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Abstract

We give a Laurent series proof of the Habsieger-Kadell q-Morris identity, which
is a common generalization of the q-Morris identity and the Aomoto constant term
identity. The proof allows us to extend the theorem for some additional parameter
cases.
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1 Introduction

This paper is closely related to the well-known Dyson’s ex-conjecture. The conjecture
was made by Freeman Dyson in 1962 when studying statistical theory of energy levels of
complex systems [7].

Theorem 1.1. For nonnegative integers a0, . . . , an,

CT
x

∏
06i<j6n

(
1− xi

xj

)ai(
1− xj

xi

)aj
=

(a0 + · · ·+ an)!

a0!a1! · · · an!
, (1.1)

where CTx f(x) means to take the constant term in the Laurent expansion of f(x) in the
powers of x0, x1, . . . , xn.
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Dyson’s ex-conjecture has been proved by many authors using different methods. See,
e.g., [8, 10, 11, 21, 22]. Many variations of Dyson’s ex-conjecture have been found, such
as the famous Macdonald constant term conjectures [6, 17]. Some of them are still not
solved. See, e.g., [4, 5].

The q-analogous of the Dyson conjecture was made by Andrews [1] in 1975.

Theorem 1.2 (Zeilberger-Bressoud). For nonnegative integers a0, a1, . . . , an,

CT
x

∏
06i<j6n

(
xi
xj

)
ai

(
xj
xi
q

)
aj

=
(q)a0+a1+···+an

(q)a0(q)a1 · · · (q)an
,

where (z)m := (z;q)∞
(zqm;q)∞

= (1− z)(1− zq) · · · (1− zqm−1).

Almost all methods for Dyson’s ex-conjecture fail to extend for the q version. Up
to now, only three different methods succeeded: the combinatorial proof in [23], the
short proof in [9] using iterated Laurent series, and the one page proof in [14] using the
Combinatorial Nullstellensatz. The methods apply to some constant terms of similar
type.

In this paper we study the Habsieger-Kadell q-Morris identity, an important variation
of the equal parameter case of the q-Dyson theorem. The original identity studies the
constant term of the following Laurent polynomial for m+ l 6 n:

Aq(x0, x1, . . . , xn; a, b, k,m, l)

=
n∏
i=1

(qχ(i6m)x0
xi

)
a−χ(i6m)

(qχ(i>m)xi
x0

)
b+χ(i6m)+χ(i>n−l+1)

∏
16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k
, (1.2)

where the expression χ(S) is 1 if the statement S is true, and 0 otherwise.
In giving a Laurent series proof of the Habsieger-Kadell q-Morris identity, we are able

to establish a unified formula that also works for the additional cases m + l > n. The
result is stated as follows, where the additional boldfaced part χ(i > 2n−m− l) is only
effective when m+ l > n.

Theorem 1.3. For nonnegative integers a, b, k,m, l satisfying m, l < n, we have

CT
x
Aq(x0, x1, . . . , xn; a, b, k,m, l) = Mn(a, b, k,m, l; q), (1.3)

where

Mn(a, b, k,m, l; q) =
n−1∏
i=0

(q)a+b+ik+χ(i>n−l)(q)(i+1)k

(q)a+ik−χ(i<m)(q)b+ik+χ(i>n−m−l)+χ(i>2n−m−l)(q)k
. (1.4)

The m = l = 0, q = 1 case of the result is the Morris identity, which is equivalent
to the well-known Selberg integral [19]. In his thesis [18] Morris established the identity
and conjectured the q-analogous identity. The q-Morris identity, or the m = l = 0 case,
was proved by Habsieger [12] and later by Zeilberger [24]. The m = 0, q = 1 case of the
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result, called the Aomoto identity, was constructed by Aomoto [3]. By extending Aomoto’s
method Kadell [13] constructed the m+ l 6 n case, in the same year of Habsieger’s proof.
As far as we know, the m+ l > n case was not considered before.

Our approach is by extending the proof of the Aomoto identity in [8]. The basic idea
is to regard both sides of (1.3) as polynomials in qa of degree at most d = nb+m+l. Then
to show the equality of the two polynomials, it is sufficient to show that they are equal
at d+ 1 points. Note that this basic idea was used by Habsieger for q-Selberg integral in
[12]. The equality at the d vanishing points are not hard to handle by the techniques in
[9, 16]. But in this approach, we have to deal with two problems: i) the multiple roots
problem for small k; ii) the d+ 1-st suitable point is hard to find. We handle the former
problem by a rationality result of Stembridge, and the latter problem by a hard searching
process.

