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Abstract

In this paper we prove that any sumset or difference set has large E3 energy.
Also, we give a full description of families of sets having critical relations between
some kind of energies such as Ek, Tk and Gowers norms. In particular, we give
criteria for a set to be a

• set of the form H u Λ, where H + H is small and Λ has “random structure”,

• set equal to a disjoint union of sets Hj each with small doubling,

• set having a large subset A′ with 2A′ equal to a set with small doubling and
|A′ + A′| ≈ |A|4/E(A).

Keywords: additive combinatorics; additive energy; sumsets; Gowers norms

1 Introduction

Let G = (G,+) be an abelian group. For two sets A,B ⊆ G define the sumset as

A+B := {x ∈ G : x = a+ b , a ∈ A , b ∈ B}

and, similarly, the difference set

A−B := {x ∈ G : x = a− b , a ∈ A , b ∈ B} .
∗Supported by Russian Scientific Foundation grant RSF 14–11–00433.
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Also denote the additive energy of a set A by

E(A) = E2(A) = |{a1 − a′1 = a2 − a′2 : a1, a
′
1, a2, a

′
2 ∈ A}| ,

and Ek(A) energy as

Ek(A) = |{a1 − a′1 = a2 − a′2 = · · · = ak − a′k : a1, a
′
1, . . . , ak, a

′
k ∈ A}| . (1)

The special case k = 1 gives us E1(A) = |A|2 because there is no any restriction in
the set from (1). So, the cardinality of a set can be considered as a degenerate sort of
energy. Note that a trivial upper bound for Ek(A) is |A|k+1. Now recall a well–known
Balog–Szemerédi–Gowers Theorem [37].

Theorem 1. Let A ⊆ G be a set, and K > 1 be a real number. Suppose that E(A) >
|A|3/K. Then there is A′ ⊆ A such that |A′| � |A|/KC and

|A′ − A′| � KC |A′| , (2)

where C > 0 is an absolute constant.

So, Balog–Szemerédi–Gowers Theorem can be considered as a result about the struc-
ture of sets A having the extremal (in terms of its cardinality or E1(A) in other words)
value of E(A). Namely, any of such a set has a subset A′ with the extremal value of
cardinality of its difference set. These sets A′ are called sets with small doubling. On the
other hand, it is easy to obtain, using the Cauchy–Schwarz inequality, that any A having
subset A′ such that (2) holds, automatically has polynomially large energy E(A)�K |A|3
(see e.g. [37]). Moreover, the structure of sets with small doubling is known more or
less thanks to a well–known Freiman’s theorem (see [37] or [25]). Thus, Theorem 1 finds
subsets of A with rather rigid structure and, actually, it is a criterium for a set A to be a
set with large (in terms of E1(A)) additive energy: E(A) ∼K |A|3 ∼K (E1(A))3/2.

In the paper we consider another extremal relations between different energies and
describe the structure of sets having these critical relations. Such kind of theorems have
plenty of applications. It is obvious for Balog–Szemerédi–Gowers theorem, see e.g. [37],
[3], [14], [15], [19], [21] and so on; for recent applications using critical relations between
energies E2(A) and E3(A), see e.g. [32], [33] and others. Before formulate our main results
let us recall a beautiful theorem of Bateman–Katz [3], [4] which is another example of
theorems are called “structural” by us.

Theorem 2. Let A ⊆ G be a symmetric set, τ0, σ0 be nonnegative real numbers and A has
the property that for any A∗ ⊆ A, |A∗| � |A| the following holds E(A∗)� E(A) = |A|2+τ0.
Suppose that T4(A)� |A|4+3τ0+σ0. Then there exists a function fτ0 : (0, 1)→ (0,∞) with
fτ0(η) → 0 as η → 0 and a number 0 6 α 6 1−τ0

2
such that there are sets Xj, Hj ⊆ G,

Bj ⊆ A, j ∈ [|A|α−fτ0 (σ0)] with

|Hj| � |A|τ0+α+fτ0 (σ0) , |Xj| � |A|1−τ0−2α+fτ0 (σ0) , (3)

|Hj −Hj| � |Hj|1+fτ0 (σ0) , (4)

|(Xj +Hj) ∩Bj| � |A|1−α−fτ0 (σ0) , (5)

and Bi ∩Bj = ∅ for all i 6= j.

