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Abstract

A graph G with at least 2m + 2 edges is said to be distance d m-extendable if
for any matching M in G with m edges in which the edges lie pair-wise distance at
least d, there exists a perfect matching in G containing M . In a previous paper,
Aldred and Plummer proved that every 5-connected triangulation of the plane or
the projective plane of even order is distance 5 m-extendable for any m. In this
paper we prove that the same conclusion holds for every triangulation of the torus
or the Klein bottle.

Keywords: distance restricted matching extension; triangulation; toroidal graph;
Klein bottle graph; non-contractible cycle; separating cycle

1 Introduction

We consider only simple graphs, that is, without loops or multiple edges. A set M of
edges in a graph is said to be a matching if no two members of M share a vertex. A
perfect matching in a graph G is a matching in G which covers all the vertices of G. If a
matching M in G is a subset of a perfect matching in G, then M is said to be extendable
in G, and a graph with at least 2m + 2 vertices in which every matching of size m is
extendable is called m-extendable.

A closed curve on a closed surface F 2 is a continuous function ℓ : S1 → F 2 or its
image, where S1 is the 1-dimensional sphere, that is, {(x, y) ∈ R

2 | x2 + y2 = 1}. A
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closed curve ℓ is called simple if the function ℓ is an injection, that is, the curve does not
cross itself. Moreover, if a simple closed curve ℓ bounds a 2-cell on F 2, then ℓ is called
contractible, and otherwise ℓ is called non-contractible.

In this paper we deal with a graph G embedded on some closed surface, and investigate
when a matching M is extendable. For a matching with two edges, Plummer [10] proved
the following.

Theorem 1. Every 5-connected planar graph of even order is 2-extendable.

To show a similar result for any locally planar graph G embedded in a surface F 2,
Kawarabayashi et al. added a condition on the representativity ρ(G) (the minimum num-
ber r such that any non-contractible simple closed curve on F 2 meets G in at least r
places), and proved the following.

Theorem 2 ([7]). Every 5-connected graph G of even order embedded on a closed surface
F 2, except the sphere, is 2-extendable if ρ(G) > 7 − 2χ(F 2), where χ(F 2) is the Euler
characteristic of F 2.

Moreover, they proved that there are infinitely many 5-connected triangulations G of
F 2 with ρ(G) = 3 that are not 2-extendable, for any closed surface F 2 except the sphere
and the projective plane. Therefore, the condition on the representativity is necessary in
Theorem 2 when F 2 is not the projective plane.

It is known that no planar graph with at least 8 vertices is 3-extendable ([9]). Later,
Aldred and Plummer ([1], [3], [4]) studied the relationship between the distance between
a set of edges and their extendability. A graph G with at least 2m + 2 edges is said to
be distance d m-extendable if any matching M in G with m edges in which the edges
lie pair-wise distance at least d is extendable. In particular, several important results
for proximity based matching extension have been obtained for triangulations, i.e. simple
graphs which are embedded on surfaces so that each face is bounded by a triangle.

Theorem 3 ([1]). Every 5-connected triangulation of the plane of even order is distance
2 3-extendable.

It follows from Theorem 3 that, in any 5-connected triangulation of the plane of even
order, any non-extendable matching with three edges contains a pair of edges at distance
1.

It is shown in [3] that the conclusion of Theorem 3 cannot be extended to “distance 2
4-extendable”. However, if the pair-wise distance of the given matching is increased, then
we can extend 4 or more edges.

Theorem 4 ([3], [4]). Every 5-connected triangulation of the plane of even order is dis-
tance 3 4-extendable. Moreover, there exist infinitely many 5-connected triangulations of
the plane of even order which are not distance 3 10-extendable.

Theorem 5 ([4]). Every 5-connected triangulation of the plane of even order is distance
4 7-extendable.
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Note that, in the distance 2 or 3 case, there exists a maximum value for the number of
edges which may be extended. Though we do not know whether such a maximum exists
in the distance 4 case, it disappears in distance 5 case.

