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Abstract

By means of the Ehrhart theory of inside-out polytopes we establish a gen-
eral counting theory for nonattacking placements of chess pieces with unbounded
straight-line moves, such as the queen, on a polygonal convex board. The number
of ways to place q identical nonattacking pieces on a board of variable size n but
fixed shape is (up to a normalization) given by a quasipolynomial function of n, of
degree 2q, whose coefficients are polynomials in q. The number of combinatorially
distinct types of nonattacking configuration is the evaluation of our quasipolynomial
at n = −1. The quasipolynomial has an exact formula that depends on a matroid of
weighted graphs, which is in turn determined by incidence properties of lines in the
real affine plane. We study the highest-degree coefficients and also the period of the
quasipolynomial, which is needed if the quasipolynomial is to be interpolated from
data, and which is bounded by some function, not well understood, of the board
and the piece’s move directions.

Keywords: nonattacking chess pieces; fairy chess pieces; Ehrhart theory; inside-
out polytope; arrangement of hyperplanes
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1 Introduction and Preview

The famous n-Queens Problem is to place n nonattacking queens—the largest conceivable
number—on an n × n chessboard, or more broadly, to count the number of placements.
(See, for instance, [3] on the former and [11] on the latter.) The counting problem has no
known solution except by individual computation for relatively small values of n.

This article is Part I of a series [5] that presents a natural generalization we call the
q-Queens Problem, wherein we arbitrarily fix the number of queens, q, and vary n, the
size of the board; also, the “queen” may be any of a large class of traditional and fairy
chess pieces called “riders”. We show (Theorem 4.1) that for each separate problem the
number of solutions is, aside from a denominator of q!, a quasipolynomial function of
n, which means it is given by a cyclically repeating sequence of polynomials. This form
of solution could be inferred from empirical formulas for small q found over the decades
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(see [9]) though it was never proved; our approach makes it obvious. Remarkably, the
coefficients of this quasipolynomial in n are themselves (up to a normalization) polynomial
functions of q (Theorem 4.2); this, too, can be inferred from empirical results, though it
seems never to have been considered that making q a variable might give a single nearly
comprehensive expression.

Our results apply to any pieces with unbounded straight-line moves, such as the queen,
rook, bishop, and the nightrider of fairy chess, which moves arbitrary distances in the di-
rections of a knight’s move—in fact, the requirements of our method are the definition
of a fairy-chess rider; thus, our proof of quasipolynomiality and coefficient polynomiality
applies to all riders, and only to riders. Our work generalizes in other ways too, as both
properties extend to boards of arbitrary rational convex polygonal shape and quasipoly-
nomiality in n extends to mixtures of pieces with different moves. Here, in Part I, we
develop the theory under the generality of arbitrary rational convex polygonal shapes;
however, we restrain the complexity and strengthen the results by assuming all pieces
have the same moves. In Parts II–V we further narrow the focus successively to square
boards (Part II), to partial queens, whose moves are subsets of the queen’s moves, on
square boards (Part III), and then to three special pieces: the bishop, the queen, and the
nightrider (Parts IV and V). Part III may be considered the capstone of our series; it is
where the theory of the prior parts is applied, many times, to obtain exact results for a
narrow but important family of pieces, results which in Part IV are applied to obtain de-
tailed results about three real (or as one might say of the nightrider, surreal) chess pieces.
Part V is devoted to one theorem: the exact period for any number of bishops—the only
nontrivial period known for all numbers of a single piece.

Setting q = n for queens on the square board gives the first known formula for the
n-Queens Problem (in Part II). It is complex and hard to evaluate except when q is very
small, but it is precise and complete.

Our work has two main elements: a method of computation, and a common structural
framework for all counting functions for riders. The method is that of inside-out poly-
topes [2], which is an extension of Ehrhart’s theory of counting lattice points in convex
polytopes (cf. [13, Chapter 4]). The extension adds to a convex polytope an arrangement
(a finite set) of forbidden hyperplanes. The polytope is derived from the board and the
hyperplane arrangement expresses the moves. The lattice of intersection subspaces of
the arrangement plays the crucial role in the construction of the counting function. The
proof of quasipolynomiality in n is a simple application of inside-out polytopes. The proof
of bivariate quasipolynomiality is by a more subtle analysis. The structural framework,
besides proving quasipolynomiality, includes explicit formulas in terms of q for the coeffi-
cients of the highest-order powers of n on any board, with stronger results for the square
board in Part II and even stronger ones for partial queens in Part III, all obtained by
careful study of subspaces of low codimension in the hyperplane intersection lattice. Then
Part IV proves explicit formulas, some new, some known but never rigorously established,
for small numbers of the three special pieces mentioned above. These proofs either apply
the general results of Parts II and III or directly employ inside-out polytope geometry.
Part V establishes the period for bishops; its technique is exceptional as it employs signed
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graph theory to assist the inside-out geometry.

Now we state the problem more precisely. It has three ingredients: a piece, a board,
and a number. The piece P has moves that are all integral multiples of vectors in a
nonempty set M of non-zero, non-parallel integral vectors mr ∈ R2. A move is the
difference between a new position and the original position; that is, if a piece is in position
z ∈ Z2, it may move to any location z+κmr for κ ∈ Z and mr ∈M. We call the mr’s the
basic moves. Each one must be in lowest terms; that is, its two coordinates need to be
relatively prime; and no basic move may be a scalar multiple of any other. (Indeed, the
slope of mr contains all necessary information and can be specified instead of mr itself.)
The board consists of the integral points in the interior (n + 1)B◦ of a positive integral
multiple tB of a rational convex polygon B ⊂ R2 (that is, the vertices of B have rational
coordinates). The number is q, the number of pieces that are to occupy places on the
board. The rule that no two pieces may attack each other, said mathematically, is that if
there are pieces at positions zi and zj, then zj − zi is not a multiple of any mr.

For instance, the polygon may be the unit square [0, 1]2. The multiple (n+1)[0, 1]2 has
interior points (x, y) for integers x, y = 1, 2, . . . , n. A rectangle [0, a]× [0, b] with positive,
rational a and b, whose board is the point set

[
(0, (n+1)a)×(0, (n+1)b)

]
∩Z2, is also cov-

ered by our work. The set M is {(1, 1), (1,−1)} for a bishop, {(1, 0), (1, 1), (0, 1), (1,−1)}
for a queen, and {(2, 1), (1, 2), (2,−1), (1,−2)} for a nightrider.

This is the place to mention the extensive work of Václav Kotěšovec, who collected
previous results and produced many new formulas to count non-attacking configurations
of chess pieces. His results are reported for instance in his recent book [9] and the related
Web site [8]. Kotěšovec’s formulas and numbers were obtained without our theory so our
work, to the extent it duplicates his, is an independent confirmation of his results. More
fundamentally, Kotěšovec’s method of work usually does not rigorously prove the validity
of the formulas; our theoretical work therefore complements his calculations by providing
and showing how to provide proofs.

We took advantage of Kotěšovec’s formulas for bishops and queens to guide some of
our investigations. For instance, he found that the quasipolynomial counting formulas
tend to have high-degree coefficients that do not vary periodically. His formulas also
suggested that q appears polynomially in each coefficient, aside from a denominator of q!.
Those observations led us to more closely examine the polytopal geometry, leading us to
a proof of polynomiality with respect to q as well as other results.

Our results provide a basis for understanding the periodicity properties of the coeffi-
cients in Kotěšovec’s formulas. The general Ehrhart theory of inside-out polytopes implies
a period that divides the least common multiple of the denominators of the coordinates
of certain points. This least common multiple is called the denominator of the inside-out
polytope (see Section 2). In Section 6 we take an approach involving subdeterminants
of matrices to understanding this denominator, but it appears to provide an inefficient
bound on the period.

We finally summarize Part I. It begins in Section 2 by reviewing inside-out Ehrhart
theory. Section 3 defines the hyperplane arrangement that corresponds to a piece and
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describes simple aspects of the structure of its intersection subspaces—which are the es-
sential ingredient in our approach. In Section 4 we prove our main result, a universal
structural formula for the counting quasipolynomial, and initiate the theory of its coeffi-
cients and their individual periods.

