists $E_{2} \in \mathfrak{p}$ such that for all $\alpha \in E_{2}$,

$$
\begin{equation*}
\mu\left(B_{2} \triangle T_{e_{\alpha}} B_{2}\right)<\frac{\xi}{2^{N}} . \tag{4}
\end{equation*}
$$

The same holds true under $T_{2 e_{\alpha}}$, hence there exists $E_{3} \in \mathfrak{p}$ such that for all $\alpha \in E_{3}$,

$$
\begin{equation*}
\mu\left(B_{2} \triangle T_{2 e_{\alpha}} B_{2}\right)<\frac{\xi}{2^{N}} \tag{5}
\end{equation*}
$$

Now let $E=E_{1} \cap E_{2} \cap E_{3} \subset E_{1}$. Since $\mathfrak{p}-\lim _{\alpha} T_{e_{\alpha}} h=\mathfrak{p}-\lim _{\alpha} T_{e_{\alpha}} h=h$ in norm for all $h \in L^{2}(X, \mathscr{K}, \mu)$, we have

$$
\mathfrak{p}-\lim _{\alpha}\left\|T_{e_{\alpha}} h-T_{2 e_{\alpha}} h\right\|=0 .
$$

Taking $h(y)=\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{y}$ we obtain that for all α,

$$
\mathfrak{p}-\lim _{\beta} \int\left|\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{e_{\beta} y} y}-\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{2 e_{\beta}} y}\right|^{2} d \mu(y)=0 .
$$

Let

$$
A_{\alpha}=\left\{\beta \in E: \int\left|\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{e_{\beta}} y}-\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{2 e_{\beta}} y}\right|^{2} d \mu(y)<\frac{\epsilon^{2} \xi}{2 M^{2}}\right\}
$$

We have $A_{\alpha} \in \mathfrak{p}$ for all $\alpha \in \mathscr{F}$. We will choose $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N}$ inductively such that for all $\alpha, \beta \in F U\left(\alpha_{1}, \ldots, \alpha_{N}\right)$, where $F U\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ denotes all finite unions of sets from $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$, with $\alpha<\beta$ one has $\beta \in A_{\alpha}$ i.e.

$$
\begin{equation*}
\int\left|\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{e_{\beta}} y}-\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{2 e_{\beta}} y}\right|^{2} d \mu(y)<\frac{\epsilon^{2} \xi}{2 M^{2}} \tag{6}
\end{equation*}
$$

We let $\alpha_{1} \in E_{2}$ be arbitrary. We have $A_{\alpha_{1}} \in \mathfrak{p}$. Since \mathfrak{p} is idempotent we have $A_{\alpha_{1}} \in \mathfrak{p} * \mathfrak{p}$, so that $\left\{\gamma \in \mathscr{F}: \gamma^{-1} A_{\alpha_{1}} \in \mathfrak{p}\right\} \in \mathfrak{p}$. Intersecting this set with $A_{\alpha_{1}} \in \mathfrak{p}$ and $\mathscr{F}_{\max \alpha_{1}} \in \mathfrak{p}$ we
get $\left\{\gamma \in \mathscr{F}_{\max \alpha_{1}} \cap A_{\alpha_{1}}: \gamma^{-1} A_{\alpha_{1}} \in \mathfrak{p}\right\} \in \mathfrak{p}$ and consequently $\left\{\gamma \in \mathscr{F}_{\max \alpha_{1}} \cap A_{\alpha_{1}}: \gamma^{-1} A_{\alpha_{1}} \in\right.$ $\mathfrak{p}\} \neq \varnothing$. We choose $\alpha_{2} \in\left\{\gamma \in \mathscr{F}_{\max \alpha_{1}} \cap A_{\alpha_{1}}: \gamma^{-1} A_{\alpha_{1}} \in \mathfrak{p}\right\}$ so that $\alpha_{1}<\alpha_{2}, \alpha_{2} \in A_{\alpha_{1}}$, and $\alpha_{2}^{-1} A_{\alpha_{1}} \in \mathfrak{p}$. Our inductive hypothesis is that for all $\alpha, \beta \in F U\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha<\beta$ we have $\beta \in A_{\alpha}$ and $\beta^{-1} A_{\alpha} \in \mathfrak{p}$. For conciseness we will write $F_{n}=F U\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. By the inductive hypothesis

$$
\bigcap_{\alpha \in F_{n}} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_{n} \\ \alpha<\beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p}
$$

