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Abstract

Motivated by the problem of graph structure compression under realistic source
models, we study the symmetry behavior of preferential and uniform attachment
graphs. These are two dynamic models of network growth in which new nodes
attach to a constant number m of existing ones according to some attachment
scheme. We prove symmetry results for m = 1 and 2, and we conjecture that
for m > 3, both models yield asymmetry with high probability. We provide new
empirical evidence in terms of graph defect. We also prove that vertex defects in the
uniform attachment model grow at most logarithmically with graph size, then use
this to prove a weak asymmetry result for all values of m in the uniform attachment
model. Finally, we introduce a natural variation of the two models that incorporates
preference of new nodes for nodes of a similar age, and we show that the change
introduces symmetry for all values of m.

1 Introduction

Study of the asymptotic behavior of the symmetries of random graphs, originally moti-
vated by combinatorial problems, has relatively recently found a new application in the
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problem of compression of graph structures. The basic problem can be formulated as fol-
lows: given a probability distribution on labeled graphs, determine an encoding of graph
structures (that is, unlabeled graphs) so as to minimize expected description length.

Choi and Szpankowski (2012) studied this problem in the setting of Erdős-Rényi
graphs. They showed that, under any distribution giving equal probability to isomorphic
graphs, the entropy of the induced distribution on graph structures (i.e., isomorphism
classes of graphs) is less than the entropy of the original distribution by an amount pro-
portional to the expected logarithm of the number of automorphisms. Thus the solution
to the above problem is intimately connected with the symmetries of the random graph
model under consideration.

Study of symmetries is further motivated by their connection to various measures
of information contained in a graph structure. For instance, the topological entropy of a
random graph, studied by Rashevsky (1955) and Trucco (1956), measures the uncertainty
in the orbit class (i.e., the set of nodes having the same long-term neighborhood structure)
of a node chosen uniformly at random from the node set of the graph. If the graph is
asymmetric with high probability, then the topological entropy is maximized: if n is the
size of the graph, then the topological entropy is, to leading order, log n. In general, if
the symmetries of the graph can be characterized precisely, then so can the topological
entropy. Furthermore, tools developed here will allow us to study and compare topological
information of nodes (i.e., by how many bits a graph view of one node differs from another).

The present paper is a first step toward the goal of extending graph structure compres-
sion results to other random graph models. In particular, many real-world graphs, such
as biological and social networks, exhibit a power law degree distribution (see Durrett
(2006)). To explain this phenomenon, Albert and Barabási (2002) proposed the prefer-
ential attachment mechanism, in which a graph is built one vertex at a time, and each
new vertex t attaches to a given old vertex v with probability proportional to the current
degree of v. Thus, we study a variant of a preferential attachment model. The primary
problem appears to be difficult, so we also study a closely related model in which attach-
ment is uniform, in the hope that the proof techniques used there may be generalized. In
both uniform and preferential attachment models, we prove that when each new vertex
chooses only one previous vertex as a neighbor, there is symmetry with high probability,
and when each new vertex makes two choices, there is a positive probability of symmetry.
In addition, we determine the asymptotic behavior of a quantity known as the defect of
a vertex, introduced by Kim et al. (2002), which measures the extent to which the neigh-
borhood of the vertex contributes to asymmetry of the graph. We then use this to prove
a weak asymmetry result for the uniform attachment case.

We also introduce the sliding window model, a dynamic model in which new vertices
choose neighbors from within windows of expected size uniformly bounded above by a
constant, the purpose being to exhibit a “natural” mechanism that, coupled with a quite
general attachment scheme that includes preferential and uniform attachment as special
cases, results in symmetry with asymptotically positive probability.

Study of the asymptotic behavior of the automorphism group of a random graph
started with Erdős and Rényi (1963), wherein Erdős-Rényi graphs with constant connec-
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tion probability were shown to be asymmetric with high probability, a result motivated
by the combinatorial question of determining the asymptotics of the number of unlabeled
graphs on n vertices for n → ∞. A similar question motivated the investigation of sym-
metry properties of random regular graphs by Bollobás (1982) and Kim et al. (2002).
In the latter paper, the authors precisely characterized the range for which Erdős-Rényi
graphs are asymmetric by proving concentration results for random variables defined in
terms of vertex defect. They then proved an asymmetry result for random regular graphs
using the previous result.

For general models, symmetry and asymmetry results can be nontrivial to prove,
due to the non-monotonicity of the properties considered. Furthermore, the particular
models considered here present more difficulties not seen in the Erdős-Rényi case: there
is significant dependence between edge events, and graph sparseness makes derivation of
concentration results difficult.

The rest of the paper is organized as follows: in Section 2, we formally state the models
and the main problem; we then state the main results, along with a discussion of their
significance. We also present some empirical validation of the symmetry results, as well
as evidence in support of the asymmetry conjecture. Finally, in Section 3, we give the
proofs.

2 Main Results

In this section, we state the main problems, introduce the models that we consider, and
formulate the main results. First, we introduce some standard graph-theoretic termi-
nology and notation. We start with the notion of structure-preserving transformations
between labeled graphs: given two graphs G1 and G2 with vertex sets V (G1) and V (G2),
a mapping φ : V (G1)→ V (G2) is said to be an isomorphism if it is bijective and preserves
edge relations; that is, for any x, y ∈ V (G1), there is an edge between x and y if and only
if there is an edge in G2 between φ(x) and φ(y). When such a φ exists, G1 and G2 are
said to be isomorphic; that is, they have the same structure.

An isomorphism from the vertices of a graph G to itself is called an automorphism
or symmetry. The set of automorphisms of G, together with the operation of function
composition, forms a group, which is called the automorphism group of G, denoted by
Aut(G). Note that the image of G under any of its symmetries is G, the same labeled
graph.

We then say that G is symmetric if it has at least one nontrivial symmetry and that
G is asymmetric if the only symmetry of G is the identity permutation. Intuitively, G is
symmetric if and only if there are at least two vertices whose graph perspectives are the
same; that is, their neighborhoods at any distance have the same structure.

The main problem can then be stated as follows: given a random graph process
{Gn}n>1, characterize the behavior of its automorphism group for n→∞.
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2.1 Definitions of Models

In what follows, vertices of an n-vertex graph are the elements of the set [n] := {1, . . . , n}.
A preferential attachment model is a dynamic model of network growth in which new

vertices, when they choose vertices already in the graph as neighbors, have a preference for
a given vertex that is proportional to its current degree, see Albert and Barabási (2002).
Thus, nodes with high degree tend to be preferred for new connections. The following
definition formalizes this. (A slightly different formalization of the Barabási–Albert model
is given by Bollobás and Riordan (2004).)