Theorem 6 ([4]). Every 5-connected triangulation of the plane of even order is distance
5 m-extendable for any m.

It is also shown in [4] that Theorem 6 still holds when “plane” is replaced by “projective
plane”. For graphs on the torus or Klein bottle, it follows from Mizukai et al.’s result
[8] that every 5-connected triangulation of the torus or the Klein bottle of even order is
distance 3 2-extendable for any m. This result is sharp in the following sense.

Proposition 7 (Aldred and Plummer, [5]). There are 5-connected triangulations of both
the torus and the Klein bottle of even order which are not distance 3 3-extendable.

The main purpose of this paper is to extend Theorem 6 to graphs on the torus and
the Klein bottle. In the above results, we always find a difference between the planar case
and the toroidal or the Klein bottle cases: when we extend Theorem 1 to Theorem 2, the
additional condition on representativity is necessary, and in Proposition 7, the number of
the edges which may be extended is reduced compared to the planar case. In contrast to
these situations, we can extend Theorem 6 without any extra condition.

Theorem 8. Let G be a 5-connected triangulation of the torus or the Klein bottle of even
order. If m > 0 and G has at least 2m+ 2 vertices, then G is distance 5 m-extendable.

It is shown in [5] that there exist 4-connected triangulations of both the torus and the
Klein bottle of even order which are not 1-extendable, and so the connectivity condition in
Theorem 8 cannot be relaxed. Next we show that the “triangulation” hypothesis cannot
be dropped in Theorem 8. Let G0 and H0 be the graphs shown in Figures 1 and 2,
respectively.
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Figure 1: the graph G0.

Let G be the graph obtained from G0 − {w1, w2, w3, w4} by adding 4 copies H1, H2,
H3, H4 of H0 − {v} and joining the five vertices of degree 4 in Hi and the five neighbors
of wi in G0 by a perfect matching for i = 1, 2, 3, 4 so that the resulting graph is toroidal
(note that such a matching is unique up to symmetry). Then, since both G0 and H0 are
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v

Figure 2: the graph H0.

5-connected, G is also 5-connected. Moreover, since G − {x1, y1, z1, x2, y2, z2} has 4 odd
components, {x1y1, x2y2} is not extendable in G. Thus G is not distance 5 2-extendable,
though G is a 5-connected toroidal graph of even order. Note that we obtain larger
examples by recursively exchanging a vertex in V (G) \ {x1, y1, z1, x2, y2, z2} for the graph
H0 − {v} and adding 5 edges as indicated in the above. Moreover, notice that G can be
embedded on the Klein bottle (See Figure 3).
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Figure 3: the graph G′

0.

Though Theorem 8 is best possible, it remains to be studied whether we can replace
“distance 5” with “distance 4” in Theorem 8 or not.

We prove Theorem 8 in the next section. In the rest of the present section, we introduce
terminology and notation used in the proof. Two closed curves ℓ1 and ℓ2 on a closed
surface F 2 are said to be homotopic to each other on F 2 if there exists a continuous
function Φ : [0, 1] × S1 → F 2 such that Φ(0, x) = ℓ1(x) and Φ(1, x) = ℓ2(x) for each
x ∈ S1.

A cycle C of a graph G on F 2 is called contractible (resp. non-contractible) if the edges
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of C induce a contractible (resp. non-contractible) curve on F 2. A non-contractible cycle
C of a graph G on F 2 is called separating if the curve on F 2 induced by the the edges
of C separates F 2. Note that a separating cycle does not necessarily separate the graph,
and so G− V (C) may be connected. In the graph G′

0 in Figure 3, z1w2z2w4y1w1y2w3x1z1
is a separating cycle. By definition, any non-contractible cycle of the graph on the torus
is non-separating.

A closed curve ℓ on F 2 is said to be 1-sided if the tubular neighborhood of ℓ forms a
Möbius band, and 2-sided otherwise. Moreover, a cycle C of a graph G on F 2 is called
1-sided (resp. 2-sided) if the edges of C induce a 1-sided (resp. 2-sided) curve on F 2. In
the graph G′

0 in Figure 3, z1w2z2w4z1 is a 1-sided cycle, and z1w2z2w4y1w1y2w3x1z1 is a
2-sided cycle. By definition, any cycle of the graph on the torus is 2-sided.