We present the major steps of our proof in Section 2. The steps are expanded by the
rationality result in Section 3, by the proof of the vanishing lemma in Section 4, and by
the proof for the extra point in Section 5.

While we were finishing the presented work, the one page proof of the q-Dyson theorem
was published. Moreover, Károlyi and Nagy [15] gave a generalization of Theorem 1.3 in
the m = 0 case using the Combinatorial Nullstellensatz. The two approaches are different
but have some connections.

2 Proof of the Habsieger-Kadell q-Morris identity

Following notations in the introduction, we may assume that 0 6 m, l < n by the following
argument. If m > n then

Aq(x0, . . . , xn; a, b, k,m, l) =
n∏
i=1

(qx0
xi

)
a−1

(xi
x0

)
b+1+χ(i>n−l+1)

∏
16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k
,

which is just Aq(x0q, . . . , xn; a− 1, b+ 1, k, 0, l). Then by substituting x0 by x0/q, we can
see that the constant term is Mn(a − 1, b + 1, k, 0, l; q). The case l > n is similar: we
observe that Aq(x0, . . . , xn; a, b, k,m, l) can be rewritten as Aq(x0, . . . , xn; a, b+1, k,m, 0).

Let us rewrite M(qa, qk) = Mn(a, b, k,m, l; q) as

M(qa, qk) =
(q)nk
(q)nk

·
m−1∏
i=0

(1− qa+ik) ·
n−1∏
i=n−l

(1− qa+ik+b+1)

·
n−1∏
i=0

(1− qa+ik+1)(1− qa+ik+2) · · · (1− qa+ik+b)(q)ik
(q)b+ik+χ(i>n−m−l)+χ(i>2n−m−l)

. (2.1)

We have the following characterization.

Lemma 2.1. For fixed b, n ∈ N and 0 6 m, l < n, M(qa, qk) is uniquely determined by
the following three properties.
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1. M(qa, qk)(q)nk/(q)nk is a polynomial in qa of degree nb + m + l, whose coefficients
are rational functions in qk and q.

2. For any k > b+ 1, M(q−ξ, qk) = 0 if ξ belongs to one of the following three sets:

D1 ={0, k, . . . , (m− 1)k};
D2 ={(n− l)k + b+ 1, (n− l + 1)k + b+ 1 . . . , (n− 1)k + b+ 1}; (2.2)

D3 ={ik + 1, ik + 2 . . . , ik + b | i = 0, . . . , n− 1}.

3. For any k > b + 1 we have M(q−(n−l−1)k−b−1, qk) = Mn(−(n − l − 1)k − b −
1, b, k,m, l; q).

Proof. Assume M ′(qa, qk) also satisfies the above three properties. Then for every ξ ∈
Di, i = 1, 2, 3 or ξ = (n− l − 1)k + b+ 1,

M(q−ξ, qk)(q)nk/(q)nk = M ′(q−ξ, qk)(q)nk/(q)nk, for all k > b+ 1.

Since both sides are rational functions in qk and they agree at infinitely many points, they
are identical as rational functions.

Now as polynomials in qa, whose coefficients are rational functions in qk and q,
M(qa, qk)(q)nk/(q)nk agrees with M ′(qa, qk)(q)nk/(q)nk at nb + m + l + 1 distinct ξ’s as
above, they must be equal to each other.

Note that the condition k > b+1 can not be dropped, since D3 has duplicate elements
when k 6 b− 1, and D3 or D2 intersects D1 if k = b or k = b+ 1.

Denote by M ′
n(a, b, k,m, l; q) the left-hand-side of (1.3). Then Theorem 1.3 will follow

by induction on n if we can show the following three lemmas, whose proofs will be given
in later sections.

Lemma 2.2. For fixed b, n ∈ N and 0 6 m, l < n, M ′
n(a, b, k,m, l; q)(q)nk/(q)nk is a

polynomial in qa of degree at most nb+m+ l, whose coefficients are rational functions in
qk and q.

Since M ′
n(a, b, k,m, l; q) is a polynomial in qa, the definition of a can be extended for

all integers, in particular for negative integers a.

Lemma 2.3 (Vanishing Lemma). For fixed b, n ∈ N, and 0 6 m, l < n, and k > b + 1,
M ′

n(−h, b, k,m, l; q) vanishes when h equals one of the values in (2.2).

Remark 2.4. At this stage we can already claim the truth of Theorem 1.3 for m =
0. In this case D1 is empty, so that we can choose a = 0 as the extra point. Then
M ′

n(0, b, k, 0, l; q) reduces to M ′
n(0, 0, k, 0, 0; q), and the equal parameter case of the q-

Dyson theorem applies.

