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Abstract

Recent research on the algebra of non-commutative symmetric functions and the
dual algebra of quasi-symmetric functions has explored some natural analogues of
the Schur basis of the algebra of symmetric functions. We introduce a new basis
of the algebra of non-commutative symmetric functions using a right Pieri rule.
The commutative image of an element of this basis indexed by a partition equals the
element of the Schur basis indexed by the same partition and the commutative image
is 0 otherwise. We establish a rule for right-multiplying an arbitrary element of this
basis by an arbitrary element of the ribbon basis, and a Murnaghan-Nakayama-like
rule for this new basis. Elements of this new basis indexed by compositions of the
form (1n,m, 1r) are evaluated in terms of the complete homogeneous basis and the
elementary basis.

1 Introduction
The Hopf algebra Sym of symmetric functions is a subalgebra of QSym, the Hopf algebra
of quasi-symmetric functions. By duality there exists a projection map χ : NSym→ Sym,
where NSym denotes the Hopf algebra of non-commutative symmetric functions, which is
dual to QSym. The bases of NSym and QSym are indexed by the set of integer compositions
C and the bases of Sym are indexed by the set of integer partitions P. A natural question
to ask is whether there exists a basis of NSym which projects in a natural way onto the
Schur basis of Sym.

From the time of the introduction of QSym [Gessel, MR] and NSym [NCSF], it was gen-
erally accepted that the closest analogues of the Schur basis were the “fundamental” basis
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{Fα}α∈C of QSym and (its dual) the “ribbon” basis {Rα}α∈C of NSym. The fundamental
basis has the property that

sλ =
∑

shape(P (σ))=λ

FD(σ)

where the notation indicates that the sum is over all permutations such that the shape
of the P -tableaux (in the RSK correspondence) is equal to λ and D(σ) is the descent
composition of the permutation σ. The ribbon basis has the property that

χ(Rα) = sν/ν

where ν/ν is a skew partition representing a right alignment of the rows of the composition
α.

The position of the fundamental and ribbon bases as “the” Schur analogues of QSym
and NSym was called into question in the exploration of the quasi-symmetric function
expansion of Macdonald polynomials [HHL]. The quasi-symmetric expansion seemed to
lead to the definition of a quasi-symmetric basis, {Sα}α∈C, that was a close analogue of the
Schur basis and so it was named “quasi-Schur” [HLMvW11a]. It was noted that this basis
was very closely related to the Demazure atoms [LS] of Lascoux and Schützenberger and
the quasi-Schur basis of QSym was a natural analogue of the Schur symmetric functions
because:

sλ =
∑
α∈C

sort(α)=λ

Sα .

The dual quasi-Schur basis {S∗α}α∈C of [BLvW] has the property that

χ(S∗α) = ssort(α).

More recently, Berg et. al. [BBSSZ] introduced a second analogue of the Schur func-
tions, which they dubbed the “immaculate” basis of NSym, {Sα}α∈C, as well as the dual-
immaculate basis of QSym {S∗α}α∈C. The immaculate basis of NSym satisfies the following
analogue of the Jacobi-Trudi rule for the Schur basis:

Sα =
∑

σ∈S`(α)

sign(σ)Hα1+σ1−1,α2+σ2−2,...,α`(α)+σ`(α)−`(α).

Therefore,
χ(Sα) = det[hαi+j−i]`(α)×`(α)

and in particular for a partition λ, χ(Sλ) = sλ. The dual immaculate basis has the
property that

sλ =
∑
σ

sign(σ)S∗λ+id−σ

where the addition is coordinate-wise as vector entries, and id represents the identity
permutation and the sum is over permutations σ of {1, 2, . . . , `(λ)} such that λ + id− σ
is a composition.
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Computer explorations of NSym and QSym using the software Sage [sage] lead us to
consider other related possible bases of NSym and their dual bases of QSym. We are
ideally searching for a basis that simplifies proofs of Schur-positivity properties of quasi-
symmetric function expansions. A combinatorial algorithm of this type may or may not be
possible; however, there are reasons to believe that each of these bases of NSym and QSym
closely reflect different combinatorial aspects of compositions and composition tableaux
and their relationship to partitions and column strict tableaux.

In this paper, we introduce a basis { α}α∈Cש! of NSym called the shin basis as another
analogue of the Schur basis, together with a dual basis { α}α∈C∗ש! of QSym. They are defined
so that they have the simplest combinatorial rule we could identify, with the property that

χ( (αש! =

{
sλ if α = λ ∈ P

0 otherwise
.

Dually, we have that for a partition λ,

sλ = .λ∗ש!