Then we change focus from the number of nonattacking configurations to their com-
binatorial structure. The combinatorial types appear in the geometry of the hyperplane
arrangement. Their number is consequently the evaluation of the main counting function
at a board of size n = −1 (!).

Section 6 tackles the fundamental problem of bounding the quasipolynomial period,
or rather its natural upper bound the denominator. We explain a fairly simple approach
from [6] involving subdeterminants of matrices. Examples suggest it provides an inefficient
bound; still, some bound is better than none at all.

In the final section we propose new research directions, among which are pieces of
different kinds on the same board, pieces on higher-dimensional boards, and even a wild
generalization where the attacking moves depend on which piece is attacked as well as
which does the attacking. Indeed, throughout the series we list open directions and
conjectures. Two problems seem to be of highest importance. One that is fundamental to
our approach but very complex is that of determining all the subspaces needed to apply
our general formulas in examples; this question (see Section 7.3) lies in the overlap of
matroid theory and real incidence geometry. Then in Section II.8.2 we discuss the great
dissimilarity between the period of the counting function and the length of a recurrence
for its values according to the (largely unproved but highly suggestive) work of Kotěšovec.
An understanding of this phenomenon should permit a vast reduction in the computing
power required to get provable formulas.

We end each part with a dictionary of notation for the benefit of the authors and
readers.

2 Hyperplanes, Subspaces, and Ehrhart Quasipoly-

nomials

The essential tools for our study are hyperplane arrangements and the Ehrhart theory of
inside-out polytopes.

In a vector space Rd, an arrangement of hyperplanes, A , is a finite set of hyperplanes,
i.e., linear subspaces of codimension 1. A region of a hyperplane arrangement is a con-
nected component of the complement of the union of all the hyperplanes. The intersection
lattice of A is the set

L (A ) :=
{⋂

S : S ⊆ A
}
,

partially ordered by reverse inclusion. Thus, it is a partially ordered set, it has bottom
element 0̂ = Rd and top element 1̂ =

⋂
A ; in fact, it is a geometric lattice.

An inside-out polytope (P,A ) (see [2], which is the source of the following exposition)
is a convex polytope P ⊆ Rd, which we assume is closed and full-dimensional, together
with a hyperplane arrangement A in Rd. A region R of (P,A ) is a nonempty set that
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is the intersection of P◦, the interior of P, with a region of the arrangement A . A vertex
of (P,A ) is any point of P that is the intersection of hyperplanes in A and boundary
hyperplanes of P; each vertex is the intersection of k linearly independent hyperplanes of
A with a k-dimensional face of P. (That includes vertices of P, for which k = 0, and
any points of intersection of forbidden hyperplanes that lie in the interior of P, for which
k = d.) When A is empty we have just a convex polytope; the vertices are just the
vertices of P. The intersection semilattice of (P,A ) is the set

L (P◦,A ) := {U ∈ L (A ) : U ∩ P◦ 6= ∅},
ordered by reverse inclusion. The two sets L (A ) and L (P◦,A ) are equal for the inside-
out polytopes we employ, but in general they can differ.

(In this paper, P is Bq, a 2q-dimensional polytope that contains all configurations of
q pieces in the board, and the hyperplane arrangement is AP, consisting of hyperplanes
that contain all the 2q-dimensional points representing configurations of q chess pieces P
in which some pieces attack each other; see the complete definition in Section 3.1.)

A quasipolynomial is a function f(t) of positive integers that can be written in the
form ed(t)t

d + ed−1(t)t
d−1 + · · · + e0(t) where each coefficient ej(t) is a periodic function

of t. The least common multiple p of the periods of all the coefficients is the period of
f . Another way to describe f is as a function that is given by p polynomials, fk(t) for
k = 0, 1, . . . , p− 1, under the rule f(t) = fk(t) if 0 < t ≡ k mod p. We call the individual
polynomials fk(t) the constituents of f . We say f has degree d if that is the highest degree
of a constituent. (In our quasipolynomials every constituent has the same degree.)

For a positive integer t and a polytope P, the number of integer points in tP, or
equivalently the number of (1/t)-fractional points in P, is denoted by EP(t). The number
in P◦ is denoted by E◦P(t) = EP◦(t). We assume the vertices of P are rational and
we define D(P), the denominator of P, to be the least common denominator of all their
coordinates. Then E◦P is a quasipolynomial function of t, the open Ehrhart quasipolynomial
of P. Furthermore, the leading term of every constituent polynomial is vol(P)td, where
the coefficient is the volume of P, and the period of this quasipolynomial is a divisor of
D(P); in particular, if P has integral vertices, E◦P is a polynomial. (These results are due
to Ehrhart; see, e.g., [1].)

An inside-out polytope (P,A ) that has rational vertices has similar properties. Its
open Ehrhart quasipolynomial is the function E◦P,A (t) of positive integers t whose value is
the number of integer points in the t-fold dilate tP◦, or equivalently the number of (1/t)-
fractional points in P, that do not lie in any of the hyperplanes of A . (The equivalence of
the two definitions is due to the fact that homogeneous hyperplanes are invariant under
dilation.) The denominator D(P,A ) is the least common denominator of the coordinates
of all vertices. Given U ∈ L (A ), the volume vol(U ∩ P) when dimU < d is a relative
volume defined in terms of the integral lattice U∩Zd; it is the proportion that the measure
of U∩P bears to that of a fundamental domain of U∩Zd. In the case of P itself, it is the
usual volume, since U = Rd.

Lemma 2.1 ([2, Theorem 4.1]). The open Ehrhart quasipolynomial has the form

E◦P,A (t) = edt
d + ed−1(t)t

d−1 + · · ·+ e0(t)t
0,
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where the coefficient ed is the volume of P (a constant) and the coefficients ej(t) for j < d
are periodic functions of t with period that divides the denominator D(P,A ).

The period p of E◦P,A equals the least common multiple of the periods of the coefficients.
Thus, p|D(P,A ).

A fundamental formula in the Ehrhart theory of inside-out polytopes (see [2, Equa-
tion (4.4)]) is

E◦P,A (t) =
∑

U∈L (P◦,A )

µ(0̂,U)EU∩P◦(t), (2.1)

where µ denotes the Möbius function of L (P◦,A ). This has the following important
consequence.

Lemma 2.2. Suppose U ∩ P has integral vertices for every U ∈ L (P◦,A ) whose codi-
mension is < k. Then the coefficients ed−i(t) are constant for all i 6 k.

Proof. Each Ehrhart quasipolynomial on the right-hand side of Equation (2.1) has the
form

EU∩P◦(t) = edimU(U; t)tdimU + edimU−1(U; t)tdimU−1 + · · ·+ e0(U; t)t0,

where each ej(U; t) is a periodic function of t and edimU(U; t) is the (dimU)-dimensional
volume of U ∩ P. If U has integral vertices the denominator of U is 1 so each ej(U; t) is
ej(U), a constant independent of t. Now,

E◦P,A (t) =
∑

U∈L (P◦,A )

µ(0̂,U)
dimU∑
j=0

ej(U; t)tj

=
d∑
j=0

tj
∑

U∈L (P◦,A ):
codimU6d−j

µ(0̂,U)ej(U; t).

Thus,

ed−i(t) =
∑

U∈L (P◦,A ):
codimU6i

µ(0̂,U)ed−i(U; t). (2.2)

If codimU = i, then ed−i(U; t) = vol(P◦ ∩ U), a constant independent of t. If also U ∩ P◦

has integral vertices for all U with codimU < i, then all coefficients ed−i(U; t) = ed−i(U),
independent of t, so ed−i is a constant. This is true for all i 6 k; thus, all terms tj with
j > d− k have constant coefficients ej(U).

Taking k = 1 gives a special case of most importance for chess placements.

Lemma 2.3. If P has integral vertices, then ed−1(t) is constant.
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3 Configurations

From now on, the polytope is P = Bq, the open polytope is P◦ = B◦q, and the (open)
inside-out polytope is (P◦,AP), where AP is the “move arrangement” to be defined shortly.
(We assume that q > 0.)

