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Abstract

A group of permutations G of a set V is k-distinguishable if there exists a par-
tition of V into k cells such that only the identity permutation in G fixes setwise
all of the cells of the partition. The least cardinal number k such that (G,V ) is
k-distinguishable is its distinguishing number, D(G,V ). In particular, a graph Γ is
k-distinguishable if its automorphism group Aut(Γ) satisfies D(Aut(Γ), V Γ) 6 k.

Various results in the literature demonstrate that when an infinite graph fails
to have some property, then often some finite subgraph is similarly deficient. In
this paper we show first that whenever an infinite connected graph Γ is not k-
distinguishable (for a given cardinal k), then it contains a ball of finite radius whose
distinguishing number is at least k. Moreover, this lower bound cannot be sharp-
ened, since for any integer k > 3 there exists an infinite, locally finite, connected
graph Γ that is not k-distinguishable but in which every ball of finite radius is
k-distinguishable.

In the second half of this paper we show that a large distinguishing number for an
imprimitive permutation group G is traceable to a high distinguishing number either
of a block of imprimitivity or of the action induced by G on the corresponding system
of imprimitivity. An immediate application is to automorphism groups of infinite
imprimitive graphs. These results are companion to the study of the distinguishing
number of infinite primitive groups and graphs in a previous paper by the authors
together with T. W. Tucker.

Keywords: Distinguishing number; Distinguishing coloring; Infinite graph; Infinite
permutation group; Imprimitive permutation group; Imprimitive graph
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1 Introduction

When studying infinite graphs, one frequently extends properties that originate in finite
graph theory. Some theorems in this vein may state that if an infinite graph fails to satisfy
such a property, then some finite subgraph is the likely culprit. For example:

• if an infinite graph Γ is not k-colorable, then there exists a finite subgraph of Γ that
is not k-colorable (part of N. G. de Bruijn and P. Erdős’ famous theorem, see [3]);
and

• if a countably infinite graph is not planar, then some (finite) subgraph is homeomor-
phic to one of the Kuratowski graphs K5 or K3,3 and hence is not planar (attributed
to P. Erdős by G. Dirac and S. Schuster in [6]).

In this note we consider the property of distinguishability. As automorphism groups
of graphs are but special cases of permutation groups on arbitrary sets, we frame this
notion in the more general context of permutation groups. A group G acting faithfully on
a set V (often written as a pair (G, V )) is k-distinguishable if there exists a partition of V
with k cells such that only the identity permutation in G fixes setwise all of the cells of
the partition. If k is the minimal cardinal such that the permutation group (G, V ) is k-
distinguishable, then k is the distinguishing number of (G, V ), and we write D(G, V ) = k.
If G acts on V , we write D(G, V ) to denote the distinguishing number of the subgroup
of Sym (V ) induced by G. Applying this notion to graphs, we say that a graph Γ is
k-distinguishable if its automorphism group Aut(Γ) satisfies D(Aut(Γ), V Γ) 6 k. (This
notion, applied to finite graphs, is originally due to Albertson and Collins [1].) For brevity,
unless some proper subgroup of Aut(Γ) is being considered, we write simply D(Γ) instead
of D(Aut(Γ), V Γ).

One might hope that if an infinite graph Γ fails to be k-distinguishable, then some
“interesting” substructure ought to bear the blame. Indeed, this is already known for
countably infinite trees:

• if a countably infinite tree has finite distinguishing number k, then some finite
subtree also has distinguishing number k (see [10]).

In this paper we present two substructures that may be blamed: one is a graph-
theoretical substructure and the other is algebraic. In the first part of this paper we look
at a class of subgraphs of Γ of finite diameter that give a meaningful upper bound for
D(Γ). In the second part of this paper we look at infinite imprimitive permutation groups,
demonstrating a sharp upper bound for their distinguishing numbers in terms of the dis-
tinguishing numbers of both a block of imprimitivity and the induced action of the group
on the corresponding system of imprimitivity. Graph-theoretical analogues then follow
directly. These latter results are companions to results for primitive permutation groups
and primitive graphs obtained by the present authors together with T. W. Tucker (see [9]).