This implies that α∗ש! is a symmetric function if and only if α is a partition. We have
chosen to develop this basis of NSym because many of the algebraic properties that we
have discovered are more clearly stated on the basis αש! than the basis .α∗ש!

After a few preliminary definitions, we introduce a definition of the shin basis in
Section 3. In the next section, we prove a combinatorial formula for the product of an
element of the shin basis and an element of the ribbon basis, and in Section 5 we prove
a combinatorial formula for the product of an element of the shin basis and an element
Ψn, which is an analogue of the power sum generator of degree n for NSym. In Section 6,
we give a formula for the shin function evaluated at compositions of the form (1n,m, 1r).
We give an explicit definition of the graded dual of the shin basis, a basis of QSym. We
show the close relationship between the shin function and the Schur basis of Sym.
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2 Preliminaries
To establish some notation, we define a composition of a positive integer n as a tuple
α = (α1, α2, . . . , αm) such that

∑m
i=1 αi = n and (α1, α2, . . . , αm) ∈ Nm for some m ∈ N.

The notation α � n is used to indicate that α is a composition of n, and the length of
α, denoted `(α), is m. We adopt the convention whereby αi = 0 for all indices i > `(α).
A partition λ = (λ1, λ2, . . . , λ`(λ)) of a positive integer n is a composition satisfying the
additional property that λ1 > λ2 > . . . > λ`(λ). To indicate that λ is a partition of n, we
write λ ` n.

C will be used to denote the set of all integer compositions together with the empty
composition (), writing () � 0 by convention, with C = {α : α � n where n ∈ Z>0}. Cn is
the set of all compositions of a fixed n, with Cn = {α : α � n}.

NSym may be defined as the free Q-algebra generated by {H1, H2, . . .}, where Hn is
defined to be of degree n ∈ N and may be regarded as a primitive object. For arbitrary
α ∈ C write Hα = Hα1 . . . Hα`(α) , and write H() = 1. H : C→ NSym will be referred to as
the complete homogeneous function, and the complete homogeneous basis of NSym may
be defined to be imH.

Observe the following graded algebra structure of NSym, letting NSymr denote the
set of all homogeneous polynomials in NSym of degree r together with 0 for r > 0, with
NSym0 = Q:

NSym =
⊕
r>0

NSymr =
⊕
r>0

spanQ(im(H|Cr)) .

The algebra NSym also has a Q-coalgebra structure whereby the coproduct is given
by ∆(Hj) =

∑j
i=0Hi⊗Hj−i. This coproduct is compatible with the product structure of

NSym [NCSF] and hence:

∆(Hα) = ∆(Hα1)∆(Hα2) . . .∆(Hα`(α)).

Sym may be analogously defined as the free commutative Q-algebra with one generator
in each degree:

Sym = Q[h1, h2, h3, . . .] .

The coproduct is similarly defined so that ∆(hj) =
∑j

i=0 hi ⊗ hj−i. This coproduct is
compatible with the product structure of Sym and hence:

∆(hλ) = ∆(hλ1)∆(hλ2) . . .∆(hλ`(λ)).

NSym projects onto Sym with the map

χ(Hα) = hα1hα2 . . . hα`(α) . (1)

This map commutes with the product and coproduct operation since it can be shown
on the generators of the algebra that

χ(HαHβ) = χ(Hα)χ(Hβ)
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and
(χ⊗ χ) ◦∆(Hr) = ∆(χ(Hr)) .

QSym may be defined as the Q-algebra spanned by elements Mα for α ∈ C where the
monomial basis {Mα}α∈C of QSym is the dual basis to {Hα}α∈C. The symmetric functions
are self-dual with respect to the pairing 〈·, ·〉 : Sym × Sym → Q where 〈hλ,mµ〉 = δλ,µ.
We note that there is a natural inclusion of Sym into QSym where

mλ =
∑

sort(α)=λ

Mα (2)

where the sum is over all compositions α such that the weakly decreasing arrangement of
the parts of α is equal to the partition λ. Alternatively, the inclusion of Sym to QSym is
the dual to the projection map χ : NSym → Sym that was introduced in Equation (1).
This can be seen if we restate Equation (2) as

mλ =
∑
α

(coefficient of hλ in χ(Hα))Mα .

and Equation (1) as

χ(Hα) =
∑
λ

(coefficient of Mα in mλ)hλ = hsort(α) .