3.1 Nonattacking configurations and the move arrangement

The secret of the solution is to restate each rule of attack as an equation of a forbidden
hyperplane in R2q. A labelled configuration describes the locations of q labelled pieces; it
is a point z = (z1, . . . , zq) ∈ R2q with each zi = (xi, yi) ∈ Z2. The labelled configuration is
nonattacking or attacking depending on whether or not it violates every attack equation.
An attack equation is a linear constraint on z expressing the fact that labelled pieces Pi
and Pj attack each other; in mathematical terms, that zj − zi is a multiple of a move mr.

To express an attack in the configuration space R2q, observe that zj−zi ∈ 〈mr〉 can be
rewritten as (zj − zi) ⊥ m⊥r , or, (zj − zi) ·m⊥r = 0, where m⊥r denotes any nonzero vector
orthogonal to mr. The equation (zj − zi) ·m⊥r = 0 is the equation of a hyperplane in the
configuration space (the move hyperplane Hmr

ij associated to the move mr) whose points

are attacking labelled configurations. (We also use slope notation: H
d/c
ij when mr = (c, d),

with slope d/c.) These move hyperplanes in the configuration space form an arrangement
of hyperplanes, AP, which we call the move arrangement of P. There are

(
q
2

)
|M| of these

hyperplanes.
For specificity, for each basic move vector mr = (cr, dr), we define m⊥r := (dr,−cr),

which is mr rotated 90◦ counterclockwise; thus, m⊥r points to the left side of the move
line.

The fact that the inflated polytope tB◦q can engulf arbitrarily large integral points
makes our polytopal approach awkward. Therefore, we often reduce the integral config-
uration z ∈ tBq to a fractional configuration z′ = t−1z ∈ Bq. The denominators of the
components of z′ tell us which dilates tBq contain a corresponding integral point tz′, since
tz′ is integral precisely when t is a multiple of the least common denominator of the com-
ponents of z′. We refer to either z ∈ tBq∩Z2q or z ∈ Bq∩Q2q as a configuration, assuming
that the context will make clear whether we mean an integral or fractional configuration.

Every move hyperplane contains the diagonal {(z, z, . . . , z) ∈ R2q : z ∈ R2}; hence
each move hyperplane intersects the interior P◦ = (Bq)◦ = B◦q so it is definitely a member
of the intersection semilattice. That is,

L (B◦q,AP) = L (Bq,AP) = L (AP) for every board and piece. (3.1)

3.2 Subspaces in the move arrangement

In a configuration a piece Pi has coordinates zi = (xi, yi). Each subspace U is specified
by equations that involve certain of the q labelled pieces, for instance P1, . . . ,Pκ, and no
others; then U has the form Ũ×R2(q−κ) where Ũ is a subspace of R2κ whose equations in
R2κ use at least one coordinate corresponding to each of P1, . . . ,Pκ. We say that U has
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equations that involve the pieces P1, . . . ,Pκ (for short, U involves those pieces); and we

call Ũ the essential part of U. Let Uν
κ denote any subspace with codimension ν involving

precisely κ pieces. Similarly, Uκ denotes a subspace of any codimension that involves κ
pieces.

For counting points in P ∩ U we want special notation. We define α(Uκ;n) to be the
number of configurations of κ pieces in a board of scale factor n + 1 that satisfy all the
attack equations that define Uκ; that is,

α(U;n) := E
B◦κ∩Ũ(n+ 1),

the number of integral points in Bκ ∩ Ũ. (We prefer n = t− 1 as parameter because it is
natural for the square board and because we are interested in the coefficients of powers
of n.)

A subspace U ∈ L (AP) decomposes into subspaces U1,U2 ∈ L (AP) if U = U1 ∩ U2

and each piece involved in U is involved in just one of U1 and U2. When U decomposes
into U1 and U2, then dimU = dimU1 + dimU2 and the interval [0̂,U] has the structure
of the product [0̂,U1]× [0̂,U2]. It follows that µ(0̂,U) = µ(0̂,U1)µ(0̂,U2). Furthermore,

α(U;n) = α(U1;n)α(U2;n)

because Ũ1 and Ũ2 involve different coordinates. These reduction formulas are very useful,
especially in the treatment of partial queens in Part III.

Certain subspaces in L (AP) merit closer examination. Define

W
d/c
ij... := {z ∈ R2q : Pi,Pj, . . . all lie in a line with slope d/c} =

⋂
r,s∈{i,j,...}

Hd/c
rs ,

and if |M| > 2,

W=
ij... := {z ∈ R2q : zi = zj = · · · }.

Then

codimW
d/c
ij... = number of subscripts− 1,

codimW=
ij... = 2(number of subscripts− 1),

and, for instance,

W=
ij =

⋂
(c,d)∈M

H
d/c
ij = H

d/c
ij ∩H

d′/c′

ij

for any two distinct slopes d/c and d′/c′.

Lemma 3.1. For any board and any move set M with |M| > 2, we have Möbius functions

µ(0̂,W
d/c
i1...il

) = (−1)l−1(l − 1)!,

µ(0̂,W=
ij ) = |M| − 1,

µ(0̂,W=
ij ∩W

d/c
ijk ) = −2(|M| − 1),

µ(0̂,W=
ijk) = (|M| − 1)2(|M| − 3).
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Proof. The interval [0̂,W
d/c
i1...il

] is isomorphic to the partition lattice of [l], or the lattice of

flats of the complete graph Kl, because H
d/c
ij ∩H

d/c
jk ⊂ H

d/c
ik . This Möbius function is well

known (see, e.g., [13]).

The computation of µ(0̂,W=
ij ) is routine. That of µ(0̂,W=

ij ∩W
d/c
ijk ) is demonstrated

in Figure 3.1. That of µ(0̂,W=
ijk) is shown in Figure 3.2.

W=
12 ∩W

d/c
123

−2(|M|−1)

Wm1
123

(2)

Hm1
13 ∩Hm2

12
(1)

Hm1
23 ∩Hm2

12
(1)

· · · Hm1
23 ∩H

m|M|
12

(1)

W=
12

(|M|−1)

Hm1
13

(−1)
Hm1

23
(−1)

Hm1
12

(−1)
Hm2

12
(−1)

· · · H
m|M|
12
(−1)

R2q−6
(1)

Figure 3.1: The computation of µ(0̂,W=
12 ∩W

d/c
123 ), exhibited in the Hasse diagram of the

interval [0̂,W=
12 ∩W

d/c
123 ] in L (AP), with the value of µ(0̂,U) below the subspace U. We

let m1 = d/c.

3.3 The slope graph

The slope graph Σ(U) is a labelled graph associated with an intersection subspace U. The
subspace involves certain pieces; the nodes of Σ(U) correspond to those pieces and the
edges correspond to all the hyperplanes that contain U. The edge corresponding to a
hyperplane H

d/c
ij is labelled by the slope; thus we call the edge e

d/c
ij . An isomorphism of

slope graphs is defined as a graph isomorphism that preserves slope labels. It is clear that
subspaces are isomorphic if and only if their slope graphs are isomorphic. (That is why
we call subspace isomorphism “combinatorial”.) Note that to specify U it is not necessary
to state all edges; only codimU edges are necessary.

The slope graph of a subspace is a subgraph of the slope graph of the arrangement
A q

P . (The superscript in A q
P is a reminder that we are in R2q.) Let Σq(P) be the graph

with nodes corresponding to q pieces labelled 1, 2, . . . , q and edges corresponding to the
hyperplanes of A q

P . Let Σ(P) be the union of all these; its node set is {vi : i = 1, 2, 3, . . .}.
We use Σq(B), the bishop slope graph, to prove in Part V that the period of a bishops
counting function is at most 2, and we hope it can be used to get general results about
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W=
123

(|M|−1)2(|M|−3)

H
d/c
ij ∩H

d′/c′

jk ∩H
d′′/c′′

ik
(1)

W=
ij ∩W

d/c
123

−2(|M|−1)

H
d/c
ij ∩H

d′/c′

jk
(1)

W
d/c
123

(2)

W=
ij

(|M|−1)

H
d′/c′

jk
(−1)

H
d/c
ik

(−1)
H
d/c
jk

(−1)
H
d/c
ij

(−1)
H
d∗/c∗

ij
(−1)

R2q−6
(1)

Figure 3.2: The computation of µ(0̂,W=
123), exhibited in a partial Hasse diagram of the

interval [0̂,W=
123]. The value of µ(0̂,U) sits under the subspace U. Slopes d/c, d′/c′, . . . are

assumed distinct. There are 3|M| hyperplanes, 3 subspaces W=
ij for i, j ∈ [3], |M| of type

W
d/c
123 , 3(|M|)2 of form H

d/c
ij ∩H

d′/c′

jk , (|M|)3 of form H
d/c
ij ∩H

d′/c′

jk ∩H
d′′/c′′

ik , and 3|M| of

type W=
ij ∩W

d/c
123 .

periods. (Because the slope graph Σ(P) corresponds to hyperplane arrangements there is
a related finitary matroid closure on the edge set whose closed sets are the edge sets of
subspace graphs Σ(U), but it is complicated and we do not need it here. See the problem
statement in Section 7.3.)

