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Abstract

Suppose that a fence needs to be protected (perpetually) by k mobile agents with
maximum speeds v1, . . . , vk so that no point on the fence is left unattended for more
than a given amount of time. The problem is to determine if this requirement can be
met, and if so, to design a suitable patrolling schedule for the agents. Alternatively,
one would like to find a schedule that minimizes the idle time, that is, the longest
time interval during which some point is not visited by any agent. We revisit this
problem, introduced by Czyzowicz et al. (2011), and discuss several strategies for
the cases where the fence is an open and a closed curve, respectively.

In particular: (i) we disprove a conjecture by Czyzowicz et al. regarding the
optimality of their algorithm A2 for unidirectional patrolling of a closed fence; (ii)
we present a schedule with a lower idle time for patrolling an open fence, improving
an earlier result of Kawamura and Kobayashi.

Keywords: Multi-agent patrolling, idle time, approximation algorithm.

1 Introduction

A set of k mobile agents with (possibly distinct) maximum speeds vi (i = 1, . . . , k) are
in charge of patrolling a given region of interest. Patrolling problems find applications

∗Research supported in part by the NSF grant DMS-1001667. A preliminary version of this paper
appeared in the Proceedings of the 25th Canadian Conference on Computational Geometry, Waterloo,
ON, Canada, August 2013.
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in the field of robotics where surveillance of a region is necessary. An interesting one-
dimensional variant has been introduced by Czyzowicz et al. [7], where the agents move
along a rectifiable Jordan curve representing a fence. The fence is either a closed curve
(the boundary of a compact region in the plane), or an open curve (the boundary between
two regions). For simplicity (and without loss of generality) it can be assumed that the
open curve is a line segment and the closed curve is a circle. The movement of the
agents over the time interval [0,∞) is described by a patrolling schedule (or guarding
schedule), where the speed of the ith agent, ai (i = 1, . . . , k), may vary between zero and
its maximum value vi in any of the two moving directions (left or right).

Given a closed or open fence of length ` and maximum speeds v1, . . . , vk > 0 of k
agents, the goal is to find a patrolling schedule that minimizes the idle time I, defined as
the longest time interval in [0,∞) during which a point on the fence remains unvisited,
taken over all points. A straightforward volume argument [7] yields the lower bound
I > `/

∑k
i=1 vi for an (open or closed) fence of length `. A patrolling algorithm computes

a patrolling schedule for a given fence and set of speeds v1, . . . , vk > 0.
For an open fence (line segment), Czyzowicz et al. [7] proposed a simple partitioning

strategy, algorithm A1, where each agent moves back and forth perpetually in a segment
whose length is proportional with its speed. Specifically, for a segment of length ` and
k agents with maximum speeds v1, . . . , vk, algorithm A1 partitions the segment into k
pieces of lengths `vi/

∑k
j=1 vj, and schedules the ith agent to patrol the ith interval with

speed vi. Algorithm A1 has been proved to be optimal for uniform speeds [7], i.e., when
all maximum speeds are equal. Algorithm A1 achieves an idle time 2`/

∑k
i=1 vi on a

segment of length `, and so A1 is a 2-approximation algorithm for the shortest idle time.
It has been conjectured [7, Conjecture 1] that A1 is optimal for arbitrary speeds, however
this was disproved by Kawamura and Kobayashi [10]: they selected speeds v1, . . . , v6 and

constructed a schedule for 6 agents that achieves an idle time of 41
42

(
2`/
∑k

i=1 vi

)
.

A patrolling algorithm A is universal if it can be executed with any number of agents
k and any speed setting v1, . . . , vk > 0 for the agents. For example, A1 above is universal,
however certain algorithms (e.g., algorithm A3 in Section 3 or the algorithm in Section 4)
can only be executed with certain speed settings or number of agents, i.e., they are not
universal.