Letting α be a composition, the descent set of α is D(α) = {α1, α1 + α2, α1 + α2 +
α3, . . . , α1 +α2 + . . .+α`(α)−1} and this defines a bijection between the compositions of n
and the set of subsets of {1, 2, 3, . . . , n− 1}. The refinement order is the binary relation
� defined on Cn so that α � β iff D(α) ⊆ D(β). We will use the lexicographic order 6`
on C when discussing the triangularity of bases. If α and β are elements of C, then α >` β
if α1 > β1, or α1 = β1 and (α2, . . . , α`(α)) >` (β2, . . . , β`(β)).

3 A New Basis of NSym

The immaculate basis of NSym was recently introduced in [BBSSZ] as an analogue of the
Schur basis of Sym and the dual quasi-Schur basis was introduced in [BLvW, HLMvW11a,
HLMvW11b]. Both the immaculate basis and the dual quasi-Schur basis can be defined
using a multiplicity-free right Pieri rule and it is using this idea that we consider a third
analogue of the Schur basis inside of NSym.

We will define the shin function ש! : C → NSym using a similar multiplicity-free right
Pieri rule, based upon the following analogue of horizontal strips for compositions:

Definition 1. Let α and β be compositions. Then β differs from α by a shin-horizontal
strip of size r iff: for all i βi > αi (“containment axiom”), |β| = |α|+ r and for all indices
i ∈ N, if βi > αi, then for all j > i, βj 6 αi (“overhang axiom”).
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Remark 2. We will henceforward use French notation for diagrams, tableaux, and skew-
tableaux. Using French notation, the first entry of a composition is at the bottom of the
diagram of the composition (see Example 4 and Example 5 below). The overhang axiom
says that β/α has at most one cell per column and cells in β/α should not be below (in
a row with a lower index) a row of α which is longer than (overhangs) the horizontal
coordinate of the cell.

Remark 3. Observe that the overhang axiom as formulated above holds for all indices
i ∈ N. Recall that we are using the convention whereby for α ∈ C, for all indices i > `(α)
we have αi = 0. See Example 5 below.

Example 4. Let α = (3, 1, 4, 1, 5) and β = (3, 1, 4, 1, 8, 1). Then β differs from α by a
shin-horizontal strip of size 4.

diag(α) diag(β)

Example 5. If β = (3, 1, 4, 1, 8, 1, 1), then β does not differ from α = (3, 1, 4, 1, 5) by a
shin-horizontal strip because α6 = 0 < β6 = 1 but it is not the case that β7 6 α6 and
hence the overhang axiom given in Definition 1 does not hold, as illustrated graphically
in the diagram below. If γ = (3, 2, 4, 1, 5), then γ does not differ from α = (3, 1, 4, 1, 5)
by a shin-horizontal strip because γ2 = 2 > α2 = 1 but is is not the case that γ3 6 α2

and hence the overhang axiom does not hold, as illustrated below.

diag(β) diag(γ)

Using Definition 1, we recursively define the shin function as follows:

Definition 6. The shin function ש! : C → NSym maps an arbitrary composition α to
the unique non-commutative symmetric function αש! satisfying αHrש! =

∑
β ,βש! where the

sum is over all compositions β which differ from α by a shin-horizontal strip of size r.

Remark 7. The interested reader should consult [BBSSZ] and [BLvW] in order to make
a proper comparison between the shin basis and the immaculate and dual quasi-Schur
bases since they each satisfy a similar right Pieri rule.
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The Pieri rule for the immaculate basis satisfies the containment axiom and the con-
dition that `(β) 6 `(α) + 1.

The Pieri rule for the dual quasi-Schur basis satisfies the containment axiom and the
rule that there is at most one cell per column such that if the cells of β/α are ordered
from left to right then the sequence of indices of the rows is weakly decreasing and cells
can only be added on the topmost row of a given length.

A repeated application of the immaculate Pieri rule shows that the complete ho-
mogeneous function has a positive uni-triangular expansion in terms of the immaculate
function. This property is used to prove that the immaculate basis of NSym is indeed a
basis. This leads us to the following analogue of the notion of a column strict tableau,
which is very similar to the usual notion of column strict tableaux of partition shape.

Definition 8. Let α and β be compositions. A shin-tableau of shape α and content β is
a labelling of the boxes of the diagram of α by positive integers such that:

1. The number of boxes labeled by i is βi,

2. The sequence of entries in each row, from left to right, is weakly increasing,

3. The sequence of entries in each column, from lowest index to highest index, is strictly
increasing.

Example 9. Observe that when we consider tableaux to be chains of compositions ordered
by containment, the overhang axiom is what makes tableaux column-strict. There are 4
shin-tableaux of shape α = (5, 3, 1) and content β = (3, 1, 4, 1):

4
3 3 3
1 1 1 2 3

4
2 3 3
1 1 1 3 3

3
2 3 4
1 1 1 3 3

3
2 3 3
1 1 1 3 4

while there are 2 tableaux of shape (5, 1, 3) and content (3, 1, 4, 1):

3 3 4
2
1 1 1 3 3

3 3 3
2
1 1 1 3 4

.

