
On the Typical Structure of Graphs
in a Monotone Property

Svante Janson∗ Andrew J. Uzzell†

Department of Mathematics
Uppsala University

P.O. Box 480
SE-751 06 Uppsala, Sweden

{svante.janson,andrew.uzzell}@math.uu.se

Submitted: Apr 9, 2014; Accepted: Aug 20, 2014; Published: Aug 28, 2014
Mathematics Subject Classifications: 05C75, 05C80, 05C30

Abstract

Given a graph property P, it is interesting to determine the typical structure
of graphs that satisfy P. In this paper, we consider monotone properties, that is,
properties that are closed under taking subgraphs. Using results from the theory of
graph limits, we show that if P is a monotone property and r is the largest integer
for which every r-colorable graph satisfies P, then almost every graph with P is
close to being a balanced r-partite graph.
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1 Introduction and main results
Given a graph property P , it is natural to study the structure of a typical graph that
satisfies P . A graph property is monotone if it is closed under taking subgraphs and
hereditary if it is closed under taking induced subgraphs. Thus, every monotone property
is also hereditary. Many authors have studied the structure of typical graphs in various
hereditary properties—see, e.g., [1, 3, 7, 8, 9, 11], as well as the survey [4]. In this note, we
use results from graph limit theory to study the structure of a typical graph in a general
monotone property.

Before stating our main result, let us recall certain basic notions of graph limit theory.
For more details, see, e.g., [5, 6, 13], as well as the monograph [12]. Here, we simply recall
that certain sequences of graphs are defined to be convergent. A convergent sequence has
a limit, called a graph limit, which is unique if it exists.
∗Partly supported by the Knut and Alice Wallenberg Foundation.
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Lovász and Szegedy [13] showed that a graph limit Γ may be represented by a graphon,
a symmetric, measurable function W : [0, 1]2 → [0, 1]. (So, abusing notation slightly, we
will sometimes write Gn → W if the sequence {Gn}∞n=1 converges to the graph limit Γ
represented by W .) More than one graphon may represent the same graph limit; we say
that the graphons W1 and W2 are equivalent, and write W1

∼= W2, if they represent the
same graph limit.

Let X1, X2, . . . be i.i.d. uniformly distributed random variables in [0, 1]. Given a
graphonW , theW -random graph G(n,W ) is a graph with vertex set [n] in which vertices
i and j are adjacent with probability W (Xi, Xj), independently of all other edges.

Let h(x) = −x log2(x)− (1− x) log2(1− x) denote the binary entropy function. The
entropy of a graphon W is

Ent(W ) =

∫ 1

0

∫ 1

0

h
(
W (x, y)

)
dµ(x)dµ(y),

where µ denotes the Lebesgue measure. As noted in [9], if W1
∼= W2, then Ent(W1) =

Ent(W2). In other words, entropy is a property of a graph limit, rather than of the
graphon that represents it. Thus, we may define the entropy Ent(Γ) of a graph limit Γ to
be the entropy of any graphon that represents it.

Hatami, Janson, and Szegedy [9] posed the question of which graphons may arise as
limits of sequences of graphs with a given property P . In addition to the intrinsic interest
of this question, it turns out that if P is hereditary, then certain limits of sequences of
graphs in P (namely, those with maximum entropy) give a great deal of information about
the number and typical structure of graphs in P . (We do not distinguish between a graph
property and the class of graphs with that property.) In order to state these results, we
need to introduce more notation.

Let Un denote the set of unlabeled graphs on n vertices and let Ln denote the set of
labeled graphs with vertex set [n]. Given a graph property P , we let Pn = P ∩Un denote
the set of unlabeled elements of P with n vertices and let PLn denote the set of labeled
elements of P with vertex set [n]. The function n 7→ |Pn| is called the (unlabeled) speed
of P ; the labeled speed is defined similarly. Observe that∣∣Pn∣∣ 6 ∣∣PLn ∣∣ 6 n!

∣∣Pn∣∣. (1)

Given a graph property P , we let P̂ denote the set of graph limits of sequences in P .
We furthermore let P̂∗ denote the set of elements of P̂ of maximum entropy, i.e.,

P̂∗ =

{
Γ ∈ P̂ : Ent(Γ) = max

Γ′∈P̂
Ent(Γ′)

}
.

We will also use these symbols to refer to the set of graphons (respectively, the set of
maximum-entropy graphons) representing limits of sequences in P . It is shown in [9] that
if P is hereditary (and not finite), then maxΓ∈P̂ Ent(Γ) is achieved—in other words, P̂∗ is
nonempty.
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In [9, Theorem 1.6], Hatami, Janson, and Szegedy showed that if a hereditary prop-
erty P has a single graph limit Γ of maximum entropy, then a typical element of P is
close to Γ (in terms of the standard cut metric on the space of graph limits).