For infinite graphs in general, the parameter of distinguishing number is not as well-
behaved as parameters such as chromatic number and genus; the distinguishing number
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of a subgraph of a graph Γ is not necessarily less than or equal to, but also may be greater
than D(Γ). For example, any connected graph with infinite diameter contains finite in-
duced subgraphs with distinguishing number k for every k ∈ N (to wit, the null graph on
k vertices). The class of subgraphs of finite diameter that we’ve selected for consideration
are the ball-graphs B(x, n): for n ∈ N, B(x, n) is the subgraph of Γ induced by the vertex
set {y ∈ V Γ : d(x, y) 6 n}. Its radius is n and it is centered at x.

Suppose that k − 1 is the largest valence of the vertices of a connected graph Γ. If Γ
is finite, then D(Γ) 6 k (see [5, Theorem 4.2]). When Γ is infinite, the sharper bound of
D(Γ) 6 k − 1 is obtained (see [7, Theorem 2.1]). This easily yields the following.

Proposition 1. Let Γ be a connected graph without 3-cycles and let k denote some car-
dinal. If Γ is not k-distinguishable, then there exists a vertex x ∈ V Γ such that B(x, 1)
has distinguishing number at least k.

We extend this result considerably.

Theorem 2. Let Γ be a connected graph and let k denote some cardinal. If Γ is not
k-distinguishable, then, for any vertex x ∈ V Γ, all but finitely many ball-graphs centered
at x have distinguishing number at least k.

Corollary 3. If the graph Γ of the above theorem is locally finite, then k is a sharp lower
bound for the distinguishing number of its ball-graphs.

Notice that we are providing here an upper bound for the distinguishing number of
Γ in terms of the distinguishing number of its finite ball-subgraphs. It is tempting to
think that for an infinite graph Γ when Aut(Γ) is not trivial, it might be possible to
obtain a lower bound more interesting than D(Γ) > 2, but this is not so. It is easy to
construct an example of a connected graph Γ in which the distinguishing numbers of the
ball-graphs centered at any given vertex of Γ are not bounded above, while the whole
graph is 2-distinguishable: consider for example a rooted tree in which, for each n ∈ N,
all the vertices at distance n from the root have valence n+ 1.

The purpose of the second part of this article is to describe the distinguishing number
of an imprimitive group action in terms of its blocks of imprimitivity, although we in fact
achieve something more general. Recall that a transitive group G 6 Sym (V ) is primitive
if the only G-invariant equivalence relations on V are either trivial or universal. A graph
is primitive if its automorphism group acts primitively on its vertex set. If G is transitive
but not primitive, then it is imprimitive, and there exists a nontrivial and non-universal
G-invariant equivalence relation ∼= on V . Any equivalence class B with respect to ∼= is
called a block of imprimitivity, or simply a block. The set B = {Bg : g ∈ G} is the set
of all equivalence classes with respect to ∼= and is called a system of imprimitivity. The
group G naturally induces a transitive group of permutations on B. If H is the subgroup
of G that fixes every block setwise, then H CG and G/H acts transitively and faithfully
on B.
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Much is already known about the distinguishing number of primitive permutation
groups. Á. Seress [8, Theorem 1] showed that all finite primitive permutation groups of
degree strictly greater than 32, other than the symmetric and the alternating groups,
have distinguishing number 2. It was shown in [9] that every infinite primitive permuta-
tion group with finite suborbits (orbits of a point-stabilizer) has distinguishing number 2
and thus that the distinguishing number of any nonnull, infinite, locally finite, primitive
graph is equal to 2. In light of these results, we here investigate imprimitive permutation
groups and determine that a high distinguishing number for an imprimitive group G is
accompanied by the property that, for any system of imprimitivity B of G, either:

1. for any block A ∈ B, the setwise stabilizer G{A} acting on A has a high distinguish-
ing number; or

2. the action induced by G on the system of imprimitivity B has a high distinguishing
number.

The following theorem, our second main result, provides sharp bounds for the distinguish-
ing number of G in terms of the distinguishing numbers of these two groups.