Letting Kα,β denote the number of shin-tableaux of shape α and content β, we arrive
at a combinatorial expansion of the complete homogeneous function in the shin basis.
Remark 10. We note that in particular, if λ is a partition, then Kλ,β is equal to the number
of column-strict tableaux in the “usual” sense, i.e. Kλ,β is the Kostka number given by
shape λ and content β.

Theorem 11. The complete homogeneous function has a positive, uni-triangular expan-
sion in terms of the shin function. Explicitly,

Hβ =
∑
α>`β

Kα,β αש! .
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Proof. This theorem follows from a repeated application of the shin-Pieri rule given in
Definition 6 above.

Begin by observing that Hβ1 = β1ש! , and thus Hβ1Hβ2 =
∑

γ ,γש! where the sum is over
all compositions γ which differ from (β1) by a shin-horizontal strip of size β2. Labelling
the cells of β1 with 1’s and labelling the added cells with 2’s, the sum is over all expressions
of the form shape(Tש! ), where T is a shin-tableau with content (β1, β2). Right-multiply by
Hβ3 and label the added cells with 3’s, then right-multiply by Hβ4 and label the added
cells with 4’s, and so forth.

We can verify by induction against Definition 8 that if Hβ is

Hβ =
∑
T

shape(Tש! ),

where the sum is over shin-tableaux of content β, then HβHr is the sum over shin-tableaux
of content (β, r).

Note that because the tableaux are strictly increasing in each column and weakly
increasing in each row, the first column must be strictly increasing and consequently the
cells of label i must be in the first i rows. Hence if T is of content β then shape(T ) >` β.
Therefore, if α 6` β, then Kα,β = 0.

Also note that Kα,α = 1, as there is only one filling of the tableau of shape α and
content α.

It follows from Theorem 11 that, for an arbitrary non-negative integer n, the transition
matrix from { αש! : α � n} to {Hα : α � n} is non-singular. We have as a consequence the
following corollary.

Corollary 12. im(!ש) is a basis of NSym.

Definition 13. Let α and β be compositions such that α is contained in β. Let β/α
denote the cells in β that are not in α. A filling T of the cells of β/α with natural
numbers is a skew shin-tableau if the following two conditions are satisfied:

1. If βi > αi, then for all j > i, αj 6 αi (“overhang axiom”);

2. T is weakly increasing in the rows and strictly increasing in the columns.

We define the skew shape of T as β/α, the inner shape of T as α, and the shape of T
as β.

Example 14. For example, letting α = (3, 1, 4, 1), and letting β = (3, 1, 4, 6, 3, 1), the
filling of the cells of β/α illustrated below is a skew shin-tableau:

3
2 2 3

1 1 1 1 2
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On the other hand, letting β = (3, 2, 4, 1), the filling of the cells of β/α illustrated
below is not a skew shin-tableau, because the overhang axiom does not hold:

1

A repeated application of the shin-Pieri rule shows that

αHβש! =
∑
T

shape(Tש! ),

where the sum is over all skew shin-tableaux with β1 ones, β2 twos, etc. Let α, β ∈ C

with α contained in β. Let T be a filling of the skew diagram of β/α with positive integer
labels which are increasing in the columns, letting α(0) = α, and letting α(i) denote the
underlying composition of the subtableau of β as filled by T with the labels 1 through i.
Then T is a skew shin-tableau if the filling of the cells of α(i)/α(i−1) is a shin-horizontal
strip for each i. For example, the filling of the skew diagram pictured below is a skew
shin-tableau:

3
2 2
1 1 1 2 3 3

1 2

Definition 15. The shin basis of NSym is im(!ש).

Let χ : NSym → Sym denote the forgetful mapping whereby for arbitrary F ∈ NSym,
χ(F ) is the commutative image of F . The map is defined so that

χ(Hα) = hα1hα2 . . . hα`(α) .

One reason that we focused on this definition of the ש! basis is that experiments by
Chris Berg [Berg] showed that the projection of a shin function was either a Schur function
or 0. In Section 7 we present the dual shin basis of the quasi-symmetric functions and
prove the projection formula

χ( (αש! =

{
sα if α is a partition
0 otherwise

using the duality of non-commutative symmetric functions with the quasi-symmetric func-
tions (see Theorem 28).
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4 A Formula for Multiplication by a Ribbon
We begin this section by defining two additional bases of NSym.