Definition 1 (Preferential attachment model). A preferential attachment graph P(n,m)
on n vertices, with parameter m, is constructed as follows: at time t = 1, a single vertex
with name 1 and attractiveness att1(1) = 0 is added. For each time 1 < t 6 n, a vertex
with name t is added, and m vertices ct1, . . . , ctm in [t − 1] are chosen with replacement
such that

Pr[ctj = v] =
attv(t− 1)∑t−1
w=1 attw(t− 1)

=
attv(t− 1)

2m(t− 2)
.

(Here we adopt the convention that 0/0 = 1.) An edge between t and v is added if and
only if cti = v for some i. For each v ∈ [t− 1], we set attv(t) = attv(t− 1) + |{j|ctj = v}|.
Finally, we set attt(t) = m.

Another way to express this is to first construct a growing multigraph, where we at
each step add one new vertex and m edges from it, with the other endpoints chosen at
random with replacement as above; then attv(t) equals the degree of v at time t. We then
reduce any set of multiple edges to a single edge to obtain the simple graph P(n,m).

We will also consider a variation, which we call the uniform attachment model, with
the only change being that vertex choices are now equiprobable; that is, we now fix
attv(t − 1) = 1 for all t and v ∈ [t − 1]. (For m = 1 this yields the well-known random
recursive tree (see Smythe and Mahmoud (1995)).) The rationale for studying this simpler
model is that solving our symmetry problems poses many of the same challenges for both
models: both, for example, generate sparse graphs, which seems to rule out an approach
to proving asymmetry based on defect (discussed below); furthermore, in both models,
in considering a neighborhood of a vertex, one must distinguish between incoming and
outgoing vertices, which complicates other possible approaches to asymmetry proofs. On
the other hand, the uniform attachment model is advantageous, in that we need not deal
with the dependence resulting from the preferential attachment mechanism.

We also study another practical variant of the attachment model called the sliding
window model that we define next.

Definition 2 (Sliding window model). The sliding window model with random window
size works as follows: at time 1, vertex 1 is added. At time t > 1, vertex t is added, and
a window size Wt, taking values in {2, . . . , t− 1}, is chosen according to the distribution
function Ft, independent of anything else. Then, m vertices are chosen with replacement
from the set [t −Wt, t − 1] (which we call the window of vertex t), with the distribution
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of each choice ctj determined by the ratio of the attractiveness of any node in the window
to the total attractiveness of the window. That is,

Pr[ctj = v|Wt = w] =
attv(t− 1)∑t−1

k=t−w attk(t− 1)
.

Here, attv(x) denotes the attractiveness of vertex v at time x. In the preferential attach-
ment sliding window model, attv(x) is given by

attv(x) = m+
x−1∑
k=1

m∑
j=1

[ckj = v].

In the uniform attachment version, attv(x) = 1.

2.2 Statement of Results

The first result characterizes the expected vertex defect for the uniform attachment model.
Vertex, permutation, and graph defect were introduced by Kim et al. (2002) in order to
prove asymmetry for Erdős-Rényi graphs. The definitions are as follows.

Definition 3 (Defect). Fix a graph G on n vertices. Given a permutation π ∈ Sn and
u ∈ [n], we define the defect of u with respect to π to be

Dπ(u) = |N(π(u))4π(N(u))|,

where N(x) denotes the set of neighbors of vertex x, and 4 denotes the symmetric differ-
ence of two sets. We define the defect of π to be

Dπ(G) = max
u∈[n]

Dπ(u).

Finally, we define the defect of G to be

D(G) = min
π 6=ID

D(π).

Some simple consequences of these definitions are as follows: for a graph G on n
vertices and a permutation π ∈ [n], π is an automorphism of G if and only if Dπ(G) = 0,
which is equivalent to non-existence of a vertex u ∈ [n] such that Dπ(u) 6= 0; G has
nontrivial symmetries if and only if D(G) = 0. Thus, vertex defect measures the extent
to which a given vertex’s neighborhood structure breaks the symmetry of π, permutation
defect measures the number of edges adjacent to any particular vertex that need to be
modified in order to make π a symmetry of G, and graph defect measures the number of
edges adjacent to any vertex that need to be modified in order to introduce a nontrivial
symmetry into G.

For a nontrivial permutation π ∈ Sn and any u ∈ [n], define ω(π, u) = min{u, π(u)}.
We also define ω(π) to be the minimum vertex not fixed by π (where we say that π fixes
a vertex w if π(w) = w).
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(a) (b)

Figure 1: The shapes on which we focus for the proof of Theorem 3.

Theorem 1 (Expected defect for a vertex). Fix m ∈ N in the uniform attachment model.
For any n sufficiently large, π 6= ID, π ∈ Sn, and u ∈ [n] not fixed by π,

log

(
n

max{ω(π, u) + 2, (2m+ 2)}

)
6 E[Dπ(u)] 6 1 + 4m

(
2 + log

(
n

ω(π, u)

))
.

This theorem is significant for two reasons: it plays a central role in the proof of The-
orem 2, and it gives an indication that an approach to an asymmetry proof via defects, as
used in the setting of Erdős-Rényi graphs (see Kim et al. (2002)), may not be fruitful. A
key difference between the Erdős-Rényi model and the uniform and preferential attach-
ment ones is that the expected defect in the former is Θ(np(1 − p)) for p, 1 − p � logn

n
,

which is essential for the proof technique used for that model to work.
The previous theorem can be used to derive a weak asymmetry result for the uniform

attachment model as follows: for a given sequence of permutations πn 6= ID, to show that
πn /∈ Aut(Gn) with high probability, it is sufficient to exhibit a sequence of vertices un
such that limn→∞ Pr[Dπn(un) = 0] = 1. In particular, we can choose un = ω(πn), the
minimum non-fixed vertex of πn. We prove the following result.

Theorem 2 (Probability of vertex defect being 0). Fix m > 1 and consider a sequence
of graphs in the uniform attachment model Gn∼U(n,m). Let {πn}∞n=1, πn ∈ Sn − {ID},
and, for each n, let un = ω(πn). Then

Pr[Dπn(un) = 0]
n→∞−−−→ 0,

so that the asymptotic probability that πn ∈ Aut(Gn) is 0.

We remark that we call this a weak asymmetry result because it is a statement about
which permutations are not in the automorphism group of Gn: any given sequence of
permutations (or small sets of permutations) is asymptotically not likely to be in the
automorphism group of a growing uniform attachment graph. Thus, this result has the
flavor of an asymmetry result.