Lemma 2.5. For fixed b, n ∈ N, and 0 6 m, l < n, and k > b+ 1, if we assume Theorem
1.3 holds for smaller values of n, then M ′

n(−h, b, k,m, l; q) = Mn(−h, b, k,m, l; q) when
h = (n− l − 1)k + b+ 1.

The extra point in the above lemma is found through a hard searching process. It is
a surprise for this special h: the constant term M ′

n(−h, b, k,m, l; q) reduces to a single
constant term that can be evaluated by Remark 2.4 or the hypothesis.

the electronic journal of combinatorics 21(3) (2014), #P3.38 4



3 The polynomial-rational characterization

To prove Lemma 2.2, we need the the following rationality result, which is implicitly due
to J.R. Stembridge [20], as can be seen from the proof. The q = 1 case of this result is
the equal parameter case of [8, Proposition 2.4].

Proposition 3.1. For any n ∈ N and α = (α1, . . . , αn) ∈ Zn with
∑

16i6n αi = 0, we
have

[xα]
∏

16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k

=
(q)nk
(q)nk

·Rn(qk, q;α). (3.1)

where Rn(qk, q;α) is a rational function in qk and q, and [xα] refers to take the coefficient
of xα1

1 · · ·xαn
n in the polynomial.

Proof. In [20, Equation 44] Stembridge gave the following equation (set z = qk)

[xα]
∏

16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k

=
1

(q)nk−1

∑
S

±(−qk)|S|Cn[S](qk, q), (3.2)

where the summation is taken over some elements whose number is bounded by a function
of n and Cn[S](qk, q) is a formal power series in qk and q.

By [20, Corollary 3.3] we know that

Cn[∅](qk, q) =
(q)nk

(1− qk)(1− q2k) · · · (1− qnk)
. (3.3)

In [20, Page 334, Line 33] Stembridge stated that Cn[λ](qk, q) is of the form fλ(q
k, q) ·

Cn[∅](qk, q) for some rational function fλ. Therefore, combining with (3.2) and (3.3) we
get

[xα]
∏

16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k

=
(q)nk

(q)nk−1(1− qk) · · · (1− qnk)
∑
S

±(−qk)|S|fS(qk, q). (3.4)

The desired rational function is then given by

Rn(qk, q;α) =
(1− qk)n

(1− qk)(1− q2k) · · · (1− qnk)
∑
S

±(−qk)|S|fS(qk, q).

Proof of Lemma 2.2. When regarded as Laurent series in x0, the equality(
x0
xi

)
a

(
xi
x0
q

)
b

= q(
b+1
2 )
(
−xi
x0

)b(
x0
xi
q−b
)
a+b
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can be easily shown to hold for all integers a. Rewrite M ′
n(a, b, k,m, l; q) as

CT
x

n∏
i=1

q(
b∗i +1

2 )
(
−xi
x0

)b∗i+χ(i6m)(
x0
xi
q−b

∗
i

)
a+b∗i

∏
16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k
, (3.5)

where b∗i = b+ χ(i > n− l + 1).
The well-known q-binomial theorem [2, Theorem 2.1] is the identity

(bz)∞
(z)∞

=
∞∑
k=0

(b)k
(q)k

zk. (3.6)

Setting z = uqn and b = q−n in (3.6), we obtain

(u)n =
(u)∞

(uqn)∞
=
∞∑
k=0

qk(k−1)/2
[
n

k

]
(−u)k (3.7)

for all integers n, where
[
n
k

]
= (q)n

(q)k(q)n−k
is the q-binomial coefficient.

Using (3.7), we see that for 1 6 i 6 n,

q(
b∗i +1

2 )
(
− xi
x0

)b∗i+χ(i6m)(x0
xi
q−b

∗
i

)
a+b∗i

=
∑
ki>0

C(ki)

[
a+ b∗i
ki

]
x
ki−b∗i−χ(i6m)
0 x

b∗i+χ(i6m)−ki
i ,

where C(ki) = (−1)ki+b
∗
i+χ(i6m)q(

b∗i +1

2 )+(ki
2 )−kib∗i .