For the closed fence (circle), no universal algorithm has been proposed to be optimal.
For uniform speeds (i.e., v1 = . . . = vk = v), it is not difficult to see that placing the
agents uniformly around the circle and letting them move in the same direction yields
the shortest idle time. Indeed, the idle time in this case is `/(kv) = `/

∑k
i=1 vi, matching

the lower bound mentioned earlier.
For the variant in which all agents are required to move in the same direction along a

circle of unit length (say clockwise), Czyzowicz et al. [7, Conjecture 2] conjectured that
the following algorithm A2 always yields an optimal schedule. Label the agents so that
v1 > v2 > . . . > vk > 0. Let r, 1 6 r 6 k, be an index such that max16i6k ivi = rvr.
Place the agents at equal distances of 1/r around the circle, so that each moves clockwise
at the same speed vr. Discard the remaining agents, if any. Since all agents move in the
same direction, we also refer to A2 as the “runners” algorithm. It achieves an idle time
of 1/max16i6k ivi [7, Theorem 2]. Observe that A2 is also universal.
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Related problems. Multi-agent patrolling is a variation of the problem of multi-robot
coverage [4, 5], studied extensively in the robotics community. A variety of models
has been considered for patrolling, including deterministic and randomized, as well as
centralized and distributed strategies, under various objectives [1, 9]. Idleness, as a
measure of efficiency for a patrolling strategy, was introduced by Machado et al. [11] in
a graph setting; see also the article by Chevaleyre [4].

The closed fence patrolling problem is reminiscent of the classical lonely runners
conjecture, introduced by Wills [12] and Cusick [6], independently, in number theory and
discrete geometry. Assume that k agents run clockwise along a circle of length 1, starting
from the same point at time t = 0. They have distinct but constant speeds (the speeds
cannot vary, unlike in the model considered in this paper). A runner is called lonely
when he/she is at distance of at least 1

k
from any other runner (along the circle). The

conjecture asserts that each runner ai is lonely at some time ti ∈ (0,∞). The conjecture
has only been confirmed for up to k = 7 runners [2, 3]. A recent survey [8] lists a few
other related problems.

Notation and terminology. A unit circle is a circle of unit length. We parameterize
a line segment and a circle of length ` by the interval [0, `]. A schedule of k agents consists
of k functions fi : [0,∞]→ [0, `], for i = 1, . . . , k, where fi(t) is the position of agent i at
time t. Each function fi is continuous (for a closed fence, the endpoints of the interval
[0, `] are identified), it is piecewise differentiable, and its derivative (speed) is bounded
by |f ′i | 6 vi.

A schedule is called periodic with period T > 0 if fi(t) = fi(t+ T ) for all i = 1, . . . , k
and t > 0. The idle time I of a schedule is the maximum length of an open time interval
(t1, t2) such that there is a point x ∈ [0, `] where fi(t) 6= x for all i = 1, . . . , k and
t ∈ (t1, t2). Given a fence length `, a fence type (closed or open), and maximum speeds
v1, . . . , vk, idle(A) denotes the idle time of a schedule produced by algorithm A for these
parameters.

We use position-time diagrams to plot the agent trajectories with respect to time.
One axis represents the position fi(t) of the agents along the fence and the other axis
represents time. In Fig. 1, for instance, the horizontal axis represents the position of
the agents along the fence and the vertical axis represents time. In Fig. 2, however, the
vertical axis represents the position and the vertical axis represents time. A schedule
with idle time I is equivalent to a covering problem in such a diagram (see Fig. 1). For
a straight-line (i.e., constant speed) trajectory between points (x1, y1) and (x2, y2) in the
diagram, construct a shaded parallelogram with vertices, (x1, y1), (x1, y1 + I), (x2, y2),
(x2, y2 + I), where I denotes the desired idle time and the shaded region represents the
covered region. In particular, if an agent stays put in a time-interval, the parallelogram
degenerates to a vertical segment. A schedule for the agents ensures idle time I if and
only if the entire area of the diagram in the time interval [I,∞) is covered.

The efficiency of a patrolling algorithm A is measured by the ratio

ρ = idle(A)/idle(A1)

between the idle times of A and the partition-based algorithm A1. Lower values of ρ
indicate better (more efficient) algorithms. Recall however that certain algorithms can
only be executed with certain speed settings or number of agents.
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Figure 1: Agent moving with speed s from A to B, waiting at B for time w and then moving
from B to C with speed s.

Our results.

1. Consider the unidirectional unit circle (where all agents are required to move in the
same direction).

(i) We disprove a conjecture by Czyzowicz et al. [7, Conjecture 2] regarding the
optimality of algorithm A2. Specifically, we construct a schedule for 32 agents with
harmonic speeds vi = 1/i, i = 1, . . . , 32, that has an idle time strictly less than 1. In
contrast, algorithm A2 yields a unit idle time for harmonic speeds (idle(A2) = 1),
hence it is suboptimal. See Theorem 1, Section 2.