Let C be a 2-sided cycle of a graphG on F 2 and letD1, D2 be vertex-disjoint subgraphs
of G− V (C). If there exist two edges x1y1 and x2y2 such that x1, x2 ∈ V (C), yi ∈ V (Di)
for i = 1, 2 and x1y1 is adjacent to x1 on the right-hand side of C and x2y2 is adjacent to
x2 on the left-hand side of C for an arbitrary orientation of C, then we say that D1 and
D2 are adjacent to C on opposite sides of C.

Let e be an edge and F be a set of edges. The set of two vertices which are incident
with e is denoted by V (e), and we denote V (F ) =

⋃
e∈F V (e). Moreover, the length of

a shortest path joining a vertex v and V (e) is denoted by d(v, e). For other terminology
and notation, we refer the reader to [6].

2 Proof of Theorem 8

Suppose that m is the smallest integer for which distance 5 m-extendable fails to hold
on the torus (resp. the Klein bottle). Since every 5-connected triangulation of the torus
(resp. the Klein bottle) of even order is 1-extendable by Theorem 4.3 (b) (resp. Theorem
5.3(b)) of [2], we havem > 2. LetM = {e1, . . . , em} be a set ofm edges at mutual distance
5 or more which does not extend to a perfect matching. Then since G′ = G−V (M) does
not have a perfect matching, by Tutte’s theorem there is a barrier set S ⊆ V (G) such
that co(G

′−S) > |S|+2, where co(H) denotes the number of odd components of a graph
H . By the minimality of m we have co(G

′ − S) = |S| + 2. Now we choose such an S to
be as small as possible.

Let K = S ∪ V (M). Assume that there exists an odd component D of G − K and
two vertices r1 and r2 in S which lie in different components of G − V (D). Let H ′ be
the component of G − V (D) containing r1, let R1 = V (H ′) ∩ S and let R2 = S \ R1.
Then co(G − Ri) > |Ri| + 2 holds for i = 1 or 2, which contradicts the minimality of S.
Therefore,

G− V (D) is connected for every component D of G−K. (1)

We construct the bipartite distillation G∗ of graph G as in the proof of Theorem 2.1 of
[4]. That is, delete all the even components of G−K and all edges within G[K] and next
contract each of the odd components of G − K to a single vertex and delete any loops
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and multiple edges. We call the resulting bipartite graph G∗. Since G∗ is a minor of G,
we can embed G∗ on the same closed surface as G, the torus or the Klein bottle. Hence it
follows from Euler’s formula that |E(G∗)| 6 2|V (G∗)| = 2(2|S|+2+2m) = 4|S|+4m+4.
On the other hand, since G is 5-connected, every odd component of G −K has at least
five vertices of attachment in K. And so |E(G∗)| > 5(|S|+ 2). Thus

|S| 6 4m− 6. (2)

Suppose a vertex s ∈ S has neighbors in at most two components of G′ − S. Let
S ′ = S − {s}, then G′ − S ′ has at least |S| + 1 = |S ′| + 2 odd components, which
contradicts the minimality of S. Therefore each vertex s ∈ S has neighbors in at least
three components of G′ − S. Take s ∈ S and let the neighbors of s be v1, v2, . . . , vl such
that svivi+1 is a face of G for each i with 1 6 i 6 l − 1. Let D1, D2 and D3 be three
odd components of G′ − S containing a neighbor of s. Without loss of generality, we
may assume that v1 ∈ D1, vp ∈ D2 and vq ∈ D3 with 1 < p < q. Then, since each Di

is a different odd component of G −K and G is a triangulation, we have three vertices
vp′, vq′, vr′ ∈ K such that 1 < p′ < p < q′ < q < r′. From this observation, it follows that
each vertex s in S has at least three distinct neighbors t1, t2 and t3 in K.