3.4 Isomorphic subspaces

We now analyze the combinatorial structure of the subspaces U ∈ L (A q
P ).

Given U = Uκ that involves pieces P1, . . . ,Pκ, let Aut(U) be the group of permutations
of those pieces—that is, permutations of indices of the coordinates zi—that leave U in-
variant. We call such a permutation an automorphism of U. Then there are κ!/|Aut(U)|
subspaces that are similar to U, meaning that they have the same equations except for
a permutation of the subscripts 1, . . . , κ in the coordinates. For instance, let X be deter-
mined by x1 = x2, y1 = y2, x1 − x3 = y1 − y3, Y by x1 = x3, y1 = y3, x1 − x2 = y1 − y2,
and Z by x1 + y1 = x2 + y2 = x3 + y3, x1 − y1 = x3 − y3. All have the form U3

3 but X and
Y are similar while Z is dissimilar to the others.

We say two subspaces U,U′ ∈ L (AP) are isomorphic or have the same type if there
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is a bijection from the pieces involved in U to those involved in U′ which transforms
the equations of U to those of U′. (Defined precisely by way of the slope graph Σ(U)
in Section 3.3.) We write [U] for the isomorphism class, or type, of U. The subspaces
need not live in the same dimension; i.e., if U ⊆ R2q and U′ ⊆ R2q′ , q and q′ need not
be equal (unless we are restricting ourselves to L (A q

P )). Isomorphism is concerned only
with the pieces that are involved in the subspaces. Isomorphic subspaces have the same
codimension ν (because codim Ũ in R2κ equals codimU in R2q) though not necessarily
the same dimension, and the same Möbius function µ(0̂,U), counting function α(U;n)

(since it is the Ehrhart quasipolynomial of Ũ), and automorphism group. The number of
subspaces in L (A q

P ) that are isomorphic to Uκ is
(
q
κ

)
· κ!/|Aut(Uκ)|.

Isomorphism is a combinatorial relation. That can be made precise through the slope
graph Σ(U) since it is clear that U and U′ are isomorphic if and only if there is an
isomorphism of their slope graphs that preserves edge labels. It is then obvious that
U and Ũ are isomorphic, and that U and U′ are isomorphic if and only Ũ and Ũ′ are
isomorphic.

Taking account of isomorphism and the fact that

EUκ∩B◦q(n+ 1) = α(Uκ;n)N q−κ,

Equation (2.1) can be rewritten as

E◦P,A (n+ 1) =

q∑
κ=0

(q)κ
∑
[Uκ]

µ(0̂,Uκ)
1

|Aut(Uκ)|
α(Uκ;n)N q−κ

=
∞∑
κ=0

(q)κ
∑
[Uκ]

µ(0̂,Uκ)
1

|Aut(Uκ)|
α(Uκ;n)N q−κ,

(3.2)

where the inner sum ranges over all subspace types [Uκ], since the limit q on κ is equivalent
to saying there is a representative Uκ ∈ L (A q

P ). Letting κ range up to∞ does not change
the value of the expression because (q)κ = 0 when κ > q.

4 Counting Configurations

An unlabelled configuration is a multiset of planar points z1, . . . , zq; it corresponds to
having unlabelled pieces. Unlabelled configurations are what we really want to count.
Since a point with any zj = zi is attacking, the same number q! of nonattacking unlabelled
configurations corresponds to each nonattacking labelled configuration.

4.1 The number of configurations

Let uP(q;n) be the number of nonattacking unlabelled configurations and oP(q;n) the
number of nonattacking labelled configurations with q pieces in the interior of the dilated
board tB, where t = n+ 1 is a positive integer; thus uP(q;n) = oP(q;n)/q!.

Let volB denote the area of B.

the electronic journal of combinatorics 21(3) (2014), #P3.33 12



Theorem 4.1. For each positive integer q, the number uP(q;n) of nonattacking unlabelled
configurations of q pieces in tB is given by a quasipolynomial function of t, of degree 2q
with leading coefficient (volB)q/q!.

Proof. We prove the theorem by showing that oP(q;n) is a quasipolynomial with suitable
properties.

We already know that oP(q;n) is the number of integral lattice points in the interior of
tBq that are not in any of the move hyperplanes. Since the hyperplanes are homogeneous,
the integral lattice points in tBq can be scaled to t−1-fractional points in Bq. Technically,
inside-out theory applies to the count of these fractional points in Bq. The theory also
requires that the move hyperplanes have rational equations, which they do. According to
the theory, oP(q;n) is a quasipolynomial function of t whose degree is dimBq, which is
2q, and whose leading coefficient is the volume of Bq, which is vol(B)q.

We expand the counting function as a quasipolynomial:

uP(q;n) = γ0(n)n2q + γ1(n)n2q−1 + γ2(n)n2q−2 + · · ·+ γ2q(n)n0. (4.1)

Its leading coefficient is constant, γ0(n) = vol(B)q/q! (since uP(q;n) is a disguised Ehrhart
quasipolynomial) and its period is a divisor of the denominator D(Bq,AP).

4.2 The general form of coefficients

We demonstrate that the coefficients in the labelled counting quasipolynomial oP(q;n)
= q!uP(q;n) are themselves polynomials in q. The key to the proof is a new variable,

N := EB◦(n+ 1),

the number of lattice points in the interior of the dilated board; that is, it is the number
of locations a single piece can be placed on the dilated board. This variable is a quadratic
quasipolynomial function of n (and its leading term is (volB)n2), so in terms of N we
can expand each subspace Ehrhart quasipolynomial as

α(Uν
κ;n) =

κ−dν/2e∑
j=0

Γ̄j(U
ν
κ)N

κ−dν/2e−j,

where Γ̄j = nΓ̄j1 + Γ̄j0, a linear quasipolynomial in n; thus the Ehrhart quasipolynomial
of Uν

κ becomes

EB◦q∩Uνκ(n+ 1) = α(Uν
κ;n)N q−κ =

κ−dν/2e∑
j=0

Γ̄j(U
ν
κ)N

q−dν/2e−j. (4.2)

Write Ck(f(n)) for the coefficient of nk in a quasipolynomial f(n) (this coefficient may
vary periodically with n).
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Theorem 4.2 (Coefficient Theorem). The coefficient q!γi of n2q−i in each constituent of
oP(q;n) is a polynomial in q of degree 2i. A formula for the coefficient is

q!γi = C2q−i(N
q)

+
2i∑

κ=max(2,di/2e)

(q)κ

min(i,2κ−2)∑
ν=dκ/2e

∑
[Uνκ]

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

C2q−i

( κ∑
k=dν/2e

Γ̄k−dν/2e(U
ν
κ)N

q−k
)
.

(4.3)
In particular, γ0 = (volB)q/q!, a constant, and γ1 is constant if the vertices of B are
integral points.