(ii) For every τ ∈ (0, 1] and t > τ , there exists a positive integer k = k(t) 6 e4t/τ
2

and a schedule for the system of k agents with harmonic speeds vi = 1/i, i =
1, . . . , k, that ensures an idle time at most τ during the time interval [0, t]. See
Theorem 2, Section 2.

2. Consider the open fence patrolling. For every integer x > 2, there exist k = 4x+ 1
agents with

∑k
i=1 vi = 16x + 1 and a guarding schedule for a segment of length

25x/3. Alternatively, for every integer x > 2 there exist k = 4x + 1 agents with
suitable speeds v1, . . . , vk, and a guarding schedule for a unit segment that achieves
idle time at most 48x+3

50x
2∑k

i=1 vi
. In particular, for every ε > 0, there exist k agents

with suitable speeds v1, . . . , vk, and a guarding schedule for a unit segment that
achieves idle time at most

(
24
25

+ ε
)

2∑k
i=1 vi

. This improves the previous bound of
41
42

2∑k
i=1 vi

by Kawamura and Kobayashi [10]. See Theorem 3, Section 4.

3. Consider the bidirectional unit circle.

(i) For every k > 4, there exist maximum speeds v1, . . . , vk > 0 and a patrolling
algorithm A3 with a shorter idle time than that achieved by both A1 and A2. In
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particular, for large k, the idle time of A3 with these speeds is about 2/3 of that
achieved by A1 and A2. See Proposition 1, Section 3.

(ii) For every k > 2, there exist maximum speeds v1, . . . , vk > 0 and an opti-
mal schedule for patrolling the circle that does not use up to k − 1 of the agents
a2, . . . , ak. In contrast, for a segment, any optimal schedule must use all agents.
See Proposition 2, Section 3.

(iii) There exist settings in which if all k agents are used by a patrolling algorithm,
then some agent(s) need overtake (pass) other agent(s). This partially answers a
question left open by Czyzowicz et al. [7, Section 3]. See the remark at the end of
Section 3.

2 Unidirectional Circle Patrolling

A counterexample for the optimality of algorithm A2. We show that algo-
rithm A2 by Czyzowicz et al. [7] for unidirectional circle patrolling is not always optimal.
We consider agents with harmonic speeds vi = 1/i, i ∈ N. Obviously, for this setting
we have idle(A2) = 1, which is already achieved by the agent a1 with the highest (here
unit) speed. We design a periodic schedule (patrolling algorithm) for k = 32 agents with
idle time I < 1. In this schedule, agent a1 moves continuously with unit speed, and it
remains to schedule agents a2, . . . , a32 such that every point is visited at least one more
time in the unit length open time interval between two consecutive visits of a1. We start
with a weaker claim, for closed intervals but using only 6 agents.

Lemma 1. Consider the unit circle, where all agents are required to move in the same
direction. For k = 6 agents of harmonic speeds vi = 1/i, i = 1, . . . , 6, there is a schedule
where agent a1 moves continuously with speed 1, and every point on the circle is visited
by some other agent in every closed unit time interval between two consecutive visits of
a1.

t
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A period of 8 units of time
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Figure 2: A periodic schedule of 6 agents of speeds 1/i, i = 1, . . . , 6, on a unit circle with
period 8. Agent a1 moves continuously with speed 1. Each point is visited by one of the agents
a2, a3, a4, a5, a6 between any two consecutive visits of agent a1.

Proof. Our proof is constructive. We construct a periodic schedule for the 6 agents with
period 8; refer to Fig. 2. Agents a1, a2 and a4 continuously move with maximum speed,
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while agents a3, a5 and a6 each stop at certain times in their movements. Their schedule
in one period t ∈ [0, 8] is given by the following piecewise linear functions.

f1(t) = t mod 1, f2(t) = t/2 mod 1, f4(t) = (t− 3)/4 mod 1.

f3(t) =


(t− 1)/3 mod 1 for t ∈ [0, 2.5] ∪ [7.5, 8]
0.5 for t ∈ [2.5, 3.5] ∪ [6.5, 7.5]
(t− 2)/3 mod 1 for t ∈ [3.5, 6.5]
t/3 mod 1 for t ∈ [7.5, 8].

f5(t) =


0 for t ∈ [0, 2]
(t− 2)/5 mod 1 for t ∈ [2, 4.5]
0.5 for t ∈ [4.5, 5.5]
(t− 3)/5 mod 1 for t ∈ [5.5, 8].

f6(t) =


(t− 3.5)/6 mod 1 for t ∈ [0, 0.5]
0.5 for t ∈ [0.5, 1.5]
(t− 4.5)/6 mod 1 for t ∈ [1.5, 4.5]
1 for t ∈ [4.5, 5.5]
(t− 5.5)/6 mod 1 for t ∈ [5.5, 8].