For each ei ∈ M , let S(ei) = {s ∈ K | 1 6 d(s, ei) 6 2}. Since edges in M are at least
distance 5 apart, it holds that S(ei) ⊆ S and S(ei) ∩ S(ej) = ∅ for ei, ej ∈ M with i 6= j.
The next claim plays a central role in our proof of Theorem 8.

Claim 1. For each edge ei = xy ∈ M , at least one of the following holds.

(i) |S(ei)| > 4.

(ii) |S(ei)| > 2 and G[S(ei)∪{x, y}] contains two non-homotopic non-contractible cycles
of length at most 4.

(ii’) |S(ei)| > 2 and G[S(ei)∪{x, y}] contains a separating 2-sided non-contractible cycle
of length at most 4.

(ii”) |S(ei)| > 2 and G[S(ei) ∪ {x, y}] contains a 1-sided non-contractible cycle of length
at most 4.

(iii) |S(ei)| > 3, G[S(ei)∪{x, y}] contains a non-separating 2-sided non-contractible cycle
of length at most 4 and there exists a component of G−K which has a neighbor of
a vertex of S(ei) and contains a non-separating 2-sided non-contractible cycle.

Note that (ii’) or (ii”) of the above claim apply only to the case G is embedded in the
Klein bottle.
Proof. We assume that none of (i), (ii), (ii’) or (ii”) holds, and prove (iii).

Note that ei has neighbors in at least two odd components of G − K, as otherwise
co(G

′′−S) = |S|+2, where G′′ = G− (V (M)\{x, y}), contradicting the minimality of m.
Now contract ei to a single vertex wi and delete the created loop. Since G is a 5-connected
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Figure 4: Vertices around s1

triangulation, this contraction creates exactly two pairs of multiple edges which bound
a 2-cell (in particular, such pairs do not share an edge, and each pair induces a digon).
Here delete one of the edges of each pair, and let Gi be the resulting graph. Then Gi is
a triangulation as well. Let the neighbors of wi in Gi be v1, v2, . . . , vl such that wivjvj+1

is a face of Gi for each j with 1 6 j 6 l − 1. Without loss of generality, we may assume
that v1 and vp belong to different odd components of G − K for some p. Let D (resp.
D′) be the component of G−K which contains v1 (resp. vp). Then we have two vertices
vp′, vp′′ ∈ S such that 1 < p′ < p < p′′ 6 l. Let s1 = vp′ and s2 = vp′′.

Now s1 is a neighbor of the edge ei = xy in G. Without loss of generality, we may
assume that s1x ∈ E(G). As we noted before, s1 has neighbors in at least three odd
components and has at least three neighbors inK. LetD1, D2, . . . , Dk be such components
(k > 3), and let x, u1, u2, . . . , uk−1 be such neighbors, where k > 3 and x, N(s1)∩D1, u1,
N(s1) ∩D2, u2, N(s1) ∩D3, . . . uk−1, N(s1) ∩Dk appear in this order when we traverse
N(s1) in the clockwise direction (see Figure 4).

Subclaim 1. G[S(ei) ∪ {x, y}] contains a non-contractible cycle C of length at most 4
which contains the edge s1x. Moreover, if C is a 2-sided cycle, then there exist two distinct
components of G−K which are adjacent to C on opposite sides of C.

Proof. In the case s1 = s2, let C = C = xys1x. By the construction of Gi, C is a
non-contractible cycle. Moreover, if C is a 2-sided cycle, then D and D′ are adjacent to
C on opposite sides of C. Thus C is a desired cycle.

In the case uj = y for some j, let C = s1ujxs1. If C is a contractible cycle, then D1 and
Dk are contained in different components of G−V (C), contradicting the 5-connectedness
of G. Therefore C is a non-contractible cycle. If, in addition, C is a 2-sided cycle, then
D1 and Dk are adjacent to C on opposite sides of C, and thus C is a desired cycle.

the electronic journal of combinatorics 21(3) (2014), #P3.39 7



Therefore, we may assume that s1 6= s2 and uj 6= y for each j. Since (i) does not
hold, it follows that ur = s2 for some r. Then either s1uryxs1 or s1urxs1 is a cycle, say
C. If C is a contractible cycle, then D1 and Dk are contained in different components
of G− V (C), contradicting the 5-connectedness of G. Therefore C is a non-contractible
cycle. Moreover, if C is a 2-sided cycle, then D1 and Dk are adjacent to C on opposite
sides of C, and thus C is a desired cycle. This establishes Subclaim 1.