Theorem 1. Suppose that P is a hereditary property and that maxΓ∈P̂ Ent(Γ) is attained
by a unique graph limit ΓP . Then

(i) if Gn ∈ Un is a uniformly random unlabeled element of Pn, then Gn converges in
probability to ΓP as n→∞;

(ii) if Gn ∈ Ln is a uniformly random labeled element of PLn , then Gn converges in
probability to ΓP as n→∞.

Now we define a special class of graphons. All of these graphons will be defined on
[0, 1)2, rather than on [0, 1]2; it is easy to see that this change is immaterial. Given r ∈ N
and i ∈ [r], let Ii = [(i − 1)/r, i/r) and let Er = ∪i 6=jIi × Ij. We also let E∞ = [0, 1)2.
Given r ∈ N ∪ {∞}, we let Rr denote the set of graphons W such that W (x, y) = 1/2 if
(x, y) ∈ Er and W (x, y) ∈ {0, 1} otherwise. It is easy to see that if W ∈ Rr, then

Ent(W ) =

∫∫
Er

h(1/2) dµ(x)dµ(y) = µ(Er) = 1− 1

r
.

For r ∈ N and 0 6 s 6 r, we let W ∗
r,s denote the graphon in Rr that equals 1 on Ii × Ii

for i 6 s and equals 0 on Ii × Ii for s+ 1 6 i 6 r. Observe that R∞ consists only of the
graphon that equals 1/2 everywhere on [0, 1)2; for notational convenience, we denote this
graphon by W ∗

∞,0.
Given r ∈ N and 0 6 s 6 r, we let C(r, s) denote the class of graphs whose vertex sets

can be partitioned into s (possibly empty) cliques and r−s (possibly empty) independent
sets. In particular, C(r, 0) is the class of r-colorable graphs. Observe that for each r and s,
the class C(r, s) is hereditary, and that C(r, 0) is monotone.

It is shown in [9, Theorem 1.9] that if P is a hereditary property, then the maximum
entropy of an element of P̂ takes one of countably many values, and furthermore that this
value determines the asymptotic speed of Pn.

Theorem 2. If P is a hereditary property, then there exists r ∈ N ∪ {∞} such that
maxΓ∈P̂ Ent(Γ) = 1− 1/r and such that every graph limit Γ ∈ P̂∗ can be represented by a
graphon W ∈ Rr. Moreover,

|Pn| = 2

(
1− 1

r
+o(1)

)
(n
2).

Given a graph F , we say that a graph G is F -free if no subgraph of G is isomorphic
to F . Given a (possibly infinite) family of graphs F , we say that G is F-free if it is
F -free for every F ∈ F . Observe that for any family F , the class of F -free graphs is
monotone. (Conversely, every monotone class P equals the class of F -free graphs for
some family F—for example, F = U \ P .) We write Forb(F) for the class of F -free
graphs and write Forb(F ) when F = {F}. Note in particular that Forb(∅) equals the
class of all unlabeled finite graphs, which we denote by U .
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The coloring number of a family of graphs F is

col(F) = min
F∈F

χ(F ).

In particular, we define
col(∅) =∞. (2)

Our main result says that if col(F) = r + 1, then a typical element of Forb(F) resembles
a balanced r-partite graph in which cross-edges are present independently with probabil-
ity 1/2.

Theorem 3. Let F be a family of graphs and let r = col(F) − 1. If P = Forb(F),
then as n tends to ∞, a sequence of uniformly random unlabeled (respectively, labeled)
elements of Pn (respectively, elements of PLn ) converges in probability to the graph limit Γr
represented by W ∗

r,0.

Note that the quantity r in the statement of the theorem also equals the largest
integer t for which every t-colorable graph is in Forb(F).

It follows from Theorems 2 and 3 that if col(F) = r + 1 then∣∣Forb(F)n
∣∣ = 2

(
1− 1

r
+o(1)

)
(n
2), (3)

which was first shown in [7]. Let us also note that Balogh, Bollobás, and Simonovits [2]
obtained a fairly sharp bound on the error term in (3).

Remark 4. The proof of Theorem 3 shows that if r = col(F) − 1 and P = Forb(F),
then W ∗

r,0 is the unique maximum-entropy element of P̂ . For certain families F , it is also
possible to describe the set of all F -free graph limits. For example, the set of limits of
bipartite graphs is determined in [9, Example 2.1], and a very similar argument holds for
r-partite graphs when r > 3. However, we know of no representation of the set of all
F -free graph limits for arbitrary F .
Remark 5. Erdős, Frankl, and Rödl [7] showed that if χ(F ) = r + 1, then every F -free
graph G may be made Kr+1-free by removing o(n2) edges from G. This result is similar in
spirit to Theorem 3, but we see no direct implication: if {Gn}∞n=1 is a sequence of uniformly
random F -free graphs and {G′n}∞n=1 is the sequence of resulting Kr+1-free graphs, then
the distribution of G′n need not be uniform in Forb(Kr+1)n.