the electronic journal of combinatorics 21(3) (2014), #P3.44 2



Here T4(A) is the number of solutions of the equation a1+a2+a3+a4 = a′1+a′2+a′3+a′4,
a1, a2, a3, a4, a

′
1, a
′
2, a
′
3, a
′
4 ∈ A and this characteristic is another sort of energy. One can

check that any set satisfying (3)—(5), E(A) = |A|2+τ0 and all another conditions of the
theorem is an example of a set having T4(A) � |A|4+3τ0+σ0 . Note that if E(A) = |A|2+τ0

then by the Hölder inequality one has T4(A) > |A|4+3τ0 . Thus, Theorem 2 gives us a
full description of sets having critical relations between a pair of two energies: E(A) and
T4(A).

There are two opposite extremal cases in Theorem 2 : α = 0 and α = 1−τ0
2

. For
simplicity consider the situation when G = Fn2 . In the case α = 0 by Bateman–Katz
result our set A, roughly speaking, is close to a set of the form H u Λ, where u means
the direct sum, H ⊆ Fn

2 is a subspace, and Λ ⊆ Fn
2 is a dissociated set (basis), |Λ| ∼

|A|/|H| ∼ |A|1−τ0 . These sets are interesting in its own right being counterexamples in
many problems of additive combinatorics. The reason for this is trivial. Indeed, the sets
have rather mixed properties: on the one hand they contain translations H + λ, λ ∈ Λ
of really structured set H but on the other hand they have also some random properties,
for example, its Fourier coefficients (see the definition in section 2) are small. Our first
result says that a set A is close to a set of the form H uΛ iff there is the critical relation
between E3(A) and E(A), that is E3(A) � |A|E(A). For more rigorous formulation see
Theorem 22.

In the situation α = 1−τ0
2

, G = Fn2 our set A looks like a union of (additively) disjoint

subspaces H1, . . . , Hk (see example (iii) from [26]) with k = |A|
1+τ0

2 . Such sets can be
called self–dual sets, see [33]. In our second result we show that, roughly speaking, any
such a set has critical relation between E3(A) (more precisely, the product E(A) · E4(A))
and so–called Gowers U3–norm of the set A (see the definition in section 7) and vice versa.
Theorem 46 contains the exact formulation.

These two structural results on sets having critical relations between a pair of its
energies are the hearth of our paper. In the opposite of Theorem 2 almost all bounds
of the paper are polynomial, excluding, of course, the dependence on the number k of
the considered energies Ek, Tk or Uk if its appear. Moreover the first structural theorem
hints us a partial answer to the following important question. Consider the difference set
D = A− A or the sumset S = A + A of an arbitrary set A. What can we say nontrivial
about the energies of D, S in terms of the energies of A? In view of the first example
above, that is G = Fn2 , A = H u Λ, |Λ| = K, E(A) ∼ |A|3/K we cannot hope to obtain a
nontrivial bound for additive energy of D or S because in the case D = S = Hu (Λ + Λ),
and hence it has a similar structure to A with Λ replacing by Λ + Λ. On the other hand,
we know that the sets of the form H u Λ have large E3 energy. Thus, one can hope to
obtain a good lower bound for E3(D) and E3(S). It turns out to be the case and we prove
it in section 6. Roughly speaking, our result asserts that if |D| = K|A|, E(A)� |A|3/K
then

E3(D)� K7/4|A|4 , (6)

and a similar inequality for A+ A.
The paper is organized as follows. We start with definitions and notations used in the

paper. In the next section we give several characterisations of sets of the form A = HuΛ,
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where H is a set with small doubling, Λ is a “dissociated” set. Also we consider a “dual”
question on sets having critical relations between T4 and E energies, that is the situation
when T4(A) is large in terms on E(A). It was proved that, roughly speaking, A contains
a large subset A′ such that the sequence A′, 2A′, 3A′, . . . is stabilized at the second step,
namely, A′ + A′ is a set with small doubling and, besides, |A′ + A′| ≈ |A|4/E(A) in the
only case when T4(A)� |A|2E(A), see Theorem 23.