Theorem 4. Let V be a non-empty set, and G 6 Sym (V ). Suppose V admits a G-
invariant equivalence relation whose set B of equivalence classes is permuted transitively
by G. If A ∈ B is such an equivalence class, H the subgroup of Sym (A) induced by the
setwise stabilizer G{A}, and X any set such that |X| = D(G,B), then

D(G, V ) 6 D(H o Sym (X), A×X).

Here the symbol o denotes the wreath product and is defined in Section 3. Note that
the hypothesis of the above theorem is satisfied, for example, when G is any transitive
subgroup of Sym (V ) and B is any system of imprimitivity of G.

In the situation where G is not transitive on B, Theorem 4 still gives a meaningful
upper bound on D(G, V ). If {Bi : i ∈ I} is the set of orbits of G on B, write Vi :=⋃
B∈Bi

B and observe that D(G, V ) 6 supi∈I D(Gi, Vi), where Gi is the subgroup of
Sym (Vi) induced by G. For each i ∈ I, fix Ai ∈ Bi, let Hi denote the subgroup of
Sym (Ai) induced by the setwise stabilizer of Ai in Gi, and let Xi be any set such that
|Xi| = D(Gi,Bi). Applying Theorem 4, we obtain

D(G, V ) 6 sup
i∈I

D(Hi o Sym (Xi), Ai ×Xi).

An analogous result for intransitive or imprimitive graphs (Corollary 5) then follows
with some care. For a given cardinal n and any graph Λ, we denote the disjoint union of
n copies of Λ by nΛ. The complement of Λ is denoted by Λ′.

Corollary 5. Let Γ be a graph admitting an Aut(Γ)-invariant equivalence relation ∼=
consisting of equivalence classes whose induced subgraphs are isomorphic to some graph
∆. Set n := D(Γ/ ∼=). Then D(Γ) 6 min{D(n∆), D(n∆′)}, and this bound is sharp.
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Clearly, Corollary 5 is most useful when n and D(∆) are finite. There exists many
natural examples of locally finite, infinite, vertex-transitive graphs Γ which, under the
hypothesis of Corollary 5, satisfy the following: ∆ is finite, 2 < n < ℵ0 and D(Γ) > 2.
In Example 8 we describe an infinite class of such graphs for which the bound given by
Corollary 5 is sharp.

To conclude this article we show that when D(G/B) is finite, Theorem 4 may be
deduced (with a little work) from a theorem of Melody Chan [4, Theorem 2.3].

2 Distinguishing number and ball-graphs

The proof of Theorem 2 consists of bounding the distinguishing number of a connected
graph in terms of the distinguishing number of its ball-graphs. Corollary 3 will then follow
from Example 7 in the final section.

Proof of Theorem 2. It may be assumed that Γ has infinite diameter; otherwise there is
nothing to prove. Since Γ is connected, this assumption implies that for all x ∈ V Γ and
all m,n ∈ N, if m < n, then B(x,m) is a proper subgraph of B(x, n).

We prove the contrapositive. Suppose that for some x ∈ V Γ there exists an infinite
increasing subsequence {ni}i∈N from N such that D(B(x, ni)) < k for each i ∈ N. Let us
abbreviate B(x, ni) by B(i). Let X be a set (of colors) with |X| = k, and fix c0 ∈ X. It
follows that for each i ∈ N, there exists a distinguishing coloring ϕi : V B(i) → X with
the property that ϕi(y) = c0 if and only if y = x.

We now construct a coloring ψ : V Γ → X with the property that ψ(y) = c0 if and
only if y = x and prove by induction on i that ψ is k-distinguishing on B(i) \B(i− 1) for
all i ∈ N. From this it will follow that D(Γ) 6 k.

We begin by setting ψ1 = ϕ1 and remarking that ψ1 is a distinguishing coloring of
B(1) with at most k colors that assigns to y ∈ V B(1) the color c0 if and only if y = x.
For j > 2 we define the k-coloring ψj : V B(j)→ X by

ψj(y) =

{
ψj−1(y) if y ∈ V B(j − 1),

ϕj(y) if y ∈ V B(j) \ V B(j − 1).