Assume C is as in Subclaim 1. If C is a 1-sided cycle or a separating 2-sided cycle,
then since {s1, u1, u2, . . . , uk} \ {x, y} ⊆ S(ei), we have |S(ei)| > 2. This contradicts the
assumption that neither (ii’) nor (ii”) holds, and thus we may assume that C is a non-
separating 2-sided cycle. Recall that s1 has neighbors in at least three odd components.
Without loss of generality, we may assume that s1 is adjacent to D1 and D2 on the left-
hand side of C and is adjacent to Dk on the right-hand side of C. Let S ′(ei) be the set
of the vertices in S(ei) which are in V (C) or are adjacent to C on the left-hand side. We
call a component D of G−K non-contractible if D contains a non-contractible cycle, and
otherwise we call D contractible.

Subclaim 2. |S ′(ei)| > 3.

Proof. If |V (C) ∩ S| > 2, then since (V (C) ∩ S) ∪ {u1} is a subset of S ′(ei), Subclaim 2
is satisfied.

Thus we may assume |V (C) ∩ S| = 1, which implies s1 = s2 and C = xys1x. Let
the neighbors of s1 in G be a1, a2, . . . , al such that s1ajaj+1 is a face of G for each j with
1 6 j 6 l − 1. Without loss of generality, we may assume that x = a1, u1 = ap and
y = aq. If there exists j with 1 < j < q and j 6= p such that aj ∈ S(ei), then since
{s1, u1, aj} ⊆ S ′(ei), the assertion holds. Thus we may assume that

aj /∈ S(ei) for every j with 1 < j < q and j 6= p. (3)

Since C is a non-separating 2-sided cycle, it follows that either D1 or D2 is a con-
tractible component. Assume that D1 is a contractible component. Let T1 be the set of
vertices of K which are adjacent to D1, then by (1) T1 induces a closed trail. Let b1b2b3 . . .
be such a closed trail, where b1 = s1 and b2 = u1. Moreover, let l be the smallest number
such that bl ∈ V (C) and the edge bl−1bl is adjacent to C on the left-hand side. By (3),
we have bl = x or y. Thus bl−1 ∈ S(ei) \ {s1}. If bl−1 = u1, then D1 and D2 are contained
in different components of G− {s1bl−1bl}, a contradiction. Therefore we have bl−1 6= u1,
and hence {s1, u1, bl−1} implies the assertion. By the same argument, we also obtain the
assertion in the case where D2 is a contractible component. This establishes Subclaim 2.

If Dk is a non-contractible component, then since C is a non-separating 2-sided cycle,
the non-contractible cycle contained in Dk is also a non-separating 2-sided cycle. Hence
(iii) follows from Subclaims 1 and 2. Thus we assume thatDk is a contractible component.
Let Tk be the set of vertices of K which are adjacent to Dk. Since G is 5-connected, we
have |Tk| > 5, which implies Tk \ V (C) 6= ∅. Since G[Tk] is connected, there exists
s′ ∈ Tk \ V (C) such that s′ is adjacent to C on the right-hand side. Then s′ ∈ S(ei). If
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s′ /∈ S ′(ei), then S ′(ei)∪{s′} implies (i), a contradiction. On the other hand, if s′ ∈ S ′(ei),
then since s′ is adjacent to C on both sides, (ii) holds. This contradiction completes the
proof of Claim 1.

Claim 2. If (ii’) or (ii”) of Claim 1 holds for some ei, then there exists at most one edge
in M \ {ei} which satisfies (ii’) or (ii”) and no edge in M \ {ei} satisfies (ii) or (iii).