Observe that Theorem 2 does not prove asymmetry of a uniform attachment model.
For this we would need to prove that the graph defect D(G) > 0 whp. However, we are
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able to make some statements about symmetry/asymmetry of this model. We discuss it
next.

In the case m = 1, both the uniform and preferential attachment process yield trees.
In such trees, we count the number of vertices that are parents of precisely two nodes,
both leaves (which some authors have called a cherry), as illustrated in Figure 1(a).
The two children may be swapped, thereby forming a symmetry. We find, via a Pólya
urn approach, that the number of cherries is positive with high probability, which gives
symmetry with high probability in both models. Furthermore, as a result of the methods
that we apply, we are able to compute the asymptotic fraction of simple cherries, which
turns out to be approximately 4/105 and 1/24 in the preferential and uniform cases,
respectively (see Section 3.3).

The case m = 2 is midway between the high-probability symmetry of the m = 1 case
and the conjectured asymmetry of the m > 3 case. Examining the asymptotic probability
of two vertices making the same choices and being unchosen by subsequent vertices yields
the following results as shown in Figure 1(b).

Theorem 3 (Symmetry results for m = 1, 2). Fix m = 1, 2, and let Gn∼U(n,m) or
Gn∼P(n,m). Then there exists a constant C > 0 such that, for n sufficiently large,

Pr[|Aut(Gn)| > 1] > C.

In the result for m = 1, for both models, we can strengthen the statement to symmetry
with high probability (that is, the statement is true for all C < 1).

We conjecture that for m = 2, in both models, Pr[|Aut(Gn)| > 1] converges to a
constant strictly less than 1.

The result for m = 2 is particularly interesting in light of the fact that empirical inves-
tigations of the symmetries of U(n, 2) graphs with insufficiently many samples (cf. Figure
2) may lead to the incorrect conclusion that there is asymmetry with high probability in
this case.

For fixed m > 3, we propose the following conjecture.

Conjecture 1 (Asymmetry conjecture). Fix m > 3 and let either Gn∼U(n,m) or
Gn∼P(n,m). Then

Pr[|Aut(Gn)| > 1]
n→∞−−−→ 0.

That is, graphs drawn according to the specified distributions are asymmetric with high
probability.

Empirical evidence in support of this conjecture abounds. For instance, MacArthur
and Anderson (2006) give plots of number of automorphisms as n increases for sampled
graphs, which show initial increase and then swift decay to 1. We contribute defect-based
evidence here.

Figure 2 shows growth of a graph defect estimate as n, the number of vertices of the
sampled graphs, grows large, for a few values of m. As only a small subset of permutations
could be sampled due to time and space constraints, the pictured defect estimates only
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Figure 2: Plots showing minimum/maximum vertex defects for certain classes of permu-
tations.

give upper bounds on the true defects. For m = 1, the estimate quickly drops to 0, due to
the presence of automorphisms that are swaps of two vertices, as the proof of Theorem 3
indicates. For m = 2, the estimate grows away from 0, but this does not give a complete
picture of the situation in this case: it fails to capture the phenomenon of symmetry with
asymptotically nonzero (but quite small) probability predicted by Theorem 3. For m > 3,
the graph defect exhibits logarithmic growth, which is in keeping with the statement of
Theorem 1. Furthermore, since the defect grows away from 0, the evidence is in keeping
with the asymmetry conjecture (though the small permutation sample size prevents us
from claiming it as strong evidence of the conjecture).

We also give some weak supporting evidence in the form of a theorem about probability
of automorphism group membership for sequences of permutations, that of Theorem 2.

Finally, we discuss the sliding window model, that could naturally capture the behavior
of dynamic networks in which new nodes are very unlikely to attach to old ones, but
whose attachment policy is otherwise quite general. (For example, one may think of a
social network whose nodes are people admitted to a university and whose edges represent
friendships formed after admission, and then, except with small probability, nodes will
choose neighbors in a window of bounded size.) The next result deals with symmetry in
the sliding window model. If windows are restricted to be of expected length less than a
constant bound, then considering the event that nodes n− 1 and n form a cherry shows
that symmetry results with nonzero probability.

Theorem 4 (Symmetry results for sliding window model). In the sliding window model
with random window size, for any m, if there exists a constant w such that E[Wi] 6 w for
all i, then the probability of symmetry is asymptotically positive. If there exists w such
that, for all i, Wi 6 w with probability 1, then a graph drawn according to this distribution
is symmetric with high probability.
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3 Proofs

In this section, we fix some useful notation, then give proofs of the theorems. Given two
vertices u and v, we write E[u, v] for the event that there is an (undirected) edge between
u and v. For vertex u ∈ [n] and permutation π, we can write the defect Dπ(u) as:

Dπ(u) =
n∑
v=1

Bu,π(v),

where we define Bu,π(v) to be 1 if v ∈ N(π(u))4π(N(u)) and 0 otherwise. We can express
each such indicator in terms of edge events:

Bu,π(v) = (E[v, π(u)] ∩ ¬E[π−1(v), u]) ∪ (¬E[v, π(u)] ∩ E[π−1(v), u]).

Note that the two conjunctions are disjoint.

3.1 Proof of Theorem 1

We now assume uniform attachment model. First, we state some useful lemmas about
probabilities of edge events. We omit the simple proofs.

Lemma 1. For all i, q, j, r such that i < j and q < r, if j < r, then Pr[E[i, j]] >
Pr[E[q, r]].

Lemma 2. For all i < j,
1

j
6 Pr[E[i, j]] 6

2m

j
.

Lemma 3. For all i, q, j, r such that i < j, q < r, r > 2m+ 1, and either i 6= q or j 6= r,

Pr[E[i, j] ∩ ¬E[q, r]] > Pr[E[i, j] ∩ E[q, r]].

Lemma 4. For all x > 1,
∑x

i=1 Pr[E[i, x]] 6 2m.

Lemma 5 (Harmonic Sum Log Sandwich). For all n and j ∈ Z such that 1 6 j 6 n,

log
n

j
6

n∑
i=j

1

i
6

1

j
+ log

n

j
.

Now we move on to the proof of the main result. Throughout, we assume that u <
π(u); the case u > π(u) follows from this by noting that Dπ−1(π(u)) = Dπ(u). First, we
derive the lower bound. We start by lower bounding the probability of event Bu,π(i) by
the probability of an edge. For any vertex i such that π−1(i) > 2m + 1 and i 6= u, π(u)
(so all but a constant number of them), we have

Pr[Bu,π(i)] = Pr[E[i, π(u)] ∩ ¬E[π−1(i), u]] + Pr[¬E[i, π(u)] ∩ E[π−1(i), u]]
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(a)

> Pr[E[i, π(u)] ∩ E[π−1(i), u]] + Pr[E[π−1(i), u] ∩ ¬E[i, π(u)]]

= Pr[E[π−1(i), u]].