Section 6 contains the proof of inequality (6) and we make some preliminaries to this in
section 5. For example, we obtain in the section an interesting characterisation of sumsets
S = A+ A or difference sets D = A− A with extremal cardinalities of intersections

|A| 6 |D ∩ (D + x1) ∩ · · · ∩ (D + xs)| 6 |A|1+o(1) ,

and, similarly, for S, see Theorem 28. It turns out that for such sets D, S the set A
should have either very small O(|A|k+o(1)) energy Ek(A) or very large� |A|3−o(1) additive
energy. In other words either A has “random behaviour” or, in contrary, is very structured.
Clearly, both situations are realized: the first one in the situation when A is a fair random
set (and hence A±A has almost no structure) and the second one if A is a set with small
doubling, say.

In section 7 we consider some simple properties of Gowers norms of the characteristic
function of a set A and prove a preliminary result on the connection of E(A) with E(A ∩
(A + s)), s ∈ A − A, see Theorem 39. It gives a partial counterexample to a famous
construction of Gowers [14], [15] of uniform sets with non-uniform intersections E(A∩(A+
s)) (see the definitions in [14], [15] or [37]). We show that although all sets A ∩ (A + s)
can be non-uniform but there is always s 6= 0 such that E(A∩ (A+s))� |A∩ (A+s)|3−c,
c > 0, provided by some weak conditions take place. This question was asked to the
author by T. Schoen.

In the next section we develop the investigation from the previous one and characterize
all sets with critical relation between Gowers U3–norm and the energies E,E4 or E3. Also
we consider some questions on finding in A a family of disjoint sets A ∩ (A + s) or its
large disjoint subsets.

A lot of results of the paper such as Bateman–Katz theorem are proved under some
regular conditions on A. For example, the assumption from Theorem 2 require that for
all A∗ ⊆ A, |A∗| � |A| the following holds E(A∗) � E(A). We call the conditions
as connectedness of our set A (see the definitions from sections 3, 7) and prove in the
appendix that any set contains some large connected subset. Basically, we generalize the
method from [31].

Thus, we have characterized two extremal situations of Theorem 2 in terms of energies.
Is there some similar characterisation for other cases of the result? Do exist criteria in
terms of energies for another families of sets? Finally, are there further characteristics of
sumsets/difference sets which separate it from arbitrary sets?
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2 Definitions

Let G be an abelian group. If G is finite then denote by N the cardinality of G. It is
well–known [23] that the dual group Ĝ is isomorphic to G in the case. Let f be a function

from G to C. We denote the Fourier transform of f by f̂ ,

f̂(ξ) =
∑
x∈G

f(x)e(−ξ · x) , (7)

where e(x) = e2πix and ξ is a homomorphism from Ĝ to R/Z acting as ξ : x→ ξ · x. We
rely on the following basic identities∑

x∈G

|f(x)|2 =
1

N

∑
ξ∈Ĝ

∣∣f̂(ξ)
∣∣2 , (8)

∑
y∈G

∣∣∣∑
x∈G

f(x)g(y − x)
∣∣∣2 =

1

N

∑
ξ∈Ĝ

∣∣f̂(ξ)
∣∣2∣∣ĝ(ξ)

∣∣2 , (9)

and

f(x) =
1

N

∑
ξ∈Ĝ

f̂(ξ)e(ξ · x) . (10)

If
(f ∗ g)(x) :=

∑
y∈G

f(y)g(x− y) and (f ◦ g)(x) :=
∑
y∈G

f(y)g(y + x)

then

f̂ ∗ g = f̂ ĝ and f̂ ◦ g = f̂ cĝ = f̂ ĝ , (11)

where for a function f : G → C we put f c(x) := f(−x). Clearly, (f ∗ g)(x) = (g ∗ f)(x)
and (f ◦ g)(x) = (g ◦ f)(−x), x ∈ G. The k–fold convolution, k ∈ N we denote by ∗k, so
∗k := ∗(∗k−1).

We use in the paper the same letter to denote a set S ⊆ G and its characteristic
function S : G→ {0, 1}. Clearly, S is the characteristic function of a set iff

Ŝ(x) = N−1(Ŝ ◦ Ŝ)(x) . (12)

Write E(A,B) for the additive energy of two sets A,B ⊆ G (see e.g. [37]), that is

E(A,B) = |{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}| .