Proof. The constancy of γ1 when B is integral is from Lemma 2.3.
We rewrite Equation (3.2) via Equation (4.2) as

oP(q;n) =
∞∑
κ=0

∑
ν>0

∑
[Uνκ]

(q)κµ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

κ−dν/2e∑
j=0

Γ̄j(U
ν
κ)N

q−dν/2e−j, (4.4)

where the third summation ranges over all subspace types [Uν
κ] for κ 6 q. In this sum

only the factors (q)κ and N q involve q.
Since no subspace can involve only one piece, there are two kinds of subspace: U0

2q =
R2q, which gives the term N q, and Uν

κ with ν > 0 and κ > 2. If we define Γ̄j := 0 when
j < 0 and note that only the subspace R2q contributes an N q term, then we may write

oP(q;n) = N q +
∞∑
κ=2

∞∑
ν=0

∑
[Uνκ]

(q)κµ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

κ−dν/2e∑
j=0

Γ̄j(U
ν
κ)N

q−dν/2e−j

= N q +
∞∑
κ=2

(q)κ

∞∑
ν=0

∑
[Uνκ]

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

κ∑
k=dν/2e

Γ̄k−dν/2e(U
ν
κ)N

q−k.

Substituting for N and the Γ̄j in terms of n, the last expression becomes a quasipolynomial
function of n. We conclude that q!γi is the coefficient of n2q−i in that quasipolynomial.

This coefficient is independent of q except for the factor (q)κ. It is also a finite sum.
First, ν 6 i since a subspace of codimension greater than i will not contribute to the
coefficient of n2q−i. Also, ν > κ/2 because every piece must participate in an equation
of Uν

κ, each of which involves two pieces. It follows from κ/2 6 ν 6 i that κ 6 2i. In
addition, k 6 κ 6 2i. Since q appears only in the factors (q)κ and κ is bounded by 2i, we
conclude that q!γi is a polynomial function of q of degree at most 2i if n is held constant.

The bound ν 6 2κ− 2 follows from the fact that the smallest subspace that involves
κ pieces is W=

[κ], which has codimension 2κ− 2.

Moreover, κ > i/2. For U = Uν
κ, the dimension of Ũ is 2κ − ν so the leading term of

α(U;n) has degree 2κ−nu and the last term has degree 0 in terms of n. For EB◦q∩U(n+1) =
α(U;n)N q−κ has, in terms of n, leading and final degrees 2q − ν and 2q − 2κ. That is, if
i > 2κ, U cannot contribute to γi; that is why we may assume the restriction κ > i/2.
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Now we consider the effect of the variability of n. Let P be the smallest common
period (with respect to n) of all α(U;n) for all types [U] that appear in the sum (4.3).
Every Γ̄i−ν(U) is periodic with a period that divides P , and so is N . Therefore the
coefficient of (q)κ in (4.3) is periodic with a period that divides P . We conclude that q!γi
is a polynomial function of q whose precise polynomial may vary periodically with n and
whose period divides P .

The last step is to determine the degree. We showed that the largest conceivable
degree of q is κ = 2i. A term with (q)2i arises only from a subspace involving κ = 2i
pieces; then ν must equal i. The degree is indeed 2i because a coefficient of (q)2i arises
only from a subspace of the form Ui

2i. That coefficient is Γ̄0(U
i
2i), which is the leading

coefficient of α(Ui
2i;n), hence a volume and not zero. In sum, the coefficient of (q)2i in

q!γi is nonzero so q!γi has degree exactly 2i.

5 Configuration types

For each basic move mr ∈ M from a fixed location, the line 〈mr〉 is naturally directed,
so it has a left and right side. Given a nonattacking configuration of q pieces, record,
for each piece Pi at location zi and each move line zi + 〈mr〉 through Pi, oriented in the
direction of mr, the indices of the points Pj that lie on the left side of the line. The set of
these lists, for every pair, is the combinatorial type of the labelled configuration, briefly
the labelled configuration type. (Our configuration types are always nonattacking; we are
not interested in attacking types.)

Another way to describe a labelled configuration type is by building a nonattacking
configuration, one piece at a time. Place the first piece, labelled P1, at z1 ∈ tB◦ ∩ Z2.
This creates |M| lines through z1 that may not be occupied by any other piece, and
2|M| regions that may be occupied. The second piece, P2 at z2, will be in one of these
regions. Now we have |M| forbidden lines through z2; these lines in combination create
permitted regions that will be occupied by the other pieces. Placing the third piece further
subdivides these into a larger number of regions, and similarly with each placement up to
the last piece. The sequence of choices of region is equivalent to the labelled configuration
type.

By forgetting the order of the pieces we have an unlabelled combinatorial type of
configuration, for short an unlabelled configuration type. We want to know how many
unlabelled configuration types there are.

Lemma 5.1. There are q! labelled nonattacking configuration types for each unlabelled
type.

Proof. In the left-to-right direction −m⊥r perpendicular to a move line 〈mr〉, the q labelled
pieces appear in a definite order, (P1,P2, . . . ,Pq). This is indicated by the left-side list
of the ith piece with respect to mr, which is {1, . . . , i− 1}. Renumbering the pieces
changes the order, hence the left-side list of at least one piece, and therefore the labelled
configuration type.
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Lemma 5.2. The labelled nonattacking configuration types are in one-to-one correspon-
dence with the regions of (Bq,AP).

Proof. We need to be more formal about labelled configuration types. A configuration
on the t-fold board tB, in terms of coordinates, is z = (z1, z2, . . . , zq) ∈ (tB◦)q ∩ Z2q. We
normalize this to a fractional configuration t−1z ∈ (B◦)q. The normalized configurations
are just as good as the integral ones as far as describing configuration types, because the
inequalities that describe types are homogeneous.

The type of a configuration z is a list of lists of lists. The ith point has lists Lir = {j :
Pj is on the left side of the rth move line through Pi}, one for each basic move mr. That
is,

Lir = {j : (zj − zi) ·m⊥r > 0}.

This inequality is precisely what defines the positive halfspace of a hyperplane in AP; the
collection of all such inequalities derived from the configuration z determines a subset of
the interior of Bq, which is nonvoid because it contains the fractional configuration t−1z.
Consequently, a configuration determines a region of (Bq,AP).

Conversely, any region contains a fractional point t−1z ∈ t−1Z2q for a sufficiently large
integer t. Therefore, it corresponds to one or more configuration types. However, it cannot
correspond to more than one configuration type, because the inequalities that define the
region determine which indices j are in which list Lir for each i and r.

Recall that uP(q;n) and oP(q;n) are quasipolynomials whose constituents are uP,0(q;n),
. . . , uP,p−1(q;n) and oP,0(q;n), . . . , oP,p−1(q;n), respectively. The last constituents may be
also written uP,−1(q;n) and oP,−1(q;n) due to the periodicity.

Theorem 5.3. The number of unlabelled combinatorial types of nonattacking configura-
tion of q pieces P equals uP(q;−1). The number of labelled nonattacking configuration
types equals oP(q;−1).

Proof. By [2, Theorem 4.1], the number of regions of (Bq,AP) is

EBq ,AP(0) = (−1)dim(Bq)E◦Bq ,AP
(0) = E◦Bq ,AP

(0),

which in terms of n is oP(q;−1).

Still another way to look at the type of a configuration is through isotopy. Two
labelled configurations z and z′ are isotopic if one can be deformed into the other by a
continuous movement in the configuration space R2q without at any time crossing a move
hyperplane. It is clear from the correspondence between lists and regions in the proof of
Lemma 5.2, and the convexity of regions, that this is possible if and only if z and z′ have
the same left-side lists, and then the isotopism can be performed along a line segment in
the interior of tBq.

On the other hand, one might ask about discrete isotopy, where we move one piece
at a time on the board. A discrete isotopism is a sequence of steps, z = z0 → z1 →
· · · → zk = z′ where zj−1 and zj differ only by making a legitimate move of a single piece
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that does not change the combinatorial type of the configuration. One should allow any
amount of inflation, i.e., one should be allowed to multiply all the coordinates by a very
large positive integer before performing the isotopism (which one can think of as replacing
the (1/t)-lattice by a finer (1/kt)-lattice). One would naively expect this to be equivalent
to continuous isotopy, and indeed it is, once we overcome two difficutlies.

First, if there is only one basic move m, the only configurations that can be reached
from a nonattacking configuration z by allowed moves are those in the line through z in
the direction of m (in some zi plane). Therefore, there must be more than one move in
M.

Second, even if there are two basic moves, there can be configurations that are un-
reachable from each other in a board tB if t is fixed; for instance, in a configuration of
bishops no moves can change the numbers of bishops on squares of each color. That
problem is solvable by inflation.