Definition 16. The elementary generator indexed by n is recursively defined as E() = H()

and for n > 1,

En =
n∑
i=1

(−1)i+1HiEn−i =
∑
β�n

(−1)`(β)+nHβ .

For an arbitrary composition α, write Eα = Eα1Eα2 . . . Eα`(α) . The elementary basis of
NSym is defined to be {Eα : α ∈ C}.

Definition 17. The ribbon function R : C→ NSym is defined for a nonempty composition
α as follows:

Rα =
∑
β�α

(−1)`(α)−`(β)Hβ .

It is also the case that Hα =
∑

β�αRβ. See [NCSF] for an introduction to the ribbon
basis of NSym, and for properties such asR1n = En, and the ribbon multiplication formula:

RαRβ = Rα,β +Rα1,α2,...,α`(α)+β1,β2,...,β`(β) .

The following theorem uses the concept of skew shin-tableaux as defined in Definition
13. Letting T be a standard filling of a skew composition of shape β/α, where α is
contained in β, the descent set of T is D(T ) = {i : i+ 1 lies above i}.

Theorem 18. For all α, β ∈ C,

αRβש! =
∑

γ�|α|+|β|

∑
T

,γש!

where the inner sum is over all standard skew shin-tableaux T of skew shape γ/α such
that D(T ) = D(β).

Proof. Letting α be an arbitrary composition and m be an arbitrary integer, we have
αRmש! = .αHmש! By Definition 6, αHmש! =

∑
γ ,γש! where |γ| = |α| + m, and γ differs

from α by a shin-horizontal strip of size m. Filling the horizontal strip with content
{1, 2, . . . ,m} from left to right and from top to bottom, the above conditions hold.

We proceed by induction on the length of β. Suppose that for some natural number
k and for any composition β such that `(β) 6 k, αRβש! =

∑
T ,γש! where the sum is over

all standard skew shin-tableaux T of inner shape γ/α such that D(T ) = D(β), where
γ � |α|+ |β|. For `(β) = k + 1, by the ribbon multiplication rule, we have:

αRβש! = α[R(β1,β2,...,βk)Rβk+1ש!
−R(β1,β2,...,βk+βk+1)]

= αR(β1,β2,...,βk)Hβk+1ש!
− αR(β1,β2,...,βk+βk+1)ש! .
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By our inductive hypothesis, we have:

αRβש! =

(∑
T1

shape(T1)ש!

)
Hβk+1

−
∑
T2

.shape(T2)ש! (3)

where the first sum is over standard fillings T1 with D(T1) = D(β1, β2, . . . , βk) and the sec-
ond sum is over standard fillings T2 with D(T2) = D(β1, β2, . . . , βk + βk+1). By Definition
6, we have: (∑

T1

shape(T1)ש!

)
Hβk+1

=
∑
T

shape(Tש! ) +
∑
T2

shape(T2)ש! (4)

where the first sum is over all standard fillings T with D(T ) = D(β1, β2, . . . , βk, βk+1) and
the second sum over T2 is exactly the same as that which appears in Equation (3) with
D(T2) = D(β1, β2, . . . , βk + βk+1). From Equation (3) and (4) we have for `(β) = k + 1,
αRβש! =

∑
T shape(Tש! ), where the sum is over all standard skew shin-tableaux T of inner

shape γ/α such that D(T ) = D(β), where γ � |α|+ |β|.

The above multiplication rule allows us to evaluate shin functions of the form (n,1m)ש!

in the ribbon and complete homogeneous basis.

Corollary 19. For an arbitrary composition of the form (n, 1m),

(n,1m)ש! = R(n,1m) =
∑

α�n+m,α1>n

(−1)m+1−`(α)Hα . (5)

Proof. There is precisely one standard filling of the composition (n, 1m) with D(T ) =
(n, 1m), namely, the one that has {1, 2, . . . , n} in the first row and {n+1, n+2, . . . , n+m}
in the first column, hence R()R(n,1m) = .(n,1m)ש!

In the next section we will extend this result further and give expansions for the shin
function indexed by compositions of the form (1n,m, 1r).

We remark that Corollary 19 together with Theorem 18 allow us to evaluate expres-
sions of the form αEβש! in terms of the complete homogeneous basis (using what may be
regarded as “shin-vertical strips” by analogy with Definition 1). We will use the ribbon
multiplication rule to prove an analogue of the Murnaghan-Nakayama rule.