Our induction hypothesis is that for all i < j, ψi is a distinguishing coloring of B(i) that
agrees with ψi−1 on V B(i− 1). We claim that ψj is a distinguishing coloring of B(j) and
is an extension of ψj−1. For some g ∈ Aut(B(j)), suppose that ψj(y

g) = ψj(y) for all
y ∈ V B(j). Since ψj(y) = c0 if and only if y = x, we have that g fixes x and therefore
g fixes V B(j − 1) setwise. Since ψj−1 is a distinguishing coloring of B(j − 1) while ψj
and ψj−1 agree on V B(j − 1), ψj restricted to B(j − 1) is a distinguishing coloring of
B(j − 1); hence g fixes V B(j − 1) pointwise. But g also fixes V B(j) \ V B(j − 1) setwise.
Hence for all y ∈ V B(j) \ V B(j − 1), we have ϕj(y) = ψj(y) = ψj(y

g) = ϕj(y
g). We have

shown that for all y ∈ B(j) we have ϕj(y) = ϕj(y
g), which implies y = yg because ϕj is a
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distinguishing coloring of B(j). Hence ψj is a distinguishing coloring of B(j) that agrees
with ψi on B(i) whenever i 6 j.

Define a function ψ : V Γ→ X as ψ(y) = ψi(y) whenever y ∈ V B(i). The argument of
the preceding paragraph implies that ψ is well-defined. We claim that ψ is a distinguishing
coloring of Γ. For suppose that ψ(yg) = ψ(y) for some g ∈ Aut(Γ) and all y ∈ V Γ. Then
g fixes x and therefore g fixes setwise every set V B(i). Moreover, for all i ∈ N and for all
y ∈ V B(i), the function ψi is a distinguishing coloring of B(i); since ψi(y

g) = ψ(yg) =
ψ(y) = ψi(y), it follows that yg = y. Hence ψ is a distinguishing coloring of Γ, and so
D(Γ) 6 |X| = k.

3 Distinguishing number and imprimitivity

Given an infinite permutation group (G, V ), we obtain an upper bound for D(G, V ) when
G acts imprimitively on V . We then apply this bound to the group of automorphisms of
a locally finite graph in order to demonstrate that our bound is sharp. Since imprimitive
groups can be embedded in wreath products in a natural way (see [2, Theorem 8.5],
for example), we first present for completeness a definition and notation for the wreath
product of two permutation groups. (See, for example, [2, pp 67–72].)

Let H 6 Sym (S) and K 6 Sym (T ). The wreath product H oK is defined to be the
semidirect product Fun(T,H) oK, where Fun(T,H) is the group of functions from T to
H. The wreath product H o K has a faithful action (called the imprimitive action) on
S × T , defined as follows: for all (a, b) ∈ S × T , f ∈ Fun(T,H), and k ∈ K,

(a, b)(f,k) := (af(b), bk). (1)

Proof of Theorem 4. Fix some equivalence class A ∈ B. Let χ : B → X be a dis-
tinguishing coloring of (G,B), and let ψ : A × X → Y be a distinguishing color-
ing of (H o Sym (X), A × X), where Y is some sufficiently large set of colors. Thus
D(H o Sym (X), A×X) 6 |Y |.

Since (G,B) is transitive, for each B ∈ B there exists gB ∈ G such that BgB = A.
This defines an injection f : B → G given by B 7→ gB; that is,

Bf(B) = A for each B ∈ B.

We now define a coloring φ : V → Y as follows: for each v ∈ V , if B is the block in B
containing v, then

φ(v) := ψ
((
vf(B), χ(B)

))
.

It remains only to show that φ describes a distinguishing coloring of (G, V ), for this will
imply that, for any set Y , if D(H o Sym (X), A×X) 6 |Y |, then D(G, V ) 6 |Y |.