Theorem 1. Consider the unit circle, where all agents are required to move in the same
direction. For 32 agents of harmonic speeds vi = 1/i, i = 1, . . . , 32, there is a periodic
schedule with idle time strictly less than 1.

Proof. Agents a1, . . . , a6 follow the periodic schedule described in Lemma 1. A time-
position pair (t, x) ∈ [0, 8) × [0, 1) is a critical point in the time-position diagram if (1)
point x on the fence is not visited by any agent in the open time interval (t, t + 1), or
(2) point x is only visited by an agent stationary at x during the time interval (t, t+ 1).
To establish the theorem, we need to take care of the critical points. The problem with
critical points of type (2) is that some other points in the neighborhood of x will not be
visited for some time interval in (t, t+1) whose duration can be arbitrarily close to 1, even
though the point x itself is covered by the stationary agent. There are exactly 12 critical
points in the schedule in Fig. 2. Specifically, these points are (j, 0) for j = 0, 1, . . . , 7;
and (j + 1

2
, 1
2
) for j = 1, 3, 5, 7.

For each critical point (t, x), we assign one, two, or four agents such that they jointly
traverse a small neighborhood of the critical point in each period in the periodic schedule.

We schedule agents a7 and a8 to move continuously with speed 1/8, as follows.

f7(t) =
1

8

(
t− 1

3

)
mod 1, f8(t) =

1

8

(
t− 7

3

)
mod 1.

Agent a7 traverses the unit intervals of the critical points (0, 0) and (3 + 1
2
, 1
2
); and agent

a8 traverses the unit intervals of the critical points (2, 0) and (5 + 1
2
, 1
2
). We are left with

8 critical points, which will be taken care of by agents a9, . . . , a32.
Agents a9, . . . , a16 are scheduled to move with constant speed 1/16. These 8 agents

form 4 pairs, where each pair is responsible to visit the neighborhood of a critical point
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in each period of length 8 (each agent in a pair returns to the same critical point after
16 units of time). Finally, agents a17, . . . , a32 move with constant speed 1/32. These 16
agents form 4 quadruples, where each quadruple is responsible to visit the neighborhood
of a critical point in each period of 8 (each agent in a quadruple returns after 32 units of
time).

This schedule ensures that every point on the fence within a small neighborhood of
the 12 critical points is visited by some agent within every time interval of length 1− ε,
where ε > 0 is a sufficiently small constant. Apart from these neighborhoods, the first 6
agents already visit every point within every time interval of length 1− ε provided that
ε > 0 is sufficiently small.

Remark. In Theorem 1, we required that all agents move in the same direction (clock-
wise) along the unit circle, but we allowed agents to stop (i.e., have zero speed). If all
agents are required to maintain a strictly positive speed, the proof of Theorem 1 would
still go through: in this case, agents a3, a5 and a6 could move at an extremely slow but
positive speed instead of stopping. As a result, some points at the neighborhoods of the
12 critical points would remain unvisited for 1 unit of time (this frequency is maintained
by agent a1 alone). However, agents a7, . . . , a32 would still ensure that every point in
these neighborhoods is also visited within every time interval of length 1− ε.

Finite time patrolling. Interestingly enough, we can achieve any prescribed idle time
below 1 for an arbitrarily long time in this setting, provided we choose the number of
agents k large enough.

Theorem 2. Consider the unit circle, where all agents are required to move in the same
direction. For every 0 < τ 6 1 and t > τ , there exists k = k(t) 6 e4t/τ

2
and a schedule

for the system of k agents with maximum speeds vi = 1/i, i = 1, . . . , k, that ensures an
idle time at most τ during the time interval [0, t].