Expanding the first product in (3.5) and taking constant term in x0, we see that, by
Proposition 3.1, M ′

n(a, b, k,m, l; q) becomes

∑
k

n∏
i=1

[
a+ b∗i
ki

]
CT

x1,...,xn
L(x1, . . . , xn;k) =

(q)nk
(q)nk

∑
k

n∏
i=1

[
a+ b∗i
ki

]
Rn(qk, q;k), (3.8)

for some rational functions Rn(qk, q;k) in qk and q, where

L(x1, . . . , xn;k) =q(n−l)(
b+1
2 )+l(b+2

2 )+
∑n

i=1 (ki
2 )−b

∑n−l
i=1 ki−(b+1)

∑n
i=n−l+1 ki

·
m∏
i=1

x
b∗i+1−ki
i

n∏
i=m+1

x
b∗i−ki
i

∏
16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k

(3.9)

is a Laurent polynomial in x1, . . . , xn independent of a and the sum ranges over all se-
quences k = (k1, . . . , kn) of nonnegative integers satisfying k1 +k2 + · · ·+kn = nb+m+ l.
Since

[
a+b∗i
ki

]
is a polynomial in qa of degree ki, each summand in (3.8) is a polynomial in

qa of degree at most k1 + k2 + · · ·+ kn = nb+m+ l, and so is the sum.
The coefficients of M ′

n(a, b, k,m, l; q)(q)nk/(q)nk in qa are clearly rational functions in
qk and q.
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4 Proof of the vanishing lemma

We will follow notations in [9, 16], where different versions of the vanishing lemma were
proposed for dealing with q-Dyson related constant terms. The new vanishing lemma will
be handled by the same idea but we have to carry out the details. We will include some
basic ingredients for readers’ convenience.

In this section, we let K = C(q), and assume that all series are in the field of iterated
Laurent series K((xn))((xn−1)) · · · ((x0)). The reason for choosing K((xn))((xn−1)) · · · ((x0))
as a working field has been explained in [9].

We emphasize that the field K((xn))((xn−1)) · · · ((x0)) include the field of rational func-
tions as a subfield, so that every rational function is identified with its unique iterated
Laurent series expansion. The series expansions of 1/(1 − qkxi/xj) will be especially
important.

1

1− qkxi/xj
=
∞∑
l=0

qklxlix
−l
j , if i < j,

1

1− qkxi/xj
=

1

−qkxi/xj(1− q−kxj/xi)
=
∞∑
l=0

−q−k(l+1)x−l−1i xl+1
j , if i > j.

The constant term of the series F (x) in xi, denoted by CTxi F (x), is defined to be the
sum of those terms in F (x) that are free of xi. It follows that

CT
xi

1

1− qkxi/xj
=

{
1, if i < j,

0, if i > j.
(4.1)

We shall call the monomial M = qkxi/xj small if i < j and large if i > j. Thus the
constant term in xi of 1/(1−M) is 1 if M is small and 0 if M is large.

Constant term operators defined in this way has the important commutativity prop-
erty:

CT
xi

CT
xj
F (x) = CT

xj
CT
xi
F (x).

The degree of a rational function of x is the degree in x of the numerator minus the
degree in x of the denominator. For example, if i 6= j then the degree of 1 − xj/xi =
(xi − xj)/xi is 0 in xi and 1 in xj. A rational function is called proper (resp. almost
proper) in x if its degree in x is negative (resp. zero).

Let

F =
p(xk)

xdk
∏m

i=1(1− xk/αi)
(4.2)

be a rational function of xk, where p(xk) is a polynomial in xk, and the αi are distinct
monomials, each of the form xtq

s. Then the partial fraction decomposition of F with
respect to xk has the following form:

F = p0(xk) +
p1(xk)

xdk
+

m∑
j=1

1

1− xk/αj

(
p(xk)

xdk
∏m
i=1,i 6=j(1− xk/αi)

)∣∣∣∣∣
xk=αj

, (4.3)
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where p0(xk) is a polynomial in xk, and p1(xk) is a polynomial in xk of degree less than
d.

The following lemma has appeared in [16].

Lemma 4.1. Let F be as in (4.2) and (4.3). Then

CT
xk
F = p0(0) +

∑
j

(
F (1− xk/αj)

)∣∣∣
xk=αj

, (4.4)

where the sum ranges over all j such that xk/αj is small. In particular, if F is proper
in xk, then p0 = 0; if F is almost proper in xk, then p0(xk) = (−1)m

∏m
i=1αi LCxk p(xk),

where LCxk means to take the leading coefficient with respect to xk.

The following lemma plays an important role in our argument.

Lemma 4.2. Let k, b and k1, . . . , ks be nonnegative integers. Then for any k1, . . . , ks with
0 6 ki 6 (s − 1)k + b + 1 for all i, either 0 6 ki 6 b for some i, or 1 − k 6 kj − ki 6 k
for some i < j, except only when ki = (s− i)k + b+ 1 for i = 1, . . . , s.