Suppose that some permutation g ∈ G preserves all the color classes of φ in V . If
x ∈ A and B ∈ B, then we have

φ(xf(B)−1g) = φ(xf(B)−1

) = ψ
((
xf(B)−1f(B), χ(B)

))
= ψ ((x, χ(B))) .
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However, we also have that

φ(xf(B)−1g) = ψ
((
xf(B)−1g f(Bg), χ(Bg)

))
.

Hence, for all x ∈ A and B ∈ B, and for all g ∈ G that preserve the coloring function φ,
we have

ψ ((x, χ(B))) = ψ
((
xf(B)−1g f(Bg), χ(Bg)

))
. (2)

Fix some g ∈ G that preserves the coloring φ of V . We now show that g must fix V
pointwise, from which it follows that φ is a distinguishing coloring of (G, V ). Fix B ∈ B
and note that f(B)−1g f(Bg) ∈ G{A}. Let h ∈ H be the permutation of A induced by
f(B)−1g f(Bg). Let σ ∈ Sym (X) be the permutation of X that interchanges the colors
χ(B) and χ(Bg) and fixes every other element of X; thus either (i) σ is is a transposition
or (ii) σ = 1X .

Let us define θ : X → H by

θ(i) =


h if i = χ(B);

h−1 if i = χ(Bg);

1H otherwise.

Thus (θ, σ) ∈ H o Sym (X), and we must apply Equation (1) to evaluate (x, χ(B))(θ,σ) ∈
A×X in each of the two cases.

In Case (i), where χ(B) 6= χ(Bg), we have by Equation (1) that (x, χ(B))(θ,σ) =
(xθ(χ(B)), χ(B)σ) = (xh, χ(Bg)) and (xh, χ(Bg))(θ,σ) = (x, χ(B)) for all x ∈ A, while all
other elements of A×X remain fixed by (θ, σ). Thus, by Equation (2), the permutation
(θ, σ) preserves the color classes of ψ on A ×X and is therefore the identity. Since this
contradicts the assumption that χ(B) 6= χ(Bg), Case (i) is not possible.

So, we must have Case (ii), where χ(B) = χ(Bg). We now define

θ(i) =

{
h if i = χ(B);

1H otherwise.

Applying Equation (1) again (and noting that σ is trivial), we have (x, χ(B))(θ,σ) =
(xh, χ(B)) = (xh, χ(Bg)) for all x ∈ A; every other element of A × X is fixed by (θ, σ).
Thus by Equation (2) the permutation (θ, σ) preserves the coloring ψ, and is therefore
the identity on A×X. In particular, h = 1A.

Since B ∈ B was chosen arbitrarily, we have shown that for all B ∈ B,

χ(B) = χ(Bg) and f(B)−1gf(B) ∈ G(A),

where G(A) here denotes the pointwise stabilizer in G of A. Thus the action of g on B
preserves χ, and so g fixes each class in B setwise. Furthermore, if y ∈ V then there exists

some B ∈ B and x ∈ A such that y = xf(B)−1
=
(
xf(B)−1gf(B)

)f(B)−1

= xf(B)−1g = yg.

Hence g fixes V pointwise, and φ is a distinguishing coloring of (G, V ).
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We now use Theorem 4 to obtain the companion graph-theoretical result.

Proof of Corollary 5. Write G := Aut(Γ) and let B denote the set of all equivalence
classes with respect to ∼=. Thus n = D(G,B). Let X be an n-set (of colors). Abusing
notation, identify V∆ with an equivalence class B ∈ B. One may thus represent the
vertex set of n∆ as B × N = {(x, ν) : x ∈ B; ν ∈ N}, where we understand that for
any given ν0 ∈ N , the set {(x, ν0) : x ∈ B} induces a copy of ∆. Since Aut(∆) o Sym (N)
acts as a group of permutations on B × N , we have Aut(∆) o Sym (N) 6 Sym (B × N).
Since Aut(∆) o Sym (N) preserves the edge structure of n∆, we have Aut(∆) o Sym (N) 6
Aut(n∆).