Here, (a) is a result of Lemma 3 since max{π−1(i), u} > 2m+ 1. Hence,

n∑
i=1

Pr[Bu,π(i)] >
n∑

π−1(i)=max{u+1,(2m+1)}

Pr[Bu,π(i)]

(a)

>
n∑

π−1(u) 6=π−1(i)=max{u+1,(2m+1)}

Pr[E[π−1(i), u]]

(b)

>
n∑

π−1(u)6=π−1(i)=max{u+1,(2m+1)}

1

π−1(i)

(c)

> log

(
n

max{u+ 2, (2m+ 2)}

)
= log

(
n

max{ω(π, u) + 2, 2m+ 2}

)
,

where (a) is a consequence of the previous inequality, (b) is an invocation of Lemma 2,
and (c) is a result of Lemma 5 and the observation that, if π−1(u) > max{u+ 1, 2m+ 1},
then its contribution to the sum is 1

π−1(u)
6 1

max{u+1,2m+1)} . This completes the proof of
the lower bound.

Now we prove the upper bound. We start by upper bounding the probability of Bu,π(i):

Pr[Bu,π(i)] = Pr[E[i, π(u)] ∩ ¬E[π−1(i), u]] + Pr[¬E[i, π(u)] ∩ E[π−1(i), u]]

(a)

6 Pr[E[i, π(u)]] + Pr[E[π−1(i), u]],

where (a) is a consequence of two applications of monotonicity of probabilities. Hence

n∑
i=1

Pr[Bu,π(i)]
(a)

6
n∑
i=1

Pr[E[i, π(u)]] +
n∑

π−1(i)=1

Pr[E[π−1(i), u]]

(b)

6 1 + 2
n∑

π−1(i)=1

Pr[E[π−1(i), u]]

6 1 + 2
u∑

π−1(i)=1

Pr[E[π−1(i), u]] + 2
n∑

π−1(i)=u

Pr[E[π−1(i), u]]

(c)

6 1 + 4m+ 2
n∑

π−1(i)=u

Pr[E[π−1(i), u]],

where (a) follows from the previous inequality and (c) from Lemma 4. The justification
for (b) is slightly more complicated than for the other two steps: it follows from the fact
that

Pr[E[i, π(u)]] 6 Pr[E[i, u]], i 6= u,
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which can be seen as follows: for u 6= i < π(u), it follows from Lemma 1. If i = π(u),
then the left-hand side is 0, so the inequality holds. Finally, if i > π(u) > u, then the
two probabilities are equal, due to the uniformity of the attachment process. For the case
i = u, the inequality fails, and we instead upper bound that term by 1.

Thus, we can upper bound some more:

n∑
π−1(i)=u

Pr[E[π−1(i), u]]
(a)

6 2m
n∑

π−1(i)=u

1

π−1(i)

(b)

6 2m
(

1 + log
n

u

)
,

where (a) follows from Lemma 2 and (b) from Lemma 5. This completes the proof.

3.2 Proof of Theorem 2

We will start by splitting into three cases: un = O(1), un → ∞, or neither is true
(that is, lim supun =∞ and lim inf un = O(1)). The first we will handle using the second
moment method. For the second, we use various upper bounds. The third can be handled
by splitting the sequence into two subsequences, each of which can be handled via the
previous two arguments.

3.2.1 un = O(1)

In the case where un = O(1), applying Theorem 1 shows that E[Dπn(un)] = Θ(log n),
so that it grows to infinity. Thus, we will use the second moment method to show that
Pr[Dπn(un) = 0]→ 0. We start with

Pr[Dπn(un) = 0] 6
Var [Dπn(un)]

(E[Dπn(un)])2
.

Recall that we can write Dπn(un) as a sum of indicators, so that the numerator becomes

Var [Dπn(un)] = Var

[
n∑
j=1

Bun,πn(j)

]

=
n∑
j=1

Var [Bun,πn(j)] + 2
∑

16i<j6n

Cov[Bun,πn(i), Bun,πn(j)]

(a)

6
n∑
j=1

E[Bun,πn(j)] + 2
∑

16i<j6n

Cov[Bun,πn(i), Bun,πn(j)]

(b)

6 E[Dπn(un)] + 2
∑

16i<j6n

Cov[Bun,πn(i), Bun,πn(j)],

where (a) is because the value of an indicator function is either 0 or 1, and (b) is by
linearity of expectation. We show that the sum of covariance terms is small enough
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leading to Var [Dπn(un)] = O(E[Dπn(un)]). The following inequality will be useful for
arbitrary h and k:

Cov[Bun,πn(h), Bun,πn(k)] = Pr[Bun,πn(h) ∩Bun,πn(k)]− Pr[Bun,πn(h)] Pr[Bun,πn(k)] (1)

6 Pr[Bun,πn(h) ∩Bun,πn(k)] (2)

6 Pr[Bun,πn(h)]. (3)

First, we consider a few subsets of terms for which elementary probability inequalities
suffice. After dealing with these subsets, we will be left with a subset such that the
ordering of vertices involved in the relevant edge events is sufficiently constrained for us
to bound the term contributions using edge independence and dependence quantification
properties.

Consider the contribution of pairs i < j such that at least one of π−1n (i), π−1n (j) is at
most un. It is bounded above by

un∑
π−1
n (i)=1

n∑
j=1

max{Cov[Bun,πn(i), Bun,πn(j)], 0}

+
un∑

π−1
n (j)=1

n∑
i=1

max{Cov[Bun,πn(i), Bun,πn(j)], 0}

6
un∑

π−1(i)=1

n∑
j=1

Pr[Bun,πn(j)] +
un∑

π−1(j)=1

n∑
i=1

Pr[Bun,πn(i)]

= 2
un∑
i=1

E[Dπn(un)] = 2unE[Dπn(un)] = O(E[Dπn(un)]).

Here, the first upper bound is by considering all possible values for π−1n (i) 6 un and
π−1n (j) 6 un, respectively. For each such value, the other element of the pair may take
values in a (possibly strict) subset of [n]. The upper bound results from summing over all
values in [n] of the second parameter and adding only non-negative terms. The second
upper bound is an application of (3). The rest follows from linearity of expectation. In
the same way, we get an analogous bound for the case where either π−1n (i) or π−1n (j) is
equal to πn(un) and for the case where i = un.

Now, consider the contribution of pairs i < j such that i and j are neighbors in the
disjoint cycle representation of πn and such that both π−1n (i) and π−1n (j) are at least un+1.
The contribution of such terms is at most

n∑
i=1

max{Cov[Bun,πn(i), Bun,πn(πn(i))], 0} 6
n∑
i=1

Pr[Bun,πn(i)] 6 E[Dπn(un)].