Proof. Assume k1, . . . , ks to satisfy that for all i, b < ki 6 (s − 1)k + b + 1, and for all
i < j, either kj − ki > k or kj − ki 6 −k. Then we need to show that ki = (s− i)k+ b+ 1
for i = 1, . . . , s.

Let [b, c] denote the set {b, b+ 1, . . . , c} for integers b 6 c. Under the hypothesis of the
first paragraph, the integers ki are s points at distance at least k in an interval of length
(s− 1)k, namely [b+ 1, b+ 1 + (s− 1)k]. Thus, there exists some permutation σ such that
kσ(i) = b + 1 + (s− i)k. For i = 1, . . . , s− 1, we have kσ(i+1) − kσ(i) = −k, which implies
σ(i+ 1) > σ(i). This can only occur when σ is the identity permutation.

Let

Q(h) =
m∏
i=1

(
xi/x0

)
b+1+χ(i>n−l+1)

(1− x0/xi) · · · (1− x0/(xiqh))

n∏
i=m+1

(
xiq/x0

)
b+χ(i>n−l+1)

(1− x0/(xiq)) · · · (1− x0/(xiqh))

·
∏

16i<j6n

(xi
xj

)
k

(xj
xi
q
)
k
. (4.5)

By Lemma 2.2, we know that M ′
n(a, b, k,m, l; q) is a polynomial in qa, so the definition of

a can be extended to negative integers. Then, since (u)n = (u)∞/(uq
n)∞ for all integers

n, we have
M ′

n(−h, b, k,m, l; q) = CT
x
Q(h).

The vanishing lemma says that CTxQ(h) = 0 for every h in (2.2).
We attack the vanishing lemma by repeated application of Lemma 4.1. This will give a

big sum of terms, each will be detected to be 0 by Lemma 4.2. This is better summarized
in the following Lemma 4.3. To state the lemma, we need more notations.
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For any rational function F of x0, x1, . . . , xn, and for sequences of integers k =
(k1, k2, . . . , ks) and r = (r1, r2, . . . , rs) let Er,kF be the result of replacing xri in F with
xrsq

ks−ki for i = 0, 1, . . . , s − 1, where we set r0 = k0 = 0. Then for 0 < r1 < r2 < . . . <
rs 6 n and 0 6 ki 6 h, we define

Q(h | r;k) = Q(h | r1, . . . , rs; k1, . . . , ks) = Er,k

[
Q(h)

s∏
i=1

(1− x0
xriq

ki
)

]
. (4.6)

Note that the product on the right hand side of (4.6) cancels all the factors in the de-
nominator of Q that would be taken to zero by Er,k. If ki = 0 for some i and ri 6 m,
then Q(h | r;k) has the factor Er,k[(xri/x0)b+1+χ(ri>n−l+1)] = 0. If ki = 0 for some i and
ri > m, by the definition of Q(h | r;k) in (4.6), the factor 1−x0/xri appears in Q(h | r;k),
but it cancels nothing in the denominator of Q(h). Thus it would be taken to zero by
Er,k and Q(h | r;k) = 0. Therefore, if ki = 0 for some i, then Q(h | r;k) = 0.

As a warm up, it is easy to check that Q(h) is proper in x0 with degree −nh − m.
Thus applying Lemma 4.1 gives

CT
x0
Q(h) =

∑
16r1,16m
06k1,16h

Q(h | r1,1; k1,1) +
∑

m+16r2,16n
16k2,16h

Q(h | r2,1; k2,1). (4.7)

Since Q(h | r1,1; 0) = 0, we can rewrite (4.7) as

CT
x0
Q(h) =

∑
16r16n
16k16h

Q(h | r1; k1). (4.8)

This formula is compatible with the following lemma if we treat Q(h) = Q(h | ∅;∅).

Lemma 4.3. The rational functions Q(h | r;k) have the following two properties:

(i) If 0 6 ki 6 (s−1)k+b+χ(s > n−l+1) for all i with 1 6 i 6 s, then Q(h | r;k) = 0.

(ii) Suppose k > b+ 1 and h ∈ D1

⋃
D2

⋃
D3

⋃
{(n− l− 1)k+ b+ 1}. If ki > (s− 1)k+

b+ χ(s > n− l + 1) for some i with 1 6 i 6 s and n > s, then

CT
xrs

Q(h | r;k) =
∑

rs<rs+16n
06ks+16h

Q(h | r1, . . . , rs, rs+1; k1, . . . , ks, ks+1). (4.9)

Proof of property (i). By Lemma 4.2, if 0 6 ki 6 (s − 1)k + b + χ(s > n − l + 1) for
all i, the ki’s have to be in one of the following three cases. Case 1: 0 6 ki 6 b for some
1 6 i 6 s; Case 2: 1 − k 6 kj − ki 6 k for some i < j; Case 3: ki = (s − i)k + b + 1 for
i = 1, . . . , s. Note that Case 3 occurs only when s > n− l + 1.