Let H be the subgroup of Sym (B) induced by G{B}. If C is the orbit of G on
B that includes B, then D(G,C ) 6 D(G,B). If W is the set of those vertices of
Γ that lie in some equivalence class in C , we have by Theorem 4 applied to (G,C )
that the distinguishing number of the subgroup of Sym (W ) induced by G is at most
D(H o Sym (X), B ×X) 6 D(Aut(∆) o Sym (X), B ×X) 6 D(n∆). Since this is true for
all orbits C of G on B, the inequality D(G, V ) 6 D(n∆) holds. In the above argument,
one may replace Γ and ∆ with their respective complements to obtain D(G, V ) 6 D(n∆′).
Hence D(G, V ) 6 min{D(n∆), D(n∆′)}. This bound is sharp, since given a cardinal n
and a connected graph ∆, one could choose Γ to be the graph n∆.

Remark 6. The bound in Corollary 5 is sharp even for connected graphs, since n∆ and
its complement have the same distinguishing number.

The following example constitutes a proof of Corollary 3, by giving a sharp bound for
the inequality of Theorem 2 in the case of locally finite graphs.

Example 7. For any given integer k > 3, we construct an infinite, locally finite graph Γ
with the following two properties:

1. D(Γ) = k + 1; and

2. For all x ∈ V Γ, all but finitely many ball-graphs centered at x have distinguishing
number k.

Let A0 be the complete graph Kk on k vertices; let A1 be the complete graph Kk(k−1)
minus a 1-factor, and let A2 be the null graph of order k. (We will use that these three
graphs are vertex-transitive, have distinct valences, and have distinguishing number k.)
Write [n] := n (mod 3). Let Γ be the infinite, locally finite graph with vertex set V Γ =⋃
n∈Z
(
V A[n] × {n}

)
, in which two vertices (x,m), (y, n) ∈ V Γ are adjacent if and only if

1. n = m and x and y are adjacent in A[n]; or

2. |n−m| = 1.

Intuitively, Γ has the form

· · · − A2 − A0 − A1 − A2 − A0 − A1 − · · ·
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in which each vertex of any copy of A[n] is adjacent to every vertex of its adjacent copies
of A[n−1] and A[n+1]. For n ∈ Z, let Hn be the subgraph of Γ induced by V A[n] × {n} (so
Hn
∼= A[n]), and let H := {Hn : n ∈ Z}.
Let us first examine Aut(Γ). One straightforwardly verifies that for all m ∈ N the

valences (in Γ) of vertices in H3m, H3m+1, and H3m+2 are, respectively, k2+k−1, k2+k−2,
and k2. Since k > 3, these three integers are distinct, and so the orbit of any vertex in
V Hn is the set

⋃
{V Hm : m ≡ n (mod 3)}. Fix g ∈ Aut(Γ). Since H0

∼= A0 is connected,
it must therefore hold that Hg

0 = H3m for some m ∈ Z, and an elementary adjacency
argument shows that g satisfies Hg

n = H3m+n for all n ∈ Z. If m 6= 0, then g is a
translation. Thus

B = {V H3m ∪ V H3m+1 ∪ V H3m+2 : m ∈ Z}
is a system of imprimitivity for Aut(Γ). It is obvious that D(〈P 〉) = k for any P ∈ B
(where 〈P 〉 denotes the subgraph of Γ induced by P ) and that D(2〈P 〉) = k + 1. Since
Γ/B is a double ray, we have D(Γ/B) = 2. Hence by Corollary 5, we have D(Γ) 6
D(2〈P 〉) = k+ 1. Of course D(Γ) > k, because there exists a distinguishing k-coloring of
each subgraph Hn, and it is unique up to a permutation of the colors; any k-coloring which
distinguishes each subgraph Hn is therefore preserved by some non-trivial translation of
Γ.

It remains only to show that for any given (x, n) ∈ V Γ and integer m > 3, the
ball-graph Bm := B ((x, n),m) has distinguishing number at most k. Clearly

V Bm =
n+m⋃
i=n−m

V Hi.

If |n − i| < m, then the valence of a vertex in Hi is the same in both Bm and Γ. If
|n − i| = m, then the valence of a vertex in Hi is one of the five smaller values: k2 −
1, k2 − 2, k2 − k, 2k − 1, k. By a simple inductive argument, it follows that every
automorphism of Bm fixes Hi setwise whenever |n − i| 6 m. Since D(Hi) = k it must
hold that D(Bm) 6 k.