Theorem 5.4. If |M| > 2, isotopy and discrete isotopy produce the same equivalence
relation on nonattacking configurations.

The proof begins with a planar lemma. Note that any two basic moves are nonparallel.

Lemma 5.5. Given two basic moves, m1 and m2, there is a sequence of moves that takes
a piece from z = (x, y) ∈ Z2 to z′ = (x′, y′) ∈ Z2 if and only if (x′ − x, y′ − y) is divisible
by det(m1,m2).

Proof. There exists such a sequence if and only if there is an integral solution to κm1 +

λm2 = (x′ − x, y′ − y). Let C =
(
m1 m2

)
. The equation to be solved is

(
κ
λ

)
C =(

x′ − x
y′ − y

)
. Inverting, (

κ
λ

)
= (detC)−1C∗

(
x′ − x
y′ − y

)
,

where C∗ is the cofactor matrix, which is an integral matrix. By the assumptions on
moves, the greatest common divisor of the entries in either column of C is 1; thus, an
integral solution exists if and only if x′ − x and y′ − y are multiples of detC.

Proof of Theorem 5.4. Choose two basic moves m1,m2 ∈M.
Let z = (z1, . . . , zq), z′ = (z′1, . . . , z

′
q) ∈ Z2q be nonattacking configurations of the

same combinatorial type on the dilated board tB◦, where t > 0. No restriction hyperplane
separates them; that is, they lie in the same open region R of AP. We want a discrete
isotopism from z to z′, that is, is a sequence of moves of individual pieces that gives a
sequence of (fractional) configurations lying in R ∩B◦ ∩ τ−1Z2q for some τ ∈ Z>0.

A sequence of individual moves is expressed (disregarding its order) by solving the
Diophantine equation

κ1


m1

0
...
0

+ · · ·+ κq


0
...
0
m1

+ λ1


m2

0
...
0

+ · · ·+ λq


0
...
0
m2

 =


z′1 − z1

z′2 − z2
...

z′q − zq

 .
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This is a set of q independent equations:

κim1 + λim2 = z′i − zi

for i = 1, . . . , q. We know from Lemma 5.5 when they are solvable: if and only if detC
divides every component of z′ − z. If we multiply the entire board by k, replacing z′ − z
by k(z′ − z), this condition is satisfied; thus, using kt as the board dilation factor, we
get a walk kI := (kz = z0, z1, . . . , zl = kz′), from kz to kz′ in (ktB◦)q ∩ Z2q consisting of
integral multiples of moves m1 and m2. We normalize kI to lie in (tB◦)q∩k−1Z2q through
division by k; this gives a walk

I = (z = k−1z0, k−1z1, k−1 . . . , k−1zl = z′)

in (tB◦)q ∩ k−1Z2q where each k−1zi − k−1zi−1 ∈ k−1Z2q is a move of a single piece by an
integral multiple of k−1m1 or k−1m2.

Define I0 := (0, k−1z1 − z, k−1z2 − z, . . . , z′ − z), the walk I translated to the origin;
thus we may write I = z + I0.

We squeeze I into R by shrinking and replicating it. The line segment [z, z′] lies in
R ∩ (tB◦)q by the convexity of regions and of the polytope (tB◦)q. For some δ ∈ R>0

the segment has a δ-neighborhood U contained in R ∩ (tB◦)q. By taking a sufficiently
large divisor τ ∈ Z>0 we can ensure that z′′ + τ−1I0 is contained in U for every z′′ ∈
[z, z′ − τ−1(z′ − z)]. In particular, that is true for every z′′ = z + (j − 1)τ−1(z′ − z) such
that j ∈ {1, . . . , τ}. Consequently, the concatenated sequence

z + τ−1I0, z + 1τ−1(z′ − z) + τ−1I0, . . . , z + (τ − 1)τ−1(z′ − z) + τ−1I0

is a walk from z to z′ in (tB◦)q∩(kτ)−1Z2q by (1/kτ)-fractions of legal moves, is contained
in R, and is therefore a discrete isotopism from z to z′.

Proposition 5.6. The number of nonattacking configuration types for q = 1 is 1. For
q = 2 it is |M|, the number of basic moves.

Proof. Adding one piece at a time as described in the opening of this section, it is clear
that two labelled pieces have 2|M| configuration types and two unlabelled ones have
|M|.

Thus, for any piece P, the formula for uP(q;n), upon setting n = −1, must yield 1
when q = 1 and |M| when q = 2. This provides a means for checking formulas. Based on
the (apparent) facts about queens and nightriders (see below), we propose:

Conjecture 5.7. The number of nonattacking configuration types of 3 pieces depends
only on |M|.

We think the number depends on the actual moves for large q, though we are not sure
where that dependence begins; we suspect q = 4 or q = 5.

On the other hand, if there are hardly any basic moves, the number of configuration
types is always independent of the actual moves.
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Theorem 5.8. The number of unlabelled combinatorial types of nonattacking configura-
tion of q pieces is 1 for a piece with only one move and q! for any piece with exactly two
moves.

Proof. The case |M| = 1 is obvious. Assume M = {m1,m2} and label the pieces. Take
the basic moves as coordinate vectors in a new coordinate system, in which m1 is the
horizontal move to the right and m2 is the vertical move up.

A configuration type is formalized by the list of lists just described. Since no two pieces
are on the same horizontal line, the lists Li1 are determined by the permutation of the
piece labels in order of height. Similarly, the lists Li2 are determined by the order of piece
labels from left to right. There are q! permutations of each kind, and the horizontal and
vertical permutations are independent. Hence the number of labelled combinatorial types
is (q!)2. Upon dividing by q! we have q! combinatorial types for unlabelled pieces.

In particular, Theorem 5.8 applies to the rook R and the bishop B to give q! unlabelled
combinatorial configurations for q pieces. For the queen Q and the nightrider N, we can
apply Theorem 5.3 to generate data. For example, the methods from Part II give the
previously known formula for two queens,

uQ(2;n) =
n4

2
− 5n3

3
+

3n2

2
− n

3
.

Subtracting the number of attacking pairs of squares in all knight-like diagonals from the
total number of pairs gives the formula for two nightriders:

uN(2;n) =

{
n4

2
− 5n3

6
+

3n2

2
− 11n

12

}
+ (−1)n

n

4
.

For both of these equations, the number of combinatorial types of configuration of two
(unlabelled) pieces is uQ(2;−1) = uN(2;−1) = 4, in accord with Proposition 5.6.

Using derived and known formulas for queens, we have the data in Table 5.1.

Queens Types

q = 1 1

2 4

3 36

4 574*

5 14206*

6 501552†

Table 5.1: The number of combinatorial configuration types of q (unlabelled) queens in
an n× n square board.

* is a number deduced from a heuristic (thus, unproved) formula in [9].
† deduced from the (heuristic) formula of Karavaev ([7] and [12, Sequence A176186]).
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The number of combinatorial configuration types of nonattacking placements of 3
nightriders in an n × n square board is 36, based on Kotěšovec’s enormous formula for
three nightriders (undoubtedly correct, though unproved) [9]. The fact that this agrees
with the number for three queens gave rise to Conjecture 5.7. Corollary III.4.3 on three
partial queens supports the conjecture.

6 Bounds on the period

Theorem 4.1 says nothing about the period of uP(q;n). We want to bound the period
by deriving the denominator from the plane geometry of B (which gives the boundary
inequalities) and from M (which gives the attack constraints).

Let the boundary inequalities (with integral coefficients) of the polygon B be ajx +
bjy 6 βj for 1 6 j 6 ω. The pieces have coordinate (column) vectors z1, z2, . . . , zq, which
must satisfy ajxi + bjyi 6 βj for all 1 6 i 6 q and 1 6 j 6 ω. Then the system Az = b in
Equation (6.1) contains all the equations that determine any one vertex of the inside-out
polytope (Bq,AP).

M −M 0 0 · · · 0 0
M 0 −M 0 · · · 0 0
...

...
...

... · · · ...
...

M 0 0 0 · · · 0 −M
0 M −M 0 · · · 0 0
0 M 0 −M · · · 0 0
...

...
...

... · · · ...
...

0 M 0 0 · · · 0 −M
...

...
...