Since \mathfrak{p} is an idempotent we have

$$
\left\{\gamma \in \mathscr{F}: \gamma^{-1}\left(\bigcap_{\alpha \in F_{n}} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_{n} \\ \alpha<\beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p}\right)\right\} \in \mathfrak{p}
$$

intersecting we then have

$$
\begin{aligned}
\left\{\gamma \in \mathscr{F}_{\max \alpha_{n}} \cap \bigcap_{\alpha \in F_{n}} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_{n} \\
\alpha<\beta}} \beta^{-1} A_{\alpha}\right. \\
\left.: \gamma^{-1}\left(\bigcap_{\alpha \in F_{n}} A_{\alpha} \cap \bigcap_{\substack{\alpha, \beta \in F_{n} \\
\alpha<\beta}} \beta^{-1} A_{\alpha} \in \mathfrak{p}\right)\right\} \in \mathfrak{p}
\end{aligned}
$$

We choose α_{n+1} from this set. The reader should verify that all the conditions for the induction to continue are satisfied. We define $B_{3} \in \mathscr{K}$ as

$$
B_{3}=B_{2} \cap \bigcap_{\alpha \in F_{N}}\left(T_{e_{\alpha}}^{-1} B_{2} \cap T_{2 e_{\alpha}}^{-1} B_{2}\right)
$$

Using (4) and (5) we have that $\mu\left(B_{3}\right)>\xi$. Also for all $y \in B_{3}, \alpha \in F_{N}, T_{e_{\alpha}} y \in B_{2}$ and $T_{2 e_{\alpha}} y \in B_{2}$.

Since $N=M^{2}+1$ for all $y \in B_{3}$ there exists $\ell=\ell(y), m=m(y)$ with $1 \leqslant \ell<m \leqslant N$ such that

$$
\begin{equation*}
i\left(e_{\alpha_{\ell} \cup \cdots \cup \alpha_{N}}, y\right)=i\left(e_{\alpha_{m} \cup \ldots \cup \alpha_{N}}, y\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
i\left(2 e_{\alpha_{\ell} \cup \cdots \cup \alpha_{N}}, y\right)=i\left(2 e_{\alpha_{m} \cup \cdots \cup \alpha_{N}}, y\right) \tag{8}
\end{equation*}
$$

We may divide B_{3} into at most M^{2} cells on which both ℓ and m are constant. At least one of these cells must have measure at least $\mu\left(B_{3}\right) / M^{2}$. Let $B_{4} \subset B_{3}$ be such a cell. Now $\mu\left(B_{4}\right)>\frac{\xi}{M^{2}}$. For conciseness we write $\beta_{j}=\alpha_{j} \cup \cdots \cup \alpha_{N}$.

For $y \in B_{4}$ we have

$$
\begin{align*}
\| T_{e_{\beta_{m}}} \phi_{1} & -T_{e_{\beta_{\ell}}} \phi_{1} \|_{y} \tag{9}\\
& <\left\|T_{e_{\beta_{m}}} \phi_{1}-g_{i\left(e_{\beta_{m}}, y\right)}\right\|_{y}+\left\|g_{i\left(e_{\beta_{\ell}}, y\right)}-T_{e_{\beta_{\ell}}} \phi_{1}\right\|_{y}<2 \epsilon .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left\|T_{2 e_{\beta_{m}}} \phi_{1}-T_{2 e_{\beta_{\ell}}} \phi_{1}\right\|_{y}<2 \epsilon . \tag{10}
\end{equation*}
$$

Since T_{ω} is measure-preserving, by (9) and (10) we have

$$
\begin{align*}
&\left\|\phi_{1}-T_{e_{\alpha_{\ell}} \cup \ldots \cup \alpha_{m-1}} \phi_{1}\right\|_{T_{e_{3}} y}<2 \epsilon \text { and } \tag{11}\\
&\left\|\phi_{1}-T_{2 e_{\alpha_{\ell}} \cup \ldots \cup \alpha_{m-1}} \phi_{1}\right\|_{T_{2 e_{\beta_{m}}} y}<2 \epsilon .
\end{align*}
$$

Since $\beta_{m}, \beta_{\ell} \in F_{N}$ we have $T_{e_{\beta_{m}}} y, T_{e_{\beta_{\ell}}} y \in B_{2}$ and consequently

$$
\left\|\phi_{1}-f_{1}\right\|_{T_{e_{\beta}}} y<\epsilon \text { and }\left\|\phi_{1}-f_{1}\right\|_{T_{e_{\beta_{\ell}}} y}<\epsilon .
$$