We next consider the case in which at least one of i, j > πn(un) and i and j are not
neighbors in the disjoint cycle representation of πn. When i = πn(un), Bun,πn(i) = 0 with
probability 1, so that such covariance terms are 0. The same holds for j = πn(un). Thus,
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we are left with the case in which at least one of i, j > πn(un). In this case, the covariance
is 0, as a simple consequence of edge independence properties. In particular, we claim
that Bun,πn(i) and Bun,πn(j) are independent in this situation. We have one of

un < πn(un) < i < j (4)

or

un < i < πn(un) < j. (5)

For simplicity, we only explain (4). The other case is similar.
Both π−1n (i) and π−1n (j) are greater than un (this from the fact that un is the least

non-fixed vertex, and both i and j are greater than un). Thus, the variable Bun,πn(i)
involves only the choices at times i and π−1n (i), and Bun,πn(j) involves only the choices
at times j and π−1n (j). By the assumption that i and j aren’t cycle neighbors, these two
sets of choices are disjoint, so that they are independent, so that the covariance is 0, as
claimed.

With the easy cases out of the way, we can focus on the contribution of pairs such
that π−1n (i), π−1n (j) > un, i and j are not neighbors in the disjoint cycle representation of
πn, i, j < πn(un), and π−1n (i) 6= πn(un) 6= π−1n (j). We proceed by expressing an arbitrary
covariance term in terms of edge events.

Cov[Bun,πn(i), Bun,πn(j)] = ∆1,1(i, j) + ∆1,2(i, j) + ∆2,1(i, j) + ∆2,2(i, j),

where

∆k,l(i, j) = Pr[Fk(i) ∩ Fl(j)]− Pr[Fk(i)] Pr[Fl(j)],

where we define

F1(x) = E[x, πn(un)] ∩ ¬E[π−1n (x), un]

F2(x) = ¬E[x, πn(un)] ∩ E[π−1n (x), un].

To write these more succinctly and to simplify a later definition, we define

ρ1(k) =

{
0 k = 1

−1 k = 2,

ρ2(k) =

{
1 k = 1

0 k = 2
.

Then define ρ′1(k) = −(ρ1(k) + 1) and ρ′2(k) = −ρ2(k) + 1. With this notation, we can
write each Fk as

Fk(x) = E[πρ1(k)n (x), πρ2(k)n (un)] ∩ ¬E[πρ
′
1(k)
n (x), πρ

′
2(k)
n (un)].

To proceed, we need some lemmas about probabilities of conjunctions and negations
of edge events. We again omit the simple proofs.
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Lemma 6 (Edge Event Probabilities). For all i, q < j, i 6= q,

Pr[E[i, j]] = 1−
(
j − 2

j − 1

)m
Pr[E[i, j] ∩ ¬E[q, j]] =

(
1−

(
j − 3

j − 2

)m)(
j − 2

j − 1

)m
Pr[E[i, j] ∩ ¬E[q, j]] = Pr[E[i, j]] Pr[¬E[q, j]](1 +O(j−1))

Pr[¬E[i, j] ∩ ¬E[q, j]] = Pr[¬E[i, j]] Pr[¬E[q, j]](1 +O(j−2)).

Lemma 7 (Edge Negation Inequality). For j > 2m+ 1,

Pr[¬E[i, j]] > Pr[E[i, j]].

Lemma 8 (Edge Conjunction Inequalities). For all i, q, j, r such that i < j and q < r,
and either i 6= q or j 6= r,

Pr[E[i, j] ∩ E[q, r]] 6 Pr[E[i, j]] Pr[E[q, r]]

and
Pr[E[i, j] ∩ ¬E[q, r]] > Pr[E[i, j]] Pr[¬E[q, r]].

Lemma 9. For all i, q, j, r such that i < j, q < r, r > 2m+ 1, and either i 6= q or j 6= r,

Pr[E[i, j] ∩ ¬E[q, r]] > Pr[E[i, j] ∩ E[q, r]].

Now, the probability of each Fk(x) can be lower bounded by the product of the involved
edge probabilities, by Lemma 8, which gives an upper bound on each ∆k,l(i, j). We call
the resulting expression ∆′k,l(i, j); more specifically, ∆′k,l(i, j) is given by

∆′k,l(i, j) = Pr[Fk(i) ∩ Fl(j)]
− Pr[E[πρ1(k)n (i), πρ2(k)n (un)]] Pr[¬E[πρ

′
1(k)
n (i), πρ

′
2(k)
n (un)]]

· Pr[E[πρ1(l)n (j), πρ2(l)n (un)]] Pr[¬E[πρ
′
1(l)
n (j), πρ

′
2(l)
n (un)]]

Now we show that ∆′1,1(i, j) 6 0.

Pr[F1(i) ∩ F1(j)]
(a)
= Pr[E[i, πn(un)] ∩ E[j, πn(un)]] · Pr[¬E[π−1n (i), un] ∩ ¬E[π−1n (j), un]]

(b)

6 Pr[E[i, πn(un)]] Pr[E[j, πn(un)]] Pr[¬E[π−1n (i), un]] Pr[¬E[π−1n (j), un]].

Here, (a) is an application of edge independence properties: we have i < j < πn(un) and
un < π−1n (i), π−1n (j), and neither of π−1n (i), π−1n (j) is equal to πn(un). The inequality, (b),
is due to applying edge independence to split the negated events and applying Lemma 8
to split the other conjunction. It follows from this inequality that ∆′1,1(i, j) 6 0.

In a similar manner, we handle ∆′1,2(i, j):

∆′1,2(i, j) = Pr[E[i, πn(un)] ∩ ¬E[j, πn(un)]] Pr[¬E[π−1n (i), un]] Pr[E[π−1n (j), un]]
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− Pr[E[i, πn(un)]] Pr[¬E[j, πn(un)]] Pr[¬E[π−1n (i), un]] Pr[E[π−1n (j), un]]

6 Pr[E[i, πn(un)] ∩ ¬E[j, πn(un)]]− Pr[E[i, πn(un)]] Pr[¬E[j, πn(un)]]

= Pr[E[i, πn(un)]] Pr[¬E[j, πn(un)]](1 +O(πn(un)−1)− 1)

6
2m

πn(un)
O(πn(un)−1) = O

(
1

(πn(un))2

)
.

The first equality is by applying edge independence properties. The inequality is by
factoring out the probabilities involving un and upper bounding them by 1. The final two
steps are by applying Lemmas 6 and 2.