... · · · ...
...

0 0 0 0 · · · M −M
B 0 0 0 · · · 0 0
0 B 0 0 · · · 0 0
...

...
...

... · · · ...
...

0 0 0 0 · · · 0 B




z1
z2
...
zq

 =



0
0
...
0
0
0
...
0
...
0

β
β
...
β



, (6.1)

where M and B are the matrices

M :=


m⊥1
m⊥2

...
m⊥|M|

 B :=


a1 b1
a2 b2
...

...
aω bω

 ,

containing the row vectors m⊥r , and where β is the column vector of constant terms
β1, . . . , βω. We define A′ to be the top half of A.

A fundamental fact from linear algebra is the following lemma.
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Lemma 6.1. The configuration z ∈ R2q is a vertex of the inside-out polytope (P,A ) if
and only if it is in the closed polytope P and there are k attack equations and 2q − k
boundary equations that uniquely determine z.

A vertex corresponds to a set of violated boundary and attack constraints that de-
termines uniquely (up to translation) a particular placement of q labelled pieces on the
lattice points contained in some integer dilate tB of the closed board.

6.1 Cramer’s rule and rectangular boards

Alternatively, we might investigate the system in Equation (6.1) directly as a matrix. It
follows by Cramer’s Rule and Lemma 6.1 that every denominator of an inside-out vertex
divides a 2q × 2q subdeterminant of A. The period of the counting quasipolynomial of
(Bq,AP) is a divisor of the least common multiple of all 2q × 2q subdeterminants of A.
This quantity is not so easy to determine, but for rectangular boards there is a way to
estimate it, if there are not too many moves.

For a rational rectangular board with sides on the axes, say for instance B = [0, a]×
[0, b], the dilation (n+ 1)B◦ contains integral points in an (na− 1)× (nb− 1) rectangle.
(This is not precisely what one wants of a rectangular board; the proportions should
remain fixed under dilation. However, it is what our method handles.) The augmented
matrix is

(
B β

)
=


−1 0 0
0 −1 0
1 0 a
0 1 b

 .

Rearranging the bottom half of A in (6.1), it takes the form

(
−I2q
I2q

)
. Consequently, for

a rectangular board the values of the 2q × 2q subdeterminants of A are the values of the
subdeterminants of any order of A′, the top half of A. Thus, the period of the counting
quasipolynomial divides lcmd(A′), the least common multiple of all subdeterminants of
A′. The value of lcmd(A′) is the only general theoretical bound we know for the period
without finding the denominator itself.

In general lcmd(A′) is difficult to compute. Two of us studied it and found a com-
putable formula that applies as long as the moves matrix M has up to two rows [6].
Observe that A′ is the Kronecker product HT

q ⊗M where HT
q (H is ‘Eta’) is the matrix

consisting of one row for each pair of different pieces, say i and j, in which all columns
are zero except for a 1 in the column of piece i and a −1 in that of piece j. Thus, Hq is
the oriented incidence matrix of the complete graph Kq, which is well known to be totally
unimodular with rank q− 1. In this situation we can calculate lcmd(A′) when M has two

rows by means of [6, Corollary 2], which in terms of M =

(
d1 −c1
d2 −c2

)
and HT

q states that,

for a piece with two moves,

lcmd(HT
q ⊗M) = lcm

(
(lcmdM)q−1,

bq/2c
LCM
p=1

∣∣∣ det

(
dp1 cp1
dp2 cp2

) ∣∣∣bq/2pc), (6.2)
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where LCMp denotes the least common multiple of all the terms for p in the indicated
range. We conclude that, for a piece with one or two moves on a rectangular board
with sides parallel to the axes, the period of oP(q;n) is a divisor of the right-hand side of
Equation (6.2). This applies, for example, to the bishop, where the right-hand side equals
2q (see [6]).

Unfortunately, this bound on the period is far from sharp (see Section 6.2) and, worse,
the theory of [6] does not apply to a matrix M with more than two rows, which means
a piece with more than two move directions. For such matrices, e.g., for the queen and
nightrider, we have to calculate the determinantal upper bound lcmd(A′) on the period
separately for each value of q. One hopes that Equation (6.2) can be generalized to m×2
matrices, though probably it is excessively complex when there are more than two moves.

In summary, the disadvantage of the lcmd bound is that it is weak; the advantage is
that it is explicit if P has one or two moves.

6.2 True periods and theoretical bounds

For a rider with the single move (c, d), the bound analogous to (6.2) is (lcmdM)q−1 =
| lcm(c, d)|q−1, which is 1 if cd = 0 and otherwise |cd|q−1. The true periods for q = 1, 2
are 1 and max(|c|, |d|), respectively, as shown in Part II. For move (c, d) = (1, 2), the true
periods for q 6 3 are respectively 1, 2, 2 while the bounds are 1, 2, 4.

For the bishop, the move matrix has lcmd(MB) = 2. It follows that the period of
uB(q;n) divides 2q−1. In Part V we prove that an upper bound on the period of uB(q;n) is
2, which rigorously establishes the period and consequently the correctness of Kotěšovec’s
quasipolynomial formulas. The proof relies on signed graph theory applied to the bishops
hyperplane arrangement AB. Table 6.1 shows descriptive data for nonattacking place-
ments of few bishops.

Unlike in the case of bishops, the period of the counting quasipolynomial uQ(q;n) for
q queens is not simple and we have no general formula. The denominator of the inside-
out polytope and the value of lcmd(M) can only be computed for very small values of q.
Again we see that lcmd(M) is a weak bound. Table 6.1 collects the known and conjectured
periods for queens.

For the nightrider, the move matrix has lcmd(MN) = 60 [6, Example 3], thus giving
the lcmd bound in the table. We calculated the denominator directly using Mathematica.
The difference is substantial.

7 Questions, Extensions

Work on nonattacking chess placements raises many questions, several of which have
general interest. We propose the following questions and directions, with others to come
in subsequent parts of this series.
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Bishop Period Denom lcmd

q = 1 1 1 1

2 1 1 2

3 2 2 4

4 2 2 8

5 2 2 16

6 2 2 32

Queen Period Denom. lcmd

q = 1 1 1 1

2 1 1 2

3 2 2 4

4 6* 6 24

5 60* — —

6 840† — —

7 360360‡ — —

Nightrider Period Denom lcmd

q = 1 1 1 1

2 2 2 60

3 60* 60 3600

4 — 14559745200 14290972303608000

Table 6.1: The period of the counting quasipolynomial for q bishops, queens, or nightriders
in an n× n square board, the denominator of the inside-out polytope, and (“lcmd”) the
determinantal upper bound on the period. Periods without denominators are unproved.

* is a number deduced from a formula in [9].
† is deduced from the formula of Karavaev ([7] and [12, Sequence A176186]).
‡ is deduced from the generating function in [12, Sequence A178721].

7.1 Combinatorial configuration types

We noticed that three queens and three nightriders have the same number of combinatorial
types of nonattacking configuration. The queen and nightrider also have the same number
of moves.

Question 7.1. Does the number of combinatorial types of nonattacking configuration
depend only on the number of moves? If so, what is the formula?

7.2 The number of symmetry types

We count nonattacking configurations assuming the board has a fixed orientation. If we
considered two configurations to be the same if they are equivalent under symmetries of
the board, the counting problem changes. Asymptotically one would expect the number
of symmetry types of nonattacking configuration of a piece P to be |AutB|−1uP(n), but
we do not have a proof even of this.
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7.3 The slope matroid

The slope matroid SMq(P) of order q of a piece P with basic move set (or for this pur-
pose, slope set) M is the matroid of the move arrangement A q

P that consists of all move
hyperplanes in R2q. It should be viewed as a matroid on the edge set of the slope graph
Σq(P). The problem is to describe the rank function and closed sets of the slope matroid.