5 A Murnaghan-Nakayama-Like Rule
Definition 20. For n ∈ N, let

Ψn =
n−1∑
i=0

(−1)iR(1i,n−i)

and let Ψα = Ψα1Ψα2 · · ·Ψα`(α) for a nonempty composition α, and write Ψ() = 1. The
set {Ψα}α∈C is a basis of NSym [NCSF], referred to as the Ψ-basis.
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Remark 21. The Ψ-basis is one of the most common analogues of the power sum basis
{pλ}λ∈P of Sym. Observe that χ(Ψn) = pn for all n ∈ N.

Definition 22. Let α and β be compositions such that α is contained in β, and if βi > αi
for arbitrary i, then for all j > i, βj 6 αi (satisfies the overhang axiom). Let r be
one less than the number of non-empty rows occupied by β/α. Label the cells of β/
α as follows: order the first cell of each row except the last row from bottom to top
with [(x1, y1), (x2, y2), . . . , (xr, yr)], and order the rest of the cells from left to right with
[(xr+1, yr+1), (xr+2, yr+2), . . . , (xn, yn)]. The skew composition β/α is called a shin-slinky
of size n and height r+ 1 if and only if for all i satisfying r+ 1 6 i < n, yi + 1 = yi+1 and
yr+1 6 yr 6 y1 6 yn.

For a tableau, let c(x,y) denote the label of the cell in the xth row and yth column of
diag(β). Let T (β/α) be the filling of the skew diagram with the labels c(xi,yi) = i.

Example 23. The skew compositions illustrated below are shin-slinkies, where the Young
tableaux to the right indicates the labelling of the skew diagram T (β/α) where β is the
shape and α is the inner shape:

2 3 4 5

1 6

3 4 5 6
2 7 8

1

Example 24. The skew compositions illustrated below are not shin-slinkies, where the
Young tableau to the right indicates the labelling of the skew composition:

2 3 4 5 6

1 7

This skew composition is not a shin-slinky, since y6+1 > y7 for cells c(x6,y6) and c(x7,y7).

3 4 5

2
1 6

This skew composition is not a shin-slinky, since y5+1 < y6 for cells c(x5,y5) and c(x6,y6).
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Theorem 25. (A Murnaghan-Nakayama rule for the shin basis) Letting α ∈ C and n ∈ N
be arbitrary,

αΨnש! =
∑
β

(−1)height(β/α)−1 ,βש!

where the sum is over all compositions β � |α| + n such that β/α is a shin-slinky. Fur-
thermore, if β/α is a shin-slinky, then there is a unique standard filling T of β/α such
that D(T ) is one of: ∅, {1}, {1, 2}, . . ., or {1, 2, . . . , n− 1}.

Proof. Substituting Ψn =
∑n−1

i=0 (−1)iR(1i,n−i) into ,αΨnש! we have

αΨnש! =
n−1∑
i=0

(−1)i ,αR(1i,n−i)ש!

and by Theorem 18, we have

n−1∑
i=0

(−1)i αR(1i,n−i)ש! =
n−1∑
i=0

(−1)i

(∑
T

shape(Tש! )

)
, (6)

where the inner sum is over all standard fillings T of inner shape α such that shape(T ) �
|α|+ n and D(T ) = ∅ if i = 0 or D(T ) = {1, 2, . . . , i} for i ∈ [1, n− 1].

Let β be the shape of T for some standard filling that appears in the right hand side of
(6). Order the cells of β/α as follows: take the first cell of each row except the last row from
bottom to top by Aβ = [(x1, y1), (x2, y2), . . . , (xr, yr)] and then order the rest of the cells
from left to right and from top to bottom by Bβ = [(xr+1, yr+1), (xr+2, yr+2), . . . , (xn, yn)]
where r is the number of rows occupied by the skew shape β/α minus 1. Since D(T ) =
{1, 2, . . . , i} for some i, each of these labels {1, 2, . . . , i + 1} must occur in different rows
and the rows that they occur in must increase, that is xa1 < xa2 < . . . < xai+1

and hence
{(xa1 , ya1), (xa2 , ya2), . . . , (xai , yai)} ⊆ Aβ and i 6 r. Moreover the labels {i+1, i+2, . . . , n}
must not be descents and in particular,

{c(xr+1,yr+1) < c(xr+2,yr+2) < . . . < c(xn,yn)} ⊆ {i+ 1, i+ 2, . . . , n}.

The cells in Bβ are chosen so that yd 6 yd+1 for r + 2 6 d 6 n. If yd = yd+1, then the
column strict condition implies c(xd,yd) > c(xd+1,yd+1). Therefore, yd < yd+1.