Case 1: 0 6 ki 6 b for some 1 6 i 6 s. If ri 6 m, then Q(h | r;k) has the factor

Er,k

[(xri
x0

)
b+1+χ(ri>n−l+1)

]
=

(
xrsq

ks−ki

xrsq
ks

)
b+1+χ(ri>n−l+1)

= (q−ki)b+1+χ(ri>n−l+1) = 0.
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If ri > m, then Q(h | r;k) = 0 for ki = 0 and for 1 6 ki 6 b it has the factor

Er,k

[(xriq
x0

)
b+χ(ri>n−l+1)

]
=

(
xrsq

1+ks−ki

xrsq
ks

)
b+χ(ri>n−l+1)

= (q1−ki)b+χ(ri>n−l+1) = 0.

Case 2: 1− k 6 kj − ki 6 k for some i < j. In this case Q(h | r;k) has the factor

Er,k

[(xri
xrj

)
k

(xrj
xri

q
)
k

]
,

which is equal to

Er,k

[
q(

k+1
2 )
(
−
xrj
xri

)k (
xri
xrj

q−k
)

2k

]
= q(

k+1
2 )(−qki−kj)k(qkj−ki−k)2k = 0.

Case 3: ki = (s − i)k + b + 1 for i = 1, . . . , s. In this case we only need the value of
ks. Since Case 3 only occurs when s > n− l + 1, we have rs > s > n− l + 1. If rs 6 m,
then Q(h | r;k) has the factor

Er,k

[(xrs
x0

)
b+1+χ(rs>n−l+1)

]
= Er,k

[(xrs
x0

)
b+2

]
=

(
xrs
xrsq

ks

)
b+2

= (q−b−1)b+2 = 0.

If rs > m, then Q(h | r;k) has the factor

Er,k

[(xrsq
x0

)
b+χ(rs>n−l+1)

]
= Er,k

[(xrsq
x0

)
b+1

]
=

(
xrsq

xrsq
ks

)
b+1

= (q−b)b+1 = 0.

Proof of property (ii). Note that since h > ki for all i and h ∈ D1

⋃
D2

⋃
D3

⋃
{(n−

l − 1)k + b+ 1}, the hypothesis implies that h > sk − χ(s < m).
We only show that Q(h | r;k) is proper in xrs so that Lemma 4.1 applies. The rest is

the same as that in the proof of [9, Lemma 5.1]. To this end we write Q(h | r;k) as N/D,
in which N (the numerator) is

Er;k

[ m∏
i=1

(xi
x0

)
b+1+χ(i>n−l+1)

n∏
i=m+1

(xiq
x0

)
b+χ(i>n−l+1)

·
∏

16i,j6n
i 6=j

(xi
xj
qχ(i>j)

)
k

]
,

and D (the denominator) is

Er;k

[
m∏
i=1

( x0
xiqh

)
h+1

n∏
i=m+1

( x0
xiqh

)
h

/ s∏
i=1

(
1− x0

xriq
ki

)]
.

Now let R = {r0, r1, . . . , rs}. Then the degree in xrs of

Er;k

[(
1− xi

xj
ql
)]
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is 1 if i ∈ R and j /∈ R, and is 0 otherwise, as is easily seen by checking the four cases.
Thus the part of N contributing to the degree in xrs is

Er;k

[
s∏
i=1

∏
j 6=r0,...,rs

(xri
xj
qχ(ri>j)

)
k

]
,

which has degree (n− s)sk, and the part of D contributing to the degree in xrs is

Er;k

 ∏
j 6=r0,...,rs
j6m

( x0
xjqh

)
h+1

∏
j 6=r0,...,rs
j>m

( x0
xjqh

)
h

 ,
which has degree at least (n− s)h+ χ(s < m).

Thus the total degree of Q(h | r;k) in xrs is at most

(n− s)(sk − h)− χ(s < m) 6 (n− s)(χ(s < m)− 1)− χ(s < m) < 0,

so Q(h | r;k) is proper in xrs .
Now we are ready to prove the vanishing lemma.