Now $\left\|T_{e_{\alpha_{\ell} \cup \ldots \cup \alpha_{m-1}}} f_{1}-T_{e_{\alpha_{\ell} \cup \ldots \cup \alpha_{m-1}}} \phi_{1}\right\|_{T_{e_{\beta_{m}}} y}=\left\|f_{1}-\phi_{1}\right\|_{T_{e_{\beta_{\ell}}} y}<\epsilon$. Write $\alpha=\alpha_{\ell} \cup \cdots \cup \alpha_{m-1}$ and $\beta=\beta_{m}$. Now by the triangle inequality

$$
\begin{equation*}
\left\|f_{1}-T_{e_{\alpha}} f_{1}\right\|_{T_{e_{\beta}} y}<4 \epsilon . \tag{12}
\end{equation*}
$$

Similarly we can conclude that

$$
\begin{equation*}
\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{2 e_{\beta}} y}<4 \epsilon \tag{13}
\end{equation*}
$$

Since $\alpha<\beta$, by (6) we have

$$
\begin{equation*}
\left|\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{e_{\beta}} y}-\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{2 e_{\beta}} y}\right|<\epsilon \tag{14}
\end{equation*}
$$

for all $y \in X \backslash C_{2}$, where $\mu\left(C_{2}\right)<\frac{\xi}{2 M^{2}}$. Let $B_{5}=B_{4} \backslash C_{2}$. Clearly $\mu\left(B_{5}\right)>\frac{\xi}{2 M^{2}}$. For all $y \in B_{5}$ we can combine (14) with (13) to get

$$
\begin{equation*}
\left\|f_{1}-T_{2 e_{\alpha}} f_{1}\right\|_{T_{e_{\beta}} y}<5 \epsilon . \tag{15}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu_{y} \\
& \quad=\int f\left(f_{1}+\left(T_{e_{\alpha}} f_{1}-f_{1}\right)\right)\left(f_{1}+\left(T_{2 e_{\alpha}} f_{1}-f_{1}\right)\right) d \mu_{y} \\
& =\int f f_{1} f_{1} d \mu_{y}+\int f\left(T_{e_{\alpha}} f_{1}-f_{1}\right) f_{1} d \mu_{y}+\int f f_{1}\left(T_{2 e_{\alpha}} f_{1}-f_{1}\right) d \mu_{y} \\
& \quad \quad+\int f\left(T_{e_{\alpha}} f_{1}-f_{1}\right)\left(T_{2 e_{\alpha}} f_{1}-f_{1}\right) d \mu_{y} .
\end{aligned}
$$

Using $|f| \leqslant 1$ and $\left|f_{1}\right| \leqslant 1$ together with (12) and (15) we obtain

$$
\int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu_{T_{e_{\beta}} y}>(a-18 \epsilon) b>\frac{a b}{2}
$$

for all $y \in B_{5}$. Since $\mu\left(B_{5}\right)>\frac{\xi}{2 M^{2}}$ we have

$$
\int f T_{e_{\alpha}} f_{1} T_{2 e_{\alpha}} f_{1} d \mu>\frac{a b \xi}{4 M^{2}}
$$

as claimed.

References

[BBH94] Vitaly Bergelson, Andreas Blass, and Neil Hindman. Partition theorems for spaces of variable words. Proc. London Math. Soc. (3), 68(3):449-476, 1994.
[Ber03] Vitaly Bergelson. Minimal idempotents and ergodic Ramsey theory. In Topics in dynamics and ergodic theory, volume 310 of London Math. Soc. Lecture Note Ser., pages 8-39. Cambridge Univ. Press, Cambridge, 2003.
[BKMP88] Gavin Brown, Michael S. Keane, William Moran, and Charles E. M. Pearce. An inequality, with applications to Cantor measures and normal numbers. Mathematika, 35(1):87-94, 1988.
[BM83] Gavin Brown and William Moran. Raikov systems and radicals in convolution measure algebras. J. London Math. Soc. (2), 28(3):531-542, 1983.
[BM12] Paul Balister and Randall McCutcheon. A concentration function estimate and intersective sets from matrices. Israel J. Math., 189:413-436, 2012.
[FK85] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for IPsystems and combinatorial theory. J. Analyse Math., 45:117-168, 1985.
[FK91] H. Furstenberg and Y. Katznelson. A density version of the Hales-Jewett theorem. J. Anal. Math., 57:64-119, 1991.
[HM01] Neil Hindman and Randall McCutcheon. VIP systems in partial semigroups. Discrete Math., 240(1-3):45-70, 2001.
[McC00] R. McCutcheon. A half-commutative IP Roth theorem. Acta Math. Univ. Comenian. (N.S.), 69(1):19-39, 2000.
[Woo77] D. R. Woodall. A theorem on cubes. Mathematika, 24(1):60-62, 1977.