We propose that the rules for closed sets are the same as the geometrical incidence
theorems about rational points and slopes. We cannot say exactly what that means, but
here is an example. Suppose we have slopes 1/0, 0/1, 1/1,−1/1. Consider the hyperplanes

H
0/1
12 ,H

0/1
34 ,H

1/0
13 ,H

1/0
24 ,H

1/1
14 . They force z1, z2, z4, z3 to be the corners of a square and

consequently we get H
−1/1
23 in their closure due to the necessary incidences of two pairs of

parallel lines and their 45◦ diagonals.
The ultimate goal is to automate the listing of closed subgraphs of SMq(M). Since

the automorphism groups and Möbius function can be computed automatically without
too much difficulty, that would enable automatic generation of formulas for uP(q;n) for
arbitrary sets of moves and large values of q. Since that goal requires knowing all rational
incidence theorems it is unlikely to be attainable except for relatively small q and M,
but M indeed is small for real pieces, and any understanding of small incidences would
enlarge the range of accessible values of q.

7.4 Riders versus non-riders

Kotěšovec’s many formulas are quasipolynomials only for riders. For all others he gets an
eventual polynomial, as in our analysis of pieces on a k × n board where k is fixed [4]. It
seems clear that the reason he does not get a quasipolynomial is that, with nonriders, not
all moves have unbounded distance, so Ehrhart theory does not apply. The reason he gets
an eventual polynomial is less apparent. We believe it is, in essence, that the count is the
number of ways to place a finite number of “tight” nonattacking configurations involving
a total of q pieces so that no two tight configurations overlap, each tight configuration
that can fit on the board contributes a polynomial to the total count, and for large n
the board is big enough that every possible tight configuration can fit. How to make this
intuitive statement precise is not precisely clear.

7.5 Varied moves

Our counting method extends to a much more general situation. For convenience we
assume distinguishable pieces, P1, . . . ,Pq. Think of the moves as attacks, and suppose
the basic attacks mij,r may depend on both the attacking piece Pi and the attacked piece
Pj. This may seem unrealistically general but it permits us to combine more than one
interesting type of situation. We form a move matrix Mij from the basic attacks of Pi on
Pj. Theorem 4.1 and the ensuing discussion of the period remains valid if we take A′ (the
upper half of the system in Equation (6.1)) to be the matrix in Equation (7.1).

The most realistic case is that where, as in chess, the moves (or attacks) do not depend
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A′ =



M12 −M12 0 0 · · · 0 0
M21 −M21 0 0 · · · 0 0
M13 0 −M13 0 · · · 0 0
M31 0 −M31 0 · · · 0 0

...
...

...
... · · · ...

...
M1q 0 0 0 · · · 0 −M1q

Mq1 0 0 0 · · · 0 −Mq1

0 M23 −M23 0 · · · 0 0
0 M32 −M32 0 · · · 0 0
0 M24 0 −M24 · · · 0 0
0 M42 0 −M42 · · · 0 0
...

...
...

... · · · ...
...

0 M2q 0 0 · · · 0 −M2q

0 Mq2 0 0 · · · 0 −Mq2
...

...
...

... · · · ...
...

0 0 0 0 · · · Mq−1,q −Mq−1,q
0 0 0 0 · · · Mq,q−1 −Mq,q−1



. (7.1)

on the piece being attacked. In that case, Mij = Mi, independent of j, and the matrix A′

becomes more similar to that of Equation (6.1).

7.6 Higher dimensions

It is tempting to apply the inside-out polytope method to boards of higher dimension such
as hypercubical boards B = (0, 1)d. However, pieces with multidimensional moves would
surely be much more difficult to treat. For two-dimensional moves mr, the orthogonal
vector m⊥r defines the move line so the attacking configurations in Rdq are determined by
a hyperplane; but when d > 2 a move line requires more than one equation to define it,
so the attacking configurations are determined by a subspace of codimension d− 1.

7.7 A generalization of total dual integrality?

The least common multiple of subdeterminants of the coefficient matrix of the attack
hyperplanes (that is, lcmd) turned out to be a very inefficient bound on the period, because
it is much larger than the least common denominator of all vertices. This reminds us of the
fact that there are totally dual integral matrices which are not totally unimodular; indeed
the analogy is close, since total unimodularity means the lcmd = 1. We suggest that a
worthy general question about an integral r × s matrix M is the relationship between
lcmdM and the least common denominator D of all lattice vertices of M , defined as
points z ∈ Rs determined by restrictions Az ∈ Zs where A is any nonsingular matrix
consisting of s rows of M . Though D may usually be much less than lcmdM , the cases
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of equality, being analogs of totally unimodular matrices, might be quite interesting.

Dictionary of Notation

a, b dimensions of rectangle (p. 4)
aj, bj coefficients of B boundary inequalities (p. 20)
(c, d), (cr, dr) coordinates of basic move (p. 8)
d/c slope of a line (p. 8)
d . . . . . . . . . . . . . . . . . . . . . . . degree of quasipolynomial (p. 6)
d dimension of polytope (p. 6)
ej coefficient of quasipolynomial (p. 6)
f(t) quasipolynomial function (p. 6)
fk(t) constituent of quasipolynomial (p. 6)
mr = (cr, dr),m = (c, d) . . basic move (p. 4)
m⊥r = (dr,−cr) orthogonal vector to mr (p. 8)
n+ 1 dilation factor for board (p. 4)
oP(q;n) # of nonattacking labelled configurations (p. 12)
p period of quasipolynomial (p. 6)
q . . . . . . . . . . . . . . . . . . . . . . . # of pieces on a board (p. 4)
r move index (p. 4)
t dilation (inflation) variable (p. 6)
uP(q;n) # of nonattacking unlabelled configurations (p. 12)
z = (x, y), zi = (xi, yi) piece position (p. 4)

z = (z1, . . . , zq) . . . . . . . . . configuration (p. 8)

α(U;n) attacking configuration count (p. 9)
βj constant in B boundary inequality (p. 20)
γi coefficient in uP (p. 13)
κ # of pieces involved in a subspace (p. 9)
µ . . . . . . . . . . . . . . . . . . . . . . . Möbius function of L (P◦,A ) (p. 7)
ν codimension of a subspace (p. 9)
ω # of boundary lines of B (p. 20)

A grand matrix in Eq. (6.1) (p. 20)
A′ matrix of equations of move hyperplanes (p. 20)
B matrix of coefficients of B boundary lines (p. 20)
C matrix of two moves (p. 17)
D . . . . . . . . . . . . . . . . . . . . . . denominator of (inside-out) polytope (p. 6)
EP Ehrhart quasipoly (p. 6)
E◦P open Ehrhart quasipolynomial (p. 6)
E◦P,A inside-out open Ehrhart quasipolynomial (p. 6)
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I identity matrix
Kq . . . . . . . . . . . . . . . . . . . . . complete graph (p. 21)
Lir list in configuration (p. 16)
M matrix of moves (p. 20)
N a variable counting lattice points (p. 13)

I, I0 walk in configuration space (p. 18)
M set of basic moves (p. 4)

A arrangement of hyperplanes (p. 5)
AP move arrangement of piece P (p. 8)
B,B◦ closed, open board polygon (p. 4)
Ck(f(n)) coefficient of nk in f(n) (p. 13)

H
d/c
ij , Hm

ij . . . . . . . . . . . . . . hyperplane for move (c, d) or m (p. 8)
L intersection semilattice (p. 5)
P, P◦ polytope, open polytope (p. 5)
(P,A ) inside-out polytope (p. 5)
R region of arrangement or of inside-out polytope (p. 5)
U . . . . . . . . . . . . . . . . . . . . . . subspace in intersection semilattice (p. 6)

Ũ essential part of U (p. 9)

W
d/c
ij... subspace of slope relation (p. 9)

W=
ij... subspace of equal position (p. 9)

Q rational numbers
R real numbers
R2q configuration space (p. 16)
Z . . . . . . . . . . . . . . . . . . . . . . integers

B bishop (p. 19)
N nightrider (p. 19)
P piece (p. 4)
Q queen (p. 19)
R . . . . . . . . . . . . . . . . . . . . . . rook (p. 19)

Γ̄j linear quasipolynomial (p. 13)
Hq incidence matrix of Kq (p. 21)
Σ,Σq slope graph (p. 10)

Aut(U) subspace automorphisms (p. 11)
codim(U) subspace codimension
dim(U) subspace dimension
SM slope matroid (p. 24)
vol(U ∩ P) . . . . . . . . . . . . . . polytope volume (p. 6)
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