Proof. Recall that G is embedded on the Klein bottle when (ii’) or (ii”) holds for ei.
Assume first that ei satisfies (ii’) and let C be a separating non-contractible cycle of
length at most 4 contained in G[S(ei)∪{x, y}]. By cutting the Klein bottle along C (and
deleting the vertices in C), we obtain two Möbius bands. Since G is 5-connected, one of
them cannot contain any vertex. Moreover, since S(ei) ∩ S(ej) = ∅ for every j 6= i, the
other Möbius band can contain at most one edge in M which satisfies (ii’) or (ii”) and it
cannot contain any edge in M which satisfies (ii) or (iii).

Next assume that no edge inM satisfies (ii’) and assume that ei satisfies (ii”). Let C be
the 1-sided non-contractible cycle of length at most 4 contained in G[S(ei)∪{x, y}], then
by cutting the Klein bottle along C, we obtain a Möbius band. Since S(ei) ∩ S(ej) = ∅
for every j 6= i, the Möbius band can contain at most one edge in M which satisfies (ii”),
and it cannot contain any edge in M which satisfies (ii) or (iii). This establishes Claim
2.

By Claim 2, if (ii’) or (ii”) of Claim 1 holds for some ei, then we can choose ej 6= ei
so that each edge in M \ {ei, ej} satisfies (i) of Claim 1. Then |S| >

∑m

i=1
|S(ei)| >

4(m− 2) + 2 + 2 > 4m− 4, which contradicts (2). Thus we may assume that no edge in
M satisfies (ii’) or (ii”) of Claim 1. Moreover, if (ii) of Claim 1 holds for some ei, then
since S(ei)∩S(ej) = ∅ for every j 6= i, each edge in M \{ei} satisfies (i) of Claim 1. Then
|S| >

∑m

i=1
|S(ei)| > 4(m− 1)+ 2 > 4m− 2, which contradicts (2). Thus we may assume

that no edge in M satisfies (ii) of Claim 1.
If (iii) of Claim 1 does not hold for any ei, then |S| >

∑m

i=1
|S(ei)| > 4m, which

contradicts (2). Hence (iii) of Claim 1 holds for some ei, and thus there exists a component
of G−K which contains a non-separating 2-sided non-contractible cycle. Let D1, . . . , Dk

be such components of G − K. In the case k > 3, let H1, . . . , Hl be the components
of G − (V (D1) ∪ . . . ∪ V (Dk)). Moreover, let Si = S ∩ Hi and let ci be the number of
components of G − K which are contained in Hi. Assume that cj 6 |Sj| − 1 for some
j. Then G′ − (S − Sj) has at least |S| + 2 − (cj + 1) > |S| + 2 − |Sj| = |S − Sj| + 2
components, which contradicts the minimality of S. Thus ci > |Si| for every i. However,
co(G −K) = k +

∑l

i=1
ci > k +

∑l

i=1
|Si| > |S| + 3, a contradiction. Therefore we have

k 6 2.
Without loss of generality, we may assume that, for some integer h > 1, edges e1, . . . , eh

satisfy (iii) of Claim 1. For each i = 1, . . . , h, let Ci be a non-separating 2-sided non-
contractible cycle in G[S(ei) ∪ V (ei)] that qualifies ei for (iii) of Claim 1, and let Q1

(Q2) be a non-separating 2-sided non-contractible cycle contained in D1(D2). Then
C1, . . . , Ch, Q1, Q2 are homotopic to each other. Let A1, . . . , Ah be annuli obtained by
cutting the torus or the Klein bottle along C1, . . . , Ch. Then there are at most two annuli
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which contain D1 or D2, and at most four cycles in C1, . . . , Ch are the boundaries of such
annuli. Consequently for every j such that Cj is not in the above four cycles, S(ej) can
have a neighbor neither in D1 nor in D2. Hence at most four edges of M satisfies (iii) of
Claim 1. Therefore |S| >

∑m

i=1
|S(ei)| > 4(m− 4)+3 · 4 = 4m− 4, which contradicts (2).
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