The other cases are handled analogously. Thus, each covariance term in the set con-
sidered is upper bounded by C

πn(un)2
, where C is a constant. Since there are at most

C ′πn(un)2 such pairs, the total contribution is at most a constant. This completes the
proof for un = O(1).

3.2.2 un →∞

For un →∞, we will upper bound the probability of the event

A =
un−1⋂
i=1

[Bun,πn(i) = 0],

which is a superset of [Dπn(un) = 0]. The condition that un → ∞ gives us enough fixed
vertices for a somewhat simple proof. Observe that the event is equivalent to un and
πn(un) having precisely the same neighbors in [un − 1].

First, condition on the set N of distinct choices made by vertex πn(un) and let N1 =
N ∩ [un − 1]. Then

|N1| 6 |N | 6 m.

Now, if A occurs, then all m of the choices cun,j at time un lie in N1. This happens with
probability at most (

|N1|
un − 1

)m
6

(
m

un − 1

)m
= O(u−mn ).

Since un →∞, this tends to 0, which completes the proof for this case.

3.2.3 un is neither bounded nor tending to ∞

Our goal is to show that, for any ε > 0, there exists N such that, for all n > N ,

Pr[Dπn(un) = 0] < ε.

In the case where un is neither bounded nor tending to ∞, we start by choosing an ap-
propriate C = C(ε) and partitioning the sequence of permutations into two subsequences:
those for which un 6 C and those for which un > C.

For the former subsequence (call its sequence of probabilities an), we can apply the
result for un = O(1) to conclude that there is some N such that, if n > N , then an < ε.
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For the latter (call its sequence of probabilities bn), we can apply the argument used in
the proof for un →∞ to conclude that there is a large enough C(ε) such that bn < ε for
all n. This completes the proof of Theorem 2.

3.3 Proof of Theorem 3

Case m = 1.
To prove symmetry with high probability, we give a positive lower bound on the asymp-
totic number of cherries which holds with high probability. This we do by formulating
the preferential and uniform attachment processes as urn models, in which one type of
ball corresponds to a simple cherry (i.e., a node with exactly two children, both leaves).
We then use Theorem 3.21 of Janson (2004) (see also (Athreya and Ney, 1972, Section
V.9.3)) to determine the asymptotic fraction of such balls, which turns out to be positive.

We now review the aforementioned Theorem 3.21. In the general setting, we have
an urn model with q types of balls, and for each non-negative integer time t, we have a
(random) vector of ball type counts: Xt = (Xt,1, . . . , Xt,q), where {Xt}∞t=0 forms a Markov
chain. Furthermore, each ball type i gets a fixed weight (also called activity) ai as well
as a random q-dimensional vector ξi = (ξi,j)

q
j=1 which will be used to form the transition

matrix. At time t, a ball is drawn with probability proportional to its weight and current
count:

Pr[Type j is drawn at time t] =
ajXt−1,j∑q
k=1 akXt−1,k

.

Next, the ball is returned to the urn, and a vector wt = (wt,r)
q
r=1 is drawn according to

the distribution of ξj (i.e., for any r and x, Pr[wt,r = x] = Pr[ξj,r = x]), independent of
everything else. Finally, for each k ∈ [q], wt,k balls of type k are added to the urn. This
results in Xt. The main object which is defined in order to study the asymptotic behavior
of the number of balls of each type is the q × q matrix A, whose entries are given by

Ai,j = ajE[ξj,i].

We call A the transition matrix of the model. For us, the types of balls will correspond to
different subtrees, and, roughly speaking, the weights will come from the degrees of the
vertices in the subtrees (which is how we will encode the preferential attachment process).

Then Theorem 3.21 states that, assuming several hypotheses and given that there are
always balls with nonzero weight left, we have the following asymptotic result:

Xt

t

a.s.−−→ λ1v1,

where λ1 and v1 are the principal eigenpair of A. From this, we can read off the asymptotic
linear growth of the number of any of the types of balls.

Conveniently, the paper gives Lemma 2.1, which states sufficient conditions for the
hypotheses of Theorem 3.21 to hold: we need only check that
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• A is irreducible; that is, we define a partial order i � j, where i � j if and only if
there exists some n > 0 for which (An)j,i > 0 (that is, starting with ball of type i,
it is possible for a ball of type j to appear in the future). Then we say that A is
irreducible if, for all i and j, we have both i � j and j � i.

• Almost surely, for all j 6= i,

ξi,j > 0, ξi,i > −1.

• For all i and j,
E[ξ2i,j] <∞.

• We have, for every i, ∑
j

E[ξi,j] > 0

and, for some i, ∑
j

E[ξi,j] > 0.

We focus first on the preferential case, then explain how the proof changes for uniform
attachment.

For preferential attachment, we have the following types of balls:

• SC (simple cherry): a node with precisely two children, both of whom are leaves.
This is modeled by a single ball of type SC.

• PC (protocherry): a node with precisely one child, which is a leaf. This is modeled
by a single ball of type PC.

• L (leaf): a leaf which is not part of a simple cherry or a protocherry. This is modeled
by a single ball of type L.

• N (none of the above): a node with three or more children or with grandchildren.
A single such node with degree k is modeled by k balls of type N .

Since these ball types will also correspond to coordinates in entries of a matrix, it will
be convenient to associate SC with 1, PC with 2, L with 3, and N with 4. With each
type of ball, there is an associated weight, which comes from considering the number of
half edges in each situation (each edge in the subtree corresponding to a given ball counts
as two half edges; finally, there is a single half edge which comes from the root vertex’s
connection to its parent):

aSC = 5 aPC = 3 aL = 1 aN = 1.

We can then formulate the process as follows. We start with a tree with 4 nodes, in order
to avoid complications arising from the root. Each such tree corresponds to a well defined
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initial vector of ball counts. At a given time step, we pick a ball randomly, where the
probability of each type is in proportion to the current number of balls of that type and
its weight: if we denote the type of the jth choice by Tj and the number of balls of type
x at time j by Nj(x),

Pr[Tj = x] =
axNj(x)∑
y ayNj(y)

,

where the sum is over the types. After drawing a ball, we discard it and add new balls to
the urn in the following manner, based on Tj.

•

SC =⇒

{
4N + 3L with probability 3/5

3N + 1L+ 1PC with probability 2/5

•

PC =⇒

{
1SC with probability 2/3

2N + 1PC with probability 1/3

•
L =⇒ 1PC

•
N =⇒ 1L+ 2N.