Proof. We construct a schedule with an idle time at most τ . Let agent a1 start at time 0
and move clockwise at maximum (unit) speed, i.e., f1(t) = t mod 1 denotes the position
on the unit circle of agent a1 at time t. Assume without loss of generality that t is
a multiple of τ , i.e., t = mτ , where m is a natural number. Divide the time interval
[0, t] into 2m subintervals of length τ/2. For j = 1, . . . , 2m, [(j − 1)τ/2, jτ/2] is the jth
interval.

For each j, cover the unit circle C so that every point of C is visited at least once by
some agent. This ensures that each point of the circle is visited at least once in the time
interval [0, τ/2] and no two consecutive visits to any one point are separated in time by
more than τ thereafter until time t, as required.

To achieve the covering condition in each interval j, we use the first agent (a1, of unit
speed), and as many other unused agents as needed. The ‘origin’ on C is reset to the
current position of a1 at time (j − 1)τ/2, i.e., the beginning of the current time interval.
So the fastest agent is used (continuously) in all 2m time intervals. Agent a1 can cover
a distance of τ/2 during one interval. From its endpoint, at time (j − 1)τ/2, start the
unused agent with the smallest index, say i1(j); this agent can cover a distance of τ

2
1

i1(j)

during the interval. Continue in the same way using new agents, all starting at time
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(j − 1)τ/2, until the entire circle C is covered; let the index of the last agent used be
i2(j). The covering condition can be written as:

τ

2

1 +

i2(j)∑
i=i1(j)

1

i

 > 1, or equivalently, 1 +

i2(j)∑
i=i1(j)

1

i
>

2

τ
. (1)

For example1, if τ = 2/3: j = 1 requires agents a1 through a11, since H11 > 3, but
H10 < 3; j = 2 requires agents a1 and agents a12 through a85, since 1 + (H85 −H11) > 3,
but 1 + (H84 −H11) < 3.

We now bound from above the total number k of distinct agents used. Observe that
the covering condition (1) may lead to overshooting the target. Because the harmonic
series has decreasing terms, the overshooting error cannot exceed the term 1

i2(1)+1
for

τ = 1, namely 1/5 (the overshooting for τ = 1 is only 1
3
− 1

4
= 1

12
< 1

5
). So inequality (1)

becomes

2

τ
6 1 +

i2(j)∑
i=i1(j)

1

i
6

2

τ
+

1

5
. (2)

Recall that t = mτ . By adding inequality (2) over all 2m time intervals yields (in
equivalent forms)

Hk − 1 +
8m

5
6

4m

τ
, or Hk 6

4t

τ 2
+ 1− 8t

5τ
. (3)

For t > τ we have 1 6 8t
5τ

. Since ln k 6 Hk, it follows from (3) that

ln k 6
4t

τ 2
, or k 6 e4t/τ

2

,

as required.

3 Bidirectional Circle Patrolling

The “train” algorithm for closed fence patrolling. Czyzowicz et al. [7, Theorem
5] showed that for k = 3 there exist maximum speeds v1, v2, v3 and a schedule that
achieves a shorter idle time than both algorithm A1 and A2, namely 35/36 versus 12/11
and 1. We extend their result for all k > 4. We propose a new patrolling algorithm, A3,
for maximum speeds v1 > v2 > . . . > vk > 0. That is, A3 assumes that one of the agents
is faster than all others; we then show that for all k > 4 there exist k maximum speeds
for which A3 outperforms both A1 and A2.

Place the k − 1 agents a2, . . . , ak at equal distances, x on the unit circle, and let
them move all clockwise perpetually at the same speed vk; we say that a2, . . . , ak make
a “train”. Let a1 move back and forth (i.e., clockwise and counterclockwise) perpetually
on the moving arc of length 1− (k− 2)x, i.e., between the start and the end of the train.
Refer to Fig. 3.

1Hn =
∑n

i=1 1/i denotes the nth harmonic number.
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Figure 3: Train algorithm: the train a2, . . . , ak moving unidirectionally with speed vk and the
bidirectional agent a1 with speed v1.

Proposition 1. For every k > 4, there exist maximum speeds v1 > v2 > . . . > vk
such that algorithm A3 achieves a shorter idle time than both A1 and A2. In particular,
for large k, the idle time achieved by the train algorithm is about 2/3 of the idle times
achieved by A1 and A2.