Proof of the vanishing lemma. Recall that CTxQ(h) = M ′
n(−a, b, k,m, l; q). We prove by

induction on n− s that
CT
x
Q(h | r;k) = 0;

the lemma is the case s = 0. (Note that taking the constant term with respect to a variable
that does not appear has no effect.) We may assume that s 6 n and 0 < r1 < · · · < rs 6 n,
since otherwise Q(h | r;k) is not defined. If s = n then ri must equal i for i = 1, . . . , n
and thus Q(h | r;k) = Q(h | 1, 2, . . . , n; k1, k2, . . . , kn), which by property (i) of Lemma
4.3 is 0, since for each i, ki 6 h 6 (n− 1)k + b+ χ(l > 0). Now suppose that 0 6 s < n.
Applying CTx to both sides of (4.9) gives

CT
x
Q(h | r;k) =

∑
rs<rs+16n

06ks+16h

CT
x
Q(h | r1, . . . , rs, rs+1; k1, . . . , ks, ks+1)

when property (ii) of Lemma 4.3 applies. Thus by Lemma 4.3, CTxQ(h | r;k) is either 0
or is a sum of terms, all of which are 0 by induction.

5 Proof for the extra point

We need the following lemma.

Lemma 5.1. Assume Theorem 1.3 holds for smaller values of n. Let h = (n−l−1)k+b+1.
If 0 6 m, l < n and k > b+ 1 then

CT
x
Q(h | 1, . . . , n− l;h, h− k . . . , b+ 1) = Mn(−h, b, k,m, l; q).

the electronic journal of combinatorics 21(3) (2014), #P3.38 11



Proof. We have to split into the following two cases.
Case 1: m+ l 6 n. Then

Q(h | 1, . . . , n− l;h, h− k, . . . , b+ 1) = D · (A ·B) ·
∏

n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

, (5.1)

where

D =
m∏
i=1

(q−(n−l−i)k−b−1)b+1

(q)(n−l−i)k+b+1(q−(i−1)k)(i−1)k

n−l∏
i=m+1

(q−(n−l−i)k−b)b
(q)(n−l−i)k+b(q−(i−1)k)(i−1)k

×
∏

16i<j6n−l

(q(i−j)k)k(q
(j−i)k+1)k

=
m∏
i=1

(q−(n−l−i)k−b−1)b+1

(q)(n−l−i)k+b+1

n−l∏
i=m+1

(q−(n−l−i)k−b)b
(q)(n−l−i)k+b

n−l∏
j=1

∏j−1
i=1 (q(i−j)k)k(q

(j−i)k+1)k
(q−(j−1)k)(j−1)k

=
m∏
i=1

(q−(n−l−i)k−b−1)b+1

(q)(n−l−i)k+b+1

n−l∏
i=m+1

(q−(n−l−i)k−b)b
(q)(n−l−i)k+b

n−l∏
j=1

(q)jk
(q)k

, (5.2)

A =
n∏

i=n−l+1

(
xi
xn−l

q−b
)
b+1(

xn−l

xi
q−(n−l−1)k

)
(n−l−1)k+b+1

, (5.3)

and

B =
∏

16i6n−l
n−l+16j6n

(
xn−l
xj

q−(n−l−i)k
)
k

(
xj
xn−l

q(n−l−i)k+1

)
k

=
n∏

j=n−l+1

(
xn−l
xj

q−(n−l−1)k
)

(n−l)k

(
xj
xn−l

q

)
(n−l)k

. (5.4)

For k > b+ 1, after cancelations and combinations, we obtain

CT
x
A ·B ·

∏
n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

= CT
x

n∏
i=n−l+1

(
xn−l
xi

qb+1

)
k−b−1

(
xi
xn−l

q−b
)

(n−l)k+b+1

∏
n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

= CT
x

n∏
i=n−l+1

(
xn−l
xi

)
k−b−1

(
xi
xn−l

q

)
(n−l)k+b+1

∏
n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

, (5.5)
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where the last equality is obtained by making the substitution xn−l = xn−lq
−b−1. This is

just M ′
l (k− b−1, (n− l)k+ b+1, k, 0, 0; q). By Remark 2.4 (or the hypothesis), we obtain

CT
x
Q(h) =D ·

l−1∏
i=0

(q)(n−l+i+1)k(q)(i+1)k

(q)(i+1)k−b−1(q)(n−l+i)k+b+1(q)k
, (5.6)

which can be routinely checked to be equal to Mn(−h, b, k,m, l; q).
Case 2: m + l > n. The computation is similar to but more complicated than case 1.
Indeed we need the case 1 result in some sense. We omit some details for brevity. We
have