Now fix β and we will determine the number of fillings of that shape with descent set
{1, 2, . . . ,m}. Let Cβ = {(xj1yj1), (xj1yj1), . . . , (xjsyjs)} be the set of cells in Aβ that do
not have a cell in Bβ above. While it is possible that the set Cβ is empty, if there is a
r+ 1 6 j 6 n such that yj + 1 < yj+1, then Cβ contains at least one cell in column yj + 1.
Also if y1 > yn then Cβ will be non-empty.

Finally, we note that for the descent set {1, 2, . . . ,m}, there are
(
s
m

)
ways of choosing

m of the cells to put the labels {1, 2, . . . ,m} and the remaining labels m+1 through n are
uniquely filled into the cells such that they do not have a descent. For m ∈ [0, s], there are(
s
m

)
such fillings for β/α with D(T ) = {1, 2, . . . ,m}. Since for s > 0,

∑s
m=0(−1)m+1

(
s
m

)
=
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0 the coefficient of βש! will be 0 if Cβ is non-empty. In particular if yj + 1 < yj+1 for some
j with r + 1 6 j 6 n.

So the remaining terms all have Cβ empty and yj + 1 = yj+1 for all r+ 1 6 j 6 n. We
will have that r = |Aβ| = height(β/α)− 1 and D(T ) = {1, 2, . . . , r} and the coefficient of
βש! in αΨnש! is (−1)height(β/α)−1.

6 A Formula for the Shin Function Evaluated at a “Div-
ing Board” Composition

Definition 26. A diving board composition or diving board is a composition of the form
(1n,m, 1r) for m > 1, as illustrated below:

diag(12, 4, 13)

Theorem 27. For m > 1,

(1n,m,1r)ש! =
r∑
i=0

n∑
j=0

(−1)i+jEn−jHm+iHjEr−i (7)

Proof. We begin by examining the base case, where n = r = 0. In this case the right-hand
side of (7) may be simplified as follows, yielding :(1n,m,1r)ש!

0∑
i=0

0∑
j=0

(−1)i+jE0−jHm+iHjE0−i = (−1)0E0HmH0E0 = Hm = .mש!

Assume that for all compositions of the form (1n
′
,m′, 1r

′
), Equation (7) is true for all

n′ < n, or n′ = n and r′ < r. Then there are two cases we must consider: where r = 0
and where r > 0.

For the case where r = 0,

(1n,m)ש! = EnHm −
n−1∑
k=0

(1k,m+1,1n−k−1)ש! −
n−1∑
k=0

(1k,m,1n−k)ש! (8)

For the case where r > 0, we will use the Pieri rule for ,αErש! which says that:

(1n,m,1r)ש! = Er(1n,m)ש! − (1n,m+1,1r−1)ש! (9)
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Before proceeding we will require the following calculation as a step in the proof and
so we note that if we start with

n−k−1∑
i=0

k∑
j=0

(−1)i+jEk−jHm+i+1HjEn−k−1−i +
n−k∑
i=0

k∑
j=0

(−1)i+jEk−jHm+iHjEn−k−i,

then we can substitute i = i′ − 1. Therefore the sum is equal to:

n−k∑
i′=1

k∑
j=0

(−1)i
′+j−1Ek−jHm+i′HjEn−k−i′ +

n−k∑
i′=0

k∑
j=0

(−1)i
′+jEk−jHm+i′HjEn−k−i′ .

Note that the two double sums have opposite signs; therefore the terms with i > 1
cancel. Thus we are left with the following single sum:

k∑
j=0

(−1)jEk−jHmHjEn−k (10)

Case 1: r = 0. Our inductive hypothesis says that by Equation (7) and Equation (10),

(1n,m)ש! = EnHm −
n−1∑
k=0

(1k,m+1,1n−k−1)ש!) + ((1k,m,1n−k)ש!

= EnHm −
n−1∑
k=0

(
n−k−1∑
i=0

k∑
j=0

(−1)i+jEk−jHm+i+1HjEn−k−1−i+

n−k∑
i=0

k∑
j=0

(−1)i+jEk−jHm+iHjEn−k−i

)

= EnHm −
n−1∑
k=0

(
k∑
j=0

(−1)jEk−jHmHjEn−k

)
We can extend the above double sum to an infinite sum by subtracting out the nth

term (for k > n+ 1, all terms are zero).

= EnHm −
∑
k>0

∑
j>0

(−1)jEk−jHmHjEn−k +
∑
j>0

(−1)jEn−jHmHj

We now substitute k = k′ + j and switch the order of the sums:

= EnHm −
∑
j>0

∑
k′>0

(−1)jEk′HmHjEn−k′−j +
∑
j>0

(−1)jEn−jHmHj
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We can switch back the order of the sums and rewrite as follows:

= EnHm −
∑
k′>0

Ek′Hm

∑
j>0

(−1)jHjEn−k′−j +
∑
j>0

(−1)jEn−jHmHj

The sum
∑

j>0(−1)jHjEn−k′−j = 0 for k′ 6= n; for k′ = n,
∑

j>0(−1)jHjEn−k′−j = 1.
We then have:

(1n,m)ש! =
∑
j>0

(−1)jEn−jHmHj

This equation is simply Equation (7) evaluated for r = 0.