Proof. Consider the speed setting v1 = a, v2 = . . . = vk = b, where a > b > 0, and
max16i6k ivi = kb (i.e., a 6 kb). Put y = 1− (k − 2)x. To determine the idle time, x/b,
write:

[1− (k − 2)x]

(
1

a− b +
1

a+ b

)
=
x

b
, or equivalently,

2ay

a2 − b2 =
1− y

(k − 2)b
.

Solving for x/b yields

idle(A3) =
2a

a2 − b2 + 2(k − 2)ab
.

For our speed setting, we also have

idle(A1) =
2

a+ (k − 1)b
, and idle(A2) =

1

kb
.

Write t = a/b. It can be checked that for k > 4, idle(A3) 6 idle(A1) and idle(A3) 6
idle(A2) when a2 − b2 − 4ab > 0, i.e., t > 2 +

√
5. In particular, for a = 1, and b = 1/k

(note that a 6 kb), we have

idle(A3) =
2

1− 1/k2 + 2(k − 2)/k
−→
k→∞

2

3
,

while

idle(A1) =
2

1 + (k − 1)/k
−→
k→∞

1, and idle(A2) =
1

k(1/k)
= 1.

Useless agents for circle patrolling. Czyzowicz et al. [7] showed that for k = 2 there
are maximum speeds for which an optimal schedule does not use one of the agents. Here
we extend this result for all k > 2:
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Proposition 2. (i) For every k > 2, there exist maximum speeds v1, . . . , vk > 0 and an
optimal schedule for patrolling the circle with these speeds that does not use up to k − 1
of the agents a2, . . . , ak.
(ii) In contrast, for a segment, any optimal schedule must use all agents.

Proof. (i) Let v1 = 1 and v2 = . . . = vk = ε/k, for a small positive ε 6 1/300, and C be
a unit circle. Obviously by using agent a1 alone (moving perpetually clockwise) we can
achieve unit idle time. Assume for contradiction that there exists a schedule achieving an
idle time less than 1. Let f1(t) denote the position of agent a1 at time t. Assume without
loss of generality that f1(0) = 0 and consider the time interval [0, 2]. For 2 6 i 6 k, let
Ji be the interval of points visited by agent ai during the time interval [0, 2], and put
J = ∪ki=2Ji. We have |Ji| 6 2ε/k, thus |J | 6 2ε. We make the following observations:

1. f1(1) ∈ [−2ε, 2ε]. Indeed, if f1(1) /∈ [−2ε, 2ε], then either some point in [−2ε, 2ε] is
not visited by any agent during the time interval [0, 1], or some point in C \[−2ε, 2ε]
is not visited by any agent during the time interval [0, 1].

2. a1 has done almost a complete (say, clockwise) rotation along C during the time
interval [0, 1], i.e., it starts at 0 ∈ [−2ε, 2ε] and ends in [−2ε, 2ε], otherwise some
point in C \ [−2ε, 2ε] is not visited during the time interval [0, 1].

3. f1(2) ∈ [−4ε, 4ε], by a similar argument.

4. a1 has done almost a complete rotation along C during the time interval [1, 2], i.e.,
it starts in [−2ε, 2ε] and ends in [−4ε, 4ε]. Moreover this rotation must be in the
same clockwise sense as the previous one, since otherwise there would exist points
not visited for at least one unit of time.

Pick three points x1, x2, x3 ∈ C \ J close to 1/4, 2/4, and 3/4, respectively, i.e.,
|xi − i/4| 6 1/100, for i = 1, 2, 3. By Observations 2 and 4, these three points must
be visited by a1 in the first two rotations during the time interval [0, 2] in the order
x1, x2, x3, x1, x2, x3. Since a1 has unit speed, successive visits to x1 are separated in time
by at least one time unit, contradicting the assumption that the idle time of the schedule
is less than 1.

(ii) Given v1 > v2 > . . . > vk > 0, assume for contradiction that there is an optimal
guarding schedule with unit idle time for a segment s of maximum length that does not
use agent aj (with maximum speed vj), for some 1 6 j 6 k. Extend s at one end by a
subsegment of length vj/2 and assign aj to this subsegment to move back and forth from
one end to the other, perpetually. We now have a guarding schedule with unit idle time
for a segment longer than s, which is a contradiction.