The transitions for SC can be seen as follows. Drawing a ball of type SC means, in terms
of the preferential attachment process, that either the root node of a simple cherry or one
of its two children is chosen by the new vertex. The root node has degree 3, and each
child has degree 1, so that the total degree of the subgraph is 5. Thus, with probability
3/5, the root node is chosen, which destroys the simple cherry. It is replaced with 4 balls
of type N (corresponding to a non-simple cherry whose root node has degree 4), along
with 3 balls of type L (corresponding to the three leaves). With probability 2/5, one of
the two leaves of the simple cherry is chosen. This destroys the simple cherry, replacing it
with three balls of type N (because the root of the simple cherry still has degree 3), and
the chosen child becomes a protocherry, which adds a single ball of type PC. The other
child becomes a leaf, which adds a ball of type L.

The other transitions follow by similar reasoning. Note that, in each case, the degree
of each node in the new subtree must somehow be encoded in the number and types of
balls.

This yields, in the language of Janson (2004), the following transition matrix:

A =


−5 2 0 0

2 2 1 0
11 0 −1 1
18 2 0 1

 .
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We demonstrate how A was obtained from the transitions and the weights by explicitly
computing the first column, which corresponds to the balls of type SC. We need the vector
E[ξ1], which gives the expected number of balls of each type which are added to the urn
after SC is drawn (and before it is discarded). Since SC is discarded with probability 1,
we have E[ξ1,1] = −1. The expected number of PC balls added is E[ξ1,2] = 0· 3

5
+1· 2

5
= 2/5.

For L, it is E[ξ1,3] = 3 · 3
5

+ 1 · 2
5

= 11/5. Finally, for N , it is E[ξ1,4] = 4 · 3
5

+ 3 · 2
5

= 18/5.
Multiplying by the weight aSC for simple cherries, we get the claimed first column of A.
The other columns are computed analogously. Now, we can apply Lemma 2.1 of Janson
(2004) to show that the hypotheses of Theorem 3.21 there are satisfied: the process is
easily seen to be irreducible, since, with positive probability, SC yields N , which yields
L, which yields PC, which yields SC. The other hypotheses of Lemma 2.1 are similarly
trivial to check. From this, we conclude that all of the hypotheses of Theorem 3.21, in
addition to impossibility of essential extinction, hold. Thus, it remains to determine the
dominant eigenvalue, i.e., the largest real eigenvalue, and the corresponding eigenvector
of A. We get, from standard calculations, that the largest real eigenvalue of A is λ1 = 2
(the other eigenvalues are −1,−3,−5), and that, after normalization, the corresponding
eigenvector is

vT1 = 1
105

(2, 7, 24, 50) ≈ (0.019048, 0.06667, 0.22857, 0.47619).

Multiplying by λ1, we get from (Janson, 2004, Theorem 3.12) that, asymptotically, the
number of simple cherries is with high probability approximately 4n

105
, which is certainly

greater than 0. Thus, we have symmetry with high probability.
A similar proof (with the same types of balls, but with a slightly different interpretation

N , to be explained below) yields the same result (with different constants) for the uniform
attachment model. Because the attachment process pays attention to number of nodes
in a subgraph, rather than to degrees of vertices, a ball of type N still corresponds to a
root node with three or more children or with grandchildren, but now a single such node
corresponds to a single ball of type N . Its descendants are represented by other balls.

The weights change, again to account for the number of vertices in each type of
subtree. Thus, for example, the weight of SC is 3. In this case, the weights of the balls
are (3, 2, 1, 1).

Finally, the transitions change. Namely, instead of adding multiple copies of N in any
given transition, we only add one. Thus, the transition matrix is

A =


−3 1 0 0

2 −1 1 0
5 0 −1 1
3 1 0 0


with dominant eigenvalue 1 and corresponding normalized eigenvector vT1 = 1

24
(1, 4, 6, 7).

Case m = 2
We will show that, with positive probability, in both models, there is at least one diamond
(i.e., a pair of nodes that choose the same parents and that are not chosen by any sub-
sequent nodes) as shown in Figure 1(b). The details are technically more intricate than
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in the m = 1 case, and the argument there does not work in this case, because node n
must choose, from a set of size Θ(n2) (pairs of vertices), one of O(n) elements (previously
chosen pairs). We thus rely on a birthday paradox-style argument to show that there
is a positive probability of two vertices making the same choices, then condition on the
lexicographically smallest such pair to complete the proof.

Let A(u, v) be the event that vertices u and v choose the same pair of parents, and let
B(u, v) be the event that u and v are both unchosen. Now, define N(k) to be the number
of pairs u, v of vertices such that k < u < v and A(u, v) and B(u, v) simultaneously
hold. Define NA(k) and NB(k) analogously for pairs for which events A and B hold,
respectively. Finally, denote by S>x the set {k ∈ [n]|k > x}. We then aim to prove that
Pr[N(0) > 0] > C > 0 for some constant C and n large enough. We do this by proving

Pr[N(n/2) > 0] > C > 0,

in light of the fact that
Pr[N(n/2) > 0] 6 Pr[N(0) > 0].

For any x, we have

Pr[N(x) > 0] = Pr[N(x) > 0 ∩NA(x) > 0] = Pr[N(x) > 0|NA(x) > 0] · Pr[NA(x) > 0],

where the first equality is from the fact that [N(x) > 0] ⊆ [N(x)A > 0]. The goal now
is bound the remaining probabilities below by positive constants. We do this in the next
two lemmas, which hold for both uniform and preferential attachment graphs. We will
prove them in the uniform case, then explain the modifications needed to extend them to
the preferential case.

Lemma 10 (Probability of two vertices picking the same pair). There exists a positive
constant C such that

Pr[NA(n/2) > 0] > C

for all n sufficiently large.

Proof. To show this, we will instead compute Pr[NA(n/2) = 0] and bound it above by a
constant less than 1. The condition NA(n/2) = 0 means that all vertices > n/2 choose
distinct pairs. This is given by

Pr[NA(n/2) = 0] 6
n/2∏
k=1

(
1− k − 1

(n
2

+ k − 1)2

)

6
n/2∏
k=1

(
1− k − 1

n2

)
6

n/2∏
k=n/4+1

(
1− k − 1

n2

)

6
n/2∏

k=n/4+1

(
1− n

4n2

)
=

(
1− (1/4)

n

)n
4

n→∞−−−→ e−
1
16 < 1.

In the preferential attachment case, the proof is similar, except that we apply the fact
that the attractiveness of any vertex v < t at time t is at least m

2m(t−2) = 1
2(t−2) .
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Lemma 11 (Conditional probability of two vertices with the same neighborhood). There
exists a positive constant C such that

Pr[N(n/2) > 0|NA(n/2) > 0] > C

for all n sufficiently large.