We remark that one can find a k-subset of the vertices of H3m−1 whose union with
H3m is isomorphic to K2k, but the resulting graph is not a ball-graph.

Our next example is a graph for which Corollary 5 gives a meaningful, sharp upper
bound on its distinguishing number. This graph is connected, infinite, locally finite and
vertex-transitive; it has a finite distinguishing number strictly greater than 2 and admits
a system of imprimitivity whose blocks are finite.

Example 8. If Γ,∆ are graphs, the lexicographic product Γ[∆] is the graph in which each
vertex of Γ is replaced with a copy of ∆, with all edges joining copies of ∆ corresponding
to adjacent vertices in Γ.

Let Z be the double ray. Fix integers m, r > 2, let Γ be the graph Z[mKr], and let
G := Aut(Γ). ClearlyG is transitive on V Γ, and there is aG-invariant equivalence relation
∼= on V Γ in which two vertices are equivalent if and only if they lie in the same copy of Kr.
The quotient graph Γ/ ∼= is isomorphic to Z[K ′m] and D(Γ) = min{` ∈ N :

(
`
r

)
> m+ 1}.
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Now n := D(Γ/ ∼=) = m + 1, and D(nKr) = min{` ∈ N :
(
`
r

)
> n}, so D(Γ) = D(nKr).

Thus, the bound given by Corollary 5 for D(Γ) is sharp, and 2 < D(Γ) < ℵ0.

Here is another way to bound the distinguishing number of an imprimitive graph.

Corollary 9. Under the hypothesis of Corollary 5, if n := D(Γ/ ∼=) and k := D(∆) are
finite, then

D(Γ) < kn1/k + 1.

Proof. Either ∆ or its complement ∆′ is connected, and D(∆′) = D(∆) = k, so without
loss of generality, suppose that ∆ is connected. Let m be the integer satisfying kn1/k 6
m < kn1/k + 1. Since m > k, we have

(
m
k

)
> (m/k)k > n. But if m satisfies

(
m
k

)
> n,

then D(n∆) 6 m, because ∆ is connected and a different k-set of colors may be used for
each copy of ∆. Hence by Corollary 5, D(Γ) 6 D(n∆) 6 m < kn1/k + 1.

In the Introduction of this article, we referred to a result of Melody Chan, which
requires the following notation. For a permutation group (H,A) let nr(H,A) be the
number of distinct distinguishing r-colorings of (H,A). For S ⊆ N let

min∗S :=

{
minS if S 6= ∅; and

ℵ0 if S = ∅.

Proposition 10 (M. Chan [4, Theorem 2.3]). If (H,A) and (K,B) are permutation groups
and D(K,B) is finite, then

D(H oK,A×B) = min∗ {r ∈ N : nr(H,A) > |H| ·D(K,B)} .

We conclude by showing how Chan’s result implies Theorem 4 (when G is transitive)
and Corollary 5 (when Γ is vertex-transitive) in the special case of finite distinguishing
numbers.

Proof. Suppose that (G, V ) is a transitive permutation group that induces a system of
imprimitivity B. Let GB be the subgroup of Sym (B) induced by the action of G on
B. Suppose that D(GB,B) = n, where n is a positive integer. Let X denote an n-set
of colors. Let A ∈ B, and let H be the subgroup of Sym (A) induced by the setwise
stabilizer G{A}. Observe (by [2, Theorem 8.5] for example) that (G, V ) is permutation-
isomorphic to a subgroup of (H oGB, A×B). Hence, D(G, V ) 6 D(H oGB, A×B) and
D(GB,B) = D(Sym (X), X). Since n is finite, Proposition 10 yields:

D(H oGB, A×B) = min∗
{
r ∈ N : nr(H,A) > |H| ·D(GB,B)

}
= min∗ {r ∈ N : nr(H,A) > |H| ·D(Sym (X), X)}
= D(H o Sym (X), A×X).
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