Overtaking other agents. Consider an optimal schedule for circle patrolling (with
unit idle time) for the agents in the proof of Proposition 2, with v1 = 1 and v2 = . . . =
vk = ε/k, in which all agents move clockwise at their maximum speeds. Obviously a1
will overtake all other agents during the time interval [0, 2]. Thus there exist settings
in which if all k agents are used by a patrolling algorithm, then some agent(s) need to
overtake (pass) other agent(s). Observe however that overtaking can be easily avoided in
this setting by not making use of any of the agents a2, . . . , ak.

the electronic journal of combinatorics 21(3) (2014), #P3.4 10



4 An Improved Idle Time for Open Fence Patrolling

Kawamura and Kobayashi [10] showed that algorithm A1 by Czyzowicz et al. [7] does not
always produce an optimal schedule for open fence patrolling. They presented two coun-
terexamples: their first example uses 6 agents and achieves an idle time of 41

42
idle(A1);

their second example uses 9 agents and achieves an idle time of 99
100

idle(A1). By repli-
cating the strategy from the second example with a number of agents larger than 9, i.e.,
iteratively using blocks of agents, we improve the ratio to 24/25 + ε for any ε > 0. We
need two technical lemmas to verify this claim.
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D
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J
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h1h2

δ21

δ12

b1

b2

a1 a2

a3

I

E

K

O

0 5 20
3

L

M
N

P

T
im

e

Figure 4: Three agents each with a speed of 5 patrolling a fence of length 25/3; their start
positions are 0, 5, and 20/3, respectively. Figure is not to scale.

Lemma 2. Consider a segment of length ` = 25
3

such that three agents a1, a2, a3 are pa-
trolling perpetually each with speed of 5 and generating an alternating sequence of uncov-
ered triangles T2, T1, T2, T1, . . ., as shown in the position-time diagram in Fig. 4. Denote
the vertical distances between consecutive occurrences of T1 and T2 by δ12 and between
consecutive occurrences of T2 and T1 by δ21. Denote the bases of T1 and T2 by b1 and b2
respectively, and the heights of T1 and T2 by h1 and h2 respectively. Then

(i) 10
3

is a period of the schedule.

(ii) T1 and T2 are congruent; further, b1 = b2 = 1
3
, δ12 = δ21 = 4

3
, and h1 = h2 = 5

6
.

Proof. (i) Observe that a1, a2 and a3 reach the left endpoint of the segment at times
2(25/3)/5 = 10/3, 5/5 = 1, and (25/3 + 5/3)/5 = 2, respectively. During the time
interval [0, 10/3], each agent traverses the distance 2` and the positions and directions of
the agents at time t = 10/3 are the same as those at time t = 0. Hence 10/3 is a period
for their schedule.

(ii) Since AL ‖ BM and AB ‖ LM , we have b1 = b2. Since L is the midpoint of IP ,
we have δ12 + b2 = δ21 + b1, thus δ12 = δ21. Since all the agents have same speed, 5, all the
trajectory line segments in the position-time diagram have the same slope, 1/5. Hence
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Figure 5: Left: agent covering an uncovered triangle Ti. Right: agent covering an alternate
sequence of congruent triangles T1, T2, with collinear bases.

∠BAC = ∠ABC = ∠MLN = ∠LMN . Thus, T1 is similar to T2. Since b1 = b2, T1 is
congruent to T2, and consequently h1 = h2.

Put b = b1, h = h1, and δ = δ12. Recall from (i) that |AH| = 10/3. By construction,
we have |BD| = 1, thus |BH| = |BD| + |DG| + |GH| = 1 + 1 + 1 = 3. We also have
|AH| = b + |BH|, thus b = 10/3 − 3 = 1/3. Since L is the midpoint of IP , we have
δ + b = 5/3, thus δ = 5/3− b = 4/3.

Let x(N) denote the x-coordinate of point N ; then x(N) + h = 25/3. To compute
x(N) we compute the intersection of the two segments HL and BM . We have H = (0, 0),
L = (25/3, 5/3), B = (0, 3), and M = (25/3, 4/3). The equations of HL and BM are
HL : x = 5y and BM : x+ 5y = 15, and solving for x yields x = 15/2, and consequently
h = 25/3− 15/2 = 5/6.

Lemma 3. (i) Let s1 be the speed of an agent needed to cover an uncovered isosceles
triangle Ti; refer to Fig. 5 (left). Then s1 = h

1−b/2 , where b < 1 and h are the base and
height of Ti, respectively.