Remark 6. Theorem 3 says that if col(F) = r+1 then almost every (labeled or unlabeled)
F -free graph is close to a balanced r-partite graph. (Conversely, every r-partite graph
is trivially F -free.) In the case of labeled graphs, Prömel and Steger [14] proved a much
stronger result for a specific class of monotone properties: they characterized the graphs F
for which almost every labeled F -free graph is (χ(F )− 1)-partite. Given a graph F , we
say that e ∈ E(F ) is critical if χ(F − e) < χ(F ). Prömel and Steger showed that if
χ(F ) = r + 1 then ∣∣Forb(F )Ln

∣∣ =
(
1 + o(1)

)∣∣C(r, 0)Ln
∣∣
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if and only if F contains a critical edge. They also showed that if F does not contain a
critical edge, then there exists a constant cr > 0 not depending on F such that∣∣Forb(F )Ln

∣∣ > crn
∣∣C(r, 0)Ln

∣∣ (4)

for all n sufficiently large. Theorem 3 shows that if F is any family of graphs with
col(F) = r + 1, then Forb(F)L and C(r, 0)L have roughly the same asymptotic speed.
Note that this result does not contradict (4) when F = {F} and F does not contain a
critical edge: if χ(F ) = r+ 1, then, in view of (1) and (3), Theorem 3 implies the weaker
statement that |Forb(F )Ln | and |C(r, 0)Ln | differ by a factor of 2o(n

2).

2 Proof of Theorem 3
Lemma 7. Let P be a monotone property and let W ∈ P̂. If W ′ is a graphon such that
W ′ 6 W pointwise, then W ′ ∈ P̂.

Proof. Consider the sequences of random graphs {G(n,W )}∞n=1 and {G(n,W ′)}∞n=1. Since
W ′ 6 W pointwise, a standard argument shows that the two sequences can be coupled
so that for each n, G(n,W ′) ⊆ G(n,W ) almost surely. It is shown in [10, Theorem 3.1]
that if W ∈ P̂ then, for each n, G(n,W ) ∈ P almost surely. It follows that for each n, we
almost surely have G(n,W ′) ∈ P , as well. Finally, it is shown in [5, Theorem 4.5] that
G(n,W ′)→ W ′ almost surely as n→∞, which implies that W ′ ∈ P̂ , as claimed.

Now we prove our main result, Theorem 3.

Proof of Theorem 3. We begin by showing that, up to equivalence of graphons, P̂ contains
a unique element of maximum entropy. By Theorem 2, there exists t ∈ N ∪ {∞} such
that P̂∗ ⊆ Rt up to equivalence of graphons.

First, suppose that t < ∞. Observe that if W ∈ P̂∗ ∩ Rt, then W > W ∗
t,0 pointwise,

which by Lemma 7 implies that W ∗
t,0 ∈ P̂∗. We claim that, up to equivalence of graphons,

W ∗
t,0 is in fact the only maximum-entropy element of P̂ . Indeed, let W ′ ∈ P̂∗ ∩ Rt and

suppose that µ(W ′ = 1) > 0. But then Lemma 7 implies that min{W ′, 1/2} is a graphon
in P̂ with entropy strictly larger than 1− 1/t, which contradicts the definition of t.

Now we show that t = col(F) − 1 = r. Suppose that t < ∞. It is observed in [9,
Remark 1.10] that if P is hereditary and 0 6 s 6 r < ∞, then W ∗

r,s ∈ P̂ if and only if
C(r, s) ⊆ P . By the definition of col(F), it is easy to see that if u 6 r, then C(u, 0) ⊆ P
and hence W ∗

u,0 ∈ P̂ . On the other hand, F contains some element of C(r + 1, 0), which
implies that C(r+ 1, 0) * P . This implies that W ∗

u,0 /∈ P̂ when u > r+ 1, and hence that
t = r.

If t =∞, then we claim that P = Forb(∅) = U ; the conclusion then follows from (2).
Suppose to the contrary that P does not contain some graph F . Then C(χ(F ), 0) * P ,
which implies that W ∗

χ(F ),0 /∈ P̂ . However, W ∗
χ(F ),0 6 W ∗

∞,0 pointwise, so Lemma 7 implies
that W ∗

∞,0 /∈ P̂ , which is a contradiction.
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Finally, since P is a hereditary property, it follows from Theorem 1 that a uniformly
random (labeled or unlabeled) element of P converges in probability to Γr, as claimed.
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