Proof. We condition on the lexicographically smallest pair X from S>n/2 such that A(X)
holds. Let D(u, v) be the event that the pair (u, v) is the smallest pair from S>n/2 for
which A holds. Then

Pr[N(n/2) > 0|NA(n/2) > 0]

=
∑

u<v∈S>n/2

Pr[N(n/2) > 0|D(u, v)] Pr[D(u, v)|NA(n/2) > 0]

>
∑

u<v∈S>n/2

Pr[B(u, v)|D(u, v)] Pr[D(u, v)|NA(n/2) > 0]

> C
∑

u<v∈S>n/2

Pr[D(u, v)|NA(n/2) > 0] = C.

Here, the equalities are simply due to the law of total probability, and the first inequality
is because the event B(u, v) is a subset of the event N(n/2) > 0. The second inequality
is by direct computation. Note first that D(u, v) means that all lexicographically smaller
pairs choose distinct pairs, and u and v choose the same pair (so that v cannot choose u).
So

Pr[B(u, v)|D(u, v)] =
v∏

j=u+1

Pr[j avoids u|D(u, v)]
n∏

j=v+1

Pr[j avoids v, u|D(u, v)]

>
v−1∏
j=u+1

(
(j − 1)2 − 2j − u

(j − 1)2

)
· 1 ·

n∏
j=v+1

(
(j − 1)2 − 4j − u

(j − 1)2

)

>
v−1∏
j=u+1

(
1− c

n

) n∏
j=v+1

(
1− c

n

)
>
(

1− c

n

)n
,

where c > 0 is some constant. Here, the first inequality results from bounding the
numerators below by giving upper bounds for the number of pairs that vertex j must avoid
in order to avoid u and v and for the number of pairs that j must avoid in order to pick a
pair that is distinct from the choices of all vertices x such that (x, j) is lexicographically
smaller than (u, v). More specifically, conditioning on D(u, v) reduces the number of
pairs that j may pick, but this number can be upper bounded by (j − 1)2, which gives
the denominators. Now, in order to avoid u, the j in the first product must avoid at
most 2j pairs (those candidate pairs with u in the first and in the second coordinate,
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respectively). We must also subtract u because of the condition that j must avoid pairs
which were picked by vertices x such that (x, j) is lexicographically smaller than (u, v).
That is, j must avoid at most u other choices of pairs. Similarly, for the second product, j
must avoid pairs containing either of u or v (at most 2j possibilities for each of these), and
j avoids at most u pairs which were chosen by vertices x for which (x, j) is lexicographically
smaller than (u, v). The 1 between the products is from the fact that v avoids u with
probability 1, due to the conditioning by D(u, v). The second inequality holds for all n
sufficiently large, since j > n

2
. The last inequality is because all factors are bounded above

by 1. Finally, by taking n sufficiently large, the last value can be made arbitrarily close
to e−c. The proof in the preferential case is again similar, relying on the previously stated
lower bound on vertex attractiveness.

3.4 Proof of Theorem 4

We will prove the claim when the expected window size is bounded by a constant by
examining the probability that vertices n − 1 and n both choose m times vertex n − 2,
thereby forming a cherry. Let ηi be the event that vertex i chooses m times vertex n− 2,
so that the task is to find a lower bound for Pr[ηn−1 ∩ ηn].

For any i, by the bound E[Wi] 6 w, we have Pr[Wi 6 2w] > 1/2. Now,

Pr[ηn−1 ∩ ηn]
(a)

> Pr[ηn−1 ∩ ηn|Wn−1 6 2w,Wn 6 2w] · Pr[Wn−1 6 2w] Pr[Wn 6 2w]

> 1
4

Pr[ηn−1 ∩ ηn|Wn−1 6 2w,Wn 6 2w]

= 1
4

Pr[ηn|ηn−1,Wn−1 6 2w,Wn 6 2w] · Pr[ηn−1|Wn−1 6 2w,Wn 6 2w]

Here, (a) is by conditioning on the event that the window sizes of vertices n − 1 and n
are bounded by 2w, then applying the independence of the window sizes.

Now, in both the preferential and uniform attachment cases, the total attractiveness
within the window {n − 2w, . . . , n} is bounded above by a constant. Furthermore, since
vertex n−2 makes m choices, its attractiveness to vertices n−1 and n is at least a positive
constant. Thus, the two remaining probabilities are both bounded below by a positive
constant, which completes the proof.

If the window sizes are uniformly bounded above by w with probability 1, then sym-
metry with high probability results, roughly because the set [n] may be partitioned into
subintervals, each having a positive probability of contributing a symmetry; since window
sizes are bounded, once a symmetry arises, if a particular constant amount of time passes,
the symmetry will never be destroyed. First, we choose an appropriate subinterval size
ζ = 2w + 2 and write n = qζ + r, for some integers q, r, with 0 6 r < ζ. We then divide
the interval [r, . . . , n] into q disjoint subintervals I1, . . . , Iq, each of size ζ. Let Ik be one of
the intervals. Consider the permutation πk = π that swaps the middlemost two vertices
(call them xk and xk + 1) of Ik and leaves all other vertices in [n] fixed. The event that
πk ∈ Aut(Gn) contains the event ηj that xj and xj+1 both choose xj−1 m times and are
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unchosen. We will show that

Pr

[
¬

q⋃
j=1

ηj

]
n→∞−−−→ 0, (6)

from which our claim follows. We can write the probability in (6) as

Pr[¬
q⋃
j=1

ηj] =

q∏
j=1

(
1− Pr

[
ηj|

j−1⋂
k=1

¬ηk

])
.

Now, the goal is to show that each factor in the product is bounded above by a constant
C < 1 (independent of j). In both the preferential and the uniform model, at any time
t, the conditional probability of choosing any given vertex within the window of vertex
t is bounded above and below by positive constants (dependent only on m and w). In
particular, at time t, the attractiveness of any vertex v within the window of vertex t is at
least m since v makes m choices, and the total attractiveness within the window is upper
bounded by w(w + 1)m (since each vertex within the window makes m choices, and at
most w vertices may choose a given vertex within the window at most m times, and there
are w vertices in the window). Thus, the probability, for any choice of t, that t chooses
any v within its window is at least m

w(w+1)m
= 1

w(w+1)
. That is, every vertex within the

window of t has a non-negligible probability of being chosen by t. Note that this bound
holds regardless of previous vertex choices.

It follows from this that there is a constant C < 1 such that

1− Pr

[
ηj|

j−1⋂
k=1

¬ηk

]
6 C < 1,

so that

Pr

[
¬

q⋃
j=1

ηj

]
6 Cq n→∞−−−→ 0,

since q →∞ with n. This completes the proof.
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