If A = B we simply write E(A) instead of E(A,A). Clearly,

E(A,B) =
∑
x

(A ∗B)(x)2 =
∑
x

(A ◦B)(x)2 =
∑
x

(A ◦ A)(x)(B ◦B)(x) . (13)
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and by (9),

E(A,B) =
1

N

∑
ξ

|Â(ξ)|2|B̂(ξ)|2 . (14)

Let

Tk(A) := |{a1 + · · ·+ ak = a′1 + · · ·+ a′k : a1, . . . , ak, a
′
1, . . . , a

′
k ∈ A}| =

1

N

∑
ξ

|Â(ξ)|2k

and more generally

Tk(A1, . . . , Ak) := |{a1 + · · ·+ ak = a′1 + · · ·+ a′k : a1, a
′
1 ∈ A1, . . . , ak, a

′
k ∈ Ak}| .

Let also
σk(A) := (A ∗k A)(0) = |{a1 + · · ·+ ak = 0 : a1, . . . , ak ∈ A}| .

Notice that for a symmetric set A that is A = −A one has σ2(A) = |A| and σ2k(A) =
Tk(A). Having a set P ⊆ A− A we write σP (A) :=

∑
x∈P (A ◦ A)(x).

For a sequence s = (s1, . . . , sk−1) put ABs = B ∩ (A − s1) · · · ∩ (A − sk−1). If B = A
then write As for AAs . Let

Ek(A) =
∑
x∈G

(A ◦ A)(x)k =
∑

s1,...,sk−1∈G

|As|2 (15)

and
Ek(A,B) =

∑
x∈G

(A ◦ A)(x)(B ◦B)(x)k−1 =
∑

s1,...,sk−1∈G

|BA
s |2 (16)

be the higher energies of A and B. The second formulas in (15), (16) can be considered
as the definitions of Ek(A), Ek(A,B) for non integer k, k > 1. Similarly, we write Ek(f, g)
for any complex functions f , g and more generally

Ek(f1, . . . , fk) =
∑
x

(f1 ◦ f1)(x) . . . (fk ◦ fk)(x) .

Putting E1(A) = |A|2. For a set P ⊆ G write EPk (A) :=
∑

s∈P |As|k, EP (A) := EP2 (A). We
put E∗k(A) for E∗k(A) =

∑
s 6=0 |As|k.

Clearly,

Ek+1(A,B) =
∑
x

(A ◦ A)(x)(B ◦B)(x)k

=
∑

x1,...,xk−1

(∑
y

A(y)B(y + x1) . . . B(y + xk)
)2

= E(∆k(A), Bk) , (17)

where
∆(A) = ∆k(A) := {(a, a, . . . , a) ∈ Ak} .

We also put ∆(x) = ∆({x}), x ∈ G.

Quantities Ek(A,B) can be written in terms of generalized convolutions.
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Definition 3. Let k > 2 be a positive number, and f0, . . . , fk−1 : G → C be functions.
Denote by

Ck(f0, . . . , fk−1)(x1, . . . , xk−1)

the function

Ck(f0, . . . , fk−1)(x1, . . . , xk−1) =
∑
z

f0(z)f1(z + x1) . . . fk−1(z + xk−1) .

Thus, C2(f1, f2)(x) = (f1 ◦ f2)(x). If f1 = · · · = fk = f then write Ck(f)(x1, . . . , xk−1) for
Ck(f1, . . . , fk)(x1, . . . , xk−1).

In particular, (∆k(B) ◦ Ak)(x1, . . . , xk) = Ck+1(B,A, . . . , A)(x1, . . . , xk), k > 1.
Quantities Ek(A) and Tk(A) are “dual” in some sense. For example in [33], Note 6.6

(see also [28]) it was proved that(
E3/2(A)

|A|

)2k

6 Ek(A)Tk(A) ,

provided by k is even. Moreover, from (7)—(10), (12) it follows that Ẽ2k(Â) :=
∑

x(Â ◦
Â)k(x)(Â ◦ Â)k(x) = N2k+1Tk(A) and Tk(|Â|2) = N2k−1E2k(A).