Q(h | 1, . . . , n− l;h, h− k, . . . , b+ 1) = D′ · (A′ ·B′) ·
∏

n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

,

(5.7)

where

D′ =
n−l∏
i=1

(q−(n−l−i)k−b−1)b+1

(q)(n−l−i)k+b+1(q−(i−1)k)(i−1)k
·

∏
16i<j6n−l

(q(i−j)k)k(q
(j−i)k+1)k

=
n−l∏
i=1

(q−(n−l−i)k−b−1)b+1(q)ik
(q)(n−l−i)k+b+1(q)k

, (5.8)

and A′ and B′ are similar to A and B, with A′B′ simplifies as

A′ ·B′ =
m∏

i=n−l+1

(
xn−l
xi

qb+2

)
k−b−2

(
xi
xn−l

q−b−1
)

(n−l)k+b+2

×
n∏

i=m+1

(
xn−l
xi

qb+1

)
k−b−1

(
xi
xn−l

q−b
)

(n−l)k+b+1

. (5.9)

A similar computation gives

CT
x
A′ ·B′ ·

∏
n−l+16i<j6n

(
xi
xj

)
k

(
xj
xi
q

)
k

= M ′
l (k − b− 1, (n− l)k + b+ 1, k,m− n+ l, 0; q),

which is the constant term in (1.3) in case 1, and is known to be Ml(k− b− 1, (n− l)k+
b+ 1, k,m− n+ l, 0; q) by the hypothesis. Then it only left to show that

D′ ·
l−1∏
i=0

(q)(n−l+i+1)k(q)(i+1)k

(q)(i+1)k−b−1−χ(i<m−n+l)(q)(n−l+i)k+b+1+χ(i>n−m)(q)k
= Mn(−h, b, k,m, l; q),

which is routine.
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Note that we can avoid using the induction hypothesis. The truth of Lemma 5.1 in
case 1 results in the truth of Theorem 1.3 in case 1, which is needed in the case 2 of
Lemma 5.1.

Now we are ready to deal with the extra point.

Proof of Lemma 2.5. As we discussed in (4.8), CTx0 Q(h) can be written as

CT
x0
Q(h) =

∑
16r16n
16k16h

Q(h | r1, k1). (5.10)

Iteratively apply Lemma 4.3 to each summand if applicable. Finally we get

CT
x
Q(h) = CT

x

∑
r1,...,rs,k1,...,ks

Q(h | r1, . . . , rs; k1, . . . , ks),

where the sum ranges over all the r’s and the k’s with 0 < r1 < · · · < rs 6 n, 0 6
k1, k2, . . . , ks 6 h such that Lemma 4.3 does not apply. Note that we may have different
s.

Since h = (n− l−1)k+b+1 and 0 6 ki 6 h, by Lemma 4.2, there leaves only one term
for which Lemma 4.3 is not applicable. This term corresponds to ki = (n− l− i)k+ b+ 1
for i = 1, . . . , n− l and ri = i for i = 1, . . . , n− l. It follows that

CT
x
Q(h) = CT

x
Q(h | 1, . . . , n− l;h, h− k, . . . , b+ 1). (5.11)

The lemma then follows from Lemma 5.1.

The extra point h = (n − l − 1)k + b + 1 in Lemma 2.5 is not easy to find. This
h seems to be the only choice of the extra point for which it is not hard to show that
CTxQ(h) = Mn(−h, b, k,m, l; q). Intuitively a desired extra point must be chosen from
boundary values, i.e., values next to the vanishing points listed in (2.2).

Firstly, the boundary values h = (n− l− 2)k+ b+ 1, (n− l− 3)k+ b+ 1, . . . , b+ 1 do
not work. To see this, take n = 3,m = l = 1 for example. Then we can only get

Q(b+ 1) = (−1)bq−(b+1
2 ) CT

x

(q/x1)k−b−1 (x1)b+k+1 (1/x3)k−b−1 (x3q)b+k+1

1− 1/(x1qb+1)

(
x1
x3

)
k

(
x3
x1
q

)
k

+ (−1)b+1q−(b+2
2 ) CT

x

(1/x2)k−b−1 (x2q)b+k+1 (1/x3)k−b−1 (x3q)b+k+1

1− x2qb+1
·
(
x2
x3

)
k

(
x3
x2
q

)
k

.

Secondly, the boundary values h = mk, (m+ 1)k, . . . , (n− 1)k do not work either for
a similar reason.
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[14] G. Károlyi and Z. L. Nagy. A simple proof of the Zeilberger-Bressoud q-Dyson The-
orem. Proc. Amer. Math. Soc., 142:3007–3011, 2014.
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