(ii) Let s2 be the speed of an agent needed to cover an alternate sequence of congruent
isosceles triangles T1, T2 with bases on same vertical line; refer to Fig. 5 (right). Then
s2 = h

3b/2+y−1 where y is the vertical distance between the triangles, b < 1 is the base and
h is the height of the congruent triangles.

Proof. (i) In Fig. 5 (left), tanα = 1/s1, |UZ| = b/2, hence |V Z| = 1 − b/2. Also,
|V Z|
|WV | = tanα = 1−b/2

h
= 1

s1
, which yields s1 = h

1−b/2 .

(ii) In Fig. 5 (right), |AB| = 1 + 2h
s2

. Also, |CD| = b
2

+ y + b + h
s2

. Equating

1 + 2h
s2

= 3b
2

+ y + h
s2

and solving for s2, we get s2 = h
3b/2+y−1 .

Theorem 3. For every integer x > 2, there exist k = 4x+1 agents with
∑k

i=1 vi = 16x+1
and a guarding schedule for a segment of length 25x/3. Alternatively, for every integer
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Figure 6: Top: iterative construction with 5 blocks; each block has three agents with speed 5.
Middle: 6 agents with speed 1. Bottom: patrolling strategy for 5 blocks using 21 agents for two
time periods (starting at t = 1/3 relative to Fig. 4); the block length is 25/3 and the period is
10/3.
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x > 2 there exist k = 4x+1 agents with suitable speeds v1, . . . , vk, and a guarding schedule
for a unit segment that achieves idle time at most 48x+3

50x
2∑k

i=1 vi
. In particular, for every

ε > 0, there exist k agents with suitable speeds v1, . . . , vk, and a guarding schedule for a
unit segment that achieves idle time at most

(
24
25

+ ε
)

2∑k
i=1 vi

.

Proof. Refer to Fig. 6. We use a long fence divided into x blocks; each block is of length
25/3. Each block has 3 agents each of speed 5 running in zig-zag fashion. Consecutive
blocks share one agent of speed 1 which covers the uncovered triangles from the trajec-
tories of the zig-zag agents in the position-time diagram. The first and the last block
use two agents of speed 1 not shared by any other block. The setting of these speeds is
explained below.

From Lemma 2(ii), we conclude that all the uncovered triangles generated by the
agents of speed 5 are congruent and their base is b = 1/3 and their height is h = 5/6.
By Lemma 3(i), we can set the speeds of the agents not shared by consecutive blocks

to s1 = 5/6
1−1/6 = 1. Also, in our strategy, Lemma 2(ii) yields y = δ = 4/3. Hence,

by Lemma 3(ii), we can set the speeds of the agents shared by consecutive blocks to

s2 = 5/6
1/2+4/3−1 = 1.

In our strategy, we have 3 types of agents: agents running with speed 5 as in
Fig. 6 (top), unit speed agents not shared by 2 consecutive blocks and unit speed agents
shared by two consecutive blocks as in Fig. 6 (middle). By Lemma 2(i), the agents of
first type have period 10/3. In Fig. 6 (middle), there are two agents of second type and
both have a similar trajectory. Thus, it is enough to verify for the leftmost unit speed
agent. It takes 5/6 time from A to B and again 5/6 time from B to C. Next, it waits for
5/3 time at C. Hence after 5/6 + 5/6 + 5/3 = 10/3 time, its position and direction at D
is same as that at A. Hence, its time period is 10/3. For the agents of third type, refer
to Fig. 6 (middle): it takes 10/6 time from E to F and 10/6 time from F to G. Thus,
arguing as above, its time period is 10/3. Hence, overall, the time period of the strategy
is 10/3.

For x blocks, we use 3x+(x+1) = 4x+1 agents. The sum of all speeds is 5(3x)+1(x+
1) = 16x+1 and the total fence length is 25x

3
. The resulting ratio is ρ = 16x+1

2
/25x

3
= 48x+3

50x
.

For example, when x = 2 we reobtain the bound of Kawamura and Kobayashi [10] (from
their 2nd example), when x = 39, ρ = 100

104
and further on, ρ −→

x→∞
24
25

. Thus an idle time

of at most
(
24
25

+ ε
)

2∑k
i=1 vi

can be achieved for every given ε > 0, as required.
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