Case 2: r > 0.

(1n,m,1r)ש! = Er(1n,m)ש! − (1n,m+1,1r−1)ש!

=

(∑
j>0

(−1)jEn−jHmHj

)
Er −

r−1∑
i=0

n∑
j=0

(−1)i+jEn−jHm+iHjEr−1−i

The first sum is the i = r term of the second sum; therefore we consolidate the two sums
to obtain the following:

(1n,m,1r)ש! =
r∑
i=0

n∑
j=0

(−1)i+jEn−jHm+iHjEr−i

which shows that (1n,m,1r)ש! satisfies Equation (7) for r > 0. Since (1n,m,1r)ש! satisfies
Equation (7) for r > 0, therefore Equation (7) is true by induction.

7 Relation with the Quasi-Symmetric Functions
With respect to the pairing 〈·, ·〉 on NSym× QSym defined on the basis elements so that
〈Hα,Mβ〉 = 1 if α = β and 〈Hα,Mβ〉 = 0 otherwise, the elements that are the graded
dual to the shin basis are

α∗ש! =
∑
β

KαβMβ

because, as a consequence,

〈
,αש! β∗ש!

〉
=
∑
γ,τ

K−1αγKβτ 〈Hγ,Mτ 〉 =
∑
γ

K−1αγKβγ =

{
1 if α = β

0 otherwise
.

We noted in Remark 10 that for a partition λ and a composition β of the same size
as λ, Kλβ is equal to the number of column-strict tableaux (by the usual definition of
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column-strict tableaux) of shape λ and content β. It is well known that if β and τ are
two compositions such that sort(β) = sort(τ), then Kλ,β = Kλ,τ . Therefore,

λ∗ש! =
∑
β

KλβMβ =
∑
µ

Kλµmµ = sλ.

Since χ is the map which is dual to the inclusion map from Sym in QSym, it follows
that

χ(!שα) =
∑
λ

(coefficient of α∗ש! in sλ)sλ =

{
sλ if α = λ ∈ P

0 otherwise
.

This means that the property that the shin basis projects onto either the Schur function
or is equal to 0 comes from the fact that the functions that form the graded dual are equal
to the Schur function when indexed by a partition. We conclude with a summary of this
argument.

Theorem 28. Let {Aα}α∈C be a basis of NSym and let {A∗α}α�n be the set of dual elements
to {Aα}α�n such that {A∗α}α∈C is a basis of QSym. If it is the case that for every partition
λ,

sλ = A∗λ,

then

χ(Aα) =
∑
λ

(coefficient of A∗α in sλ)sλ =

{
sλ if α = λ ∈ P

0 otherwise
.

In particular, this is true of the shin basis and this implies that

χ(!שα) =

{
sα if α is a partition
0 otherwise

.

Moreover, this also implies that the product of two elements of the dual shin basis
indexed by partitions has a positive expansion in terms of elements of the dual shin basis
also indexed by partitions since all of these elements are in the Schur basis and so must
satisfy the Littlewood-Richardson rule. That is,

λ∗ש! µ∗ש! =
∑

γ`|λ|+|µ|

cγλµ γ∗ש!

where the coefficients cγλµ are the usual Littlewood-Richardson coefficients.
One might conjecture that the product of two elements of the dual shin basis has

a positive expansion in terms of the dual shin basis. Unfortunately this is not true in
general. The first example where this conjecture fails is in the following product (and all
other products whose degree is 5 or less have a non-negative expansion):

1∗ש! 13∗ש! = − 1112∗ש! + 1121∗ש! − 122∗ש! + 131∗ש! + 14∗ש! + 23∗ש! .
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The main appealing feature of the shin basis is the simple projection rule given above.
We see here that by duality, this implies that Sym is the subalgebra of shin functions
indexed by partitions.

The shin basis seems worth studying because the notion of shin-tableaux seems like
the natural analogue of standard tableaux and hence is likely to appear in other contexts.
Fillings of compositions with labels that increase strictly in the columns seem like simple
and intuitive combinatorial objects to define. By contrast, the composition tableaux that
appear with immaculate or dual quasi-Schur bases are not immediately clearly related to
the usual notion of column strict tableaux and are not the same as column strict tableaux
when the shape is a partition.
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