For a positive integer n, we set [n] = {1, . . . , n}. Let x be a vector. By ‖x‖ denote the
number of components of x. All logarithms are to base 2. Signs � and � are the usual
Vinogradov’s symbols and if the bounds depend on some parameter M polynomially then
we write �M , �M . If for two numbers a, b the following holds a�M b, b�M a then we
write a ∼M b. In particular, a ∼ b means a� b and b� a.

All polynomial bounds in the paper can be obtained in explicit way.

3 Preliminaries

Let us begin with the famous Plünnecke–Ruzsa inequality (see [22] or [37], e.g.).

Lemma 4. Let A ⊆ G be a set. Then for all positive integers n,m the following holds

|nA−mA| 6 Kn+m|A| . (18)

We need in several quantitative versions of the Balog–Szemerédi–Gowers Theorem.
The first symmetric variant is due to T. Schoen [27].

Theorem 5. Let A ⊆ G be a set, K > 1 and E(A) > |A|3
K

. Then there is A′ ⊆ A such
that

|A′| � |A|
K

,

and
|A′ − A′| � K4|A′| .
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Also we need in a version of Balog–Szemerédi–Gowers theorem in the asymmetric
form, see [37], Theorem 2.35.

Theorem 6. Let A,B ⊆ G be two sets, |B| 6 |A|, and M > 1 be a real number. Let also
L = |A|/|B| and ε ∈ (0, 1] be a real parameter. Suppose that

E(A,B) >
|A||B|2

M
. (19)

Then there are two sets H ⊆ G, Λ ⊆ G and z ∈ G such that

|(H + z) ∩B| �ε M
−Oε(1)L−ε|B| , |Λ| �ε M

Oε(1)Lε
|A|
|H|

, (20)

|H −H| �ε M
Oε(1)Lε · |H| , (21)

and
|A ∩ (H + Λ)| �ε M

−Oε(1)L−ε|A| . (22)

The next lemma is a special case of Lemma 2.8 from [34]. In particular, it gives us a
connection between E3(A) and E(A,As), see e.g [28].

Lemma 7. Let A ⊆ G be a set. Then for every k, l ∈ N∑
s,t:

‖s‖=k−1, ‖t‖=l−1

E(As, At) = Ek+l(A) .

In particular,

E3(A) =
∑
s

E(A,As) .

Now recall a lemma from [30], [33].

Lemma 8. Let A be a subset of an abelian group, Q ⊆ A− A. Then

∑
s∈Q

|A± As| >
σ2
Q(A)|A|2

E3(A)

and

E3(Q,A,A) · E3(A) >
E2(A)σ4

Q(A)

|A|6
. (23)

Let also give a simple Corollary 18 from [32].
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Lemma 9. Let A ⊆ G be a set. Then∑
s

|As|2

|A± As|
6

E3(A)

|A|2
.

We give a small generalization of Proposition 11 from [28], see also [21].

Lemma 10. Let A ⊆ G be a set, n,m > 1 be positive integers. Then

|An+m −∆(A)| > |A|m|An −∆(A)| , (24)

and
|An+m + ∆(A)| > |A|m max{|An + ∆(A)|, |An −∆(A)|} . (25)

In particular,

|A2 −∆(A)| =
∑

s∈A−A

|A− As| > |A||A− A| , (26)

and
|A2 + ∆(A)| =

∑
s∈A−A

|A+ As| > |A|max{|A+ A|, |A− A|} . (27)

Proof. In view of [28], Proposition 11 it remains to prove the second bound from (25)
in the case m = 1 only, namely, that |An+1 + ∆(A)| > |A||An − ∆(A)|, n > 1. But
(a1 + a, . . . , an + a, an+1 + a) ∈ An+1 + ∆(A) iff an+1 ∈ As1,...,sn , where sj = aj − an+1,
(s1, . . . , sn) ∈ An −∆(A). Thus

|An+1 + ∆(A)| =
∑

(s1,...,sn)∈An−∆(A)

|A+ As1,...,sn| > |A||An −∆(A)|

and the result follows.

We will use the Katz–Koester trick [18]

A− As ⊆ (A− A)−s , A+ As ⊆ (A+ A)s , (28)

and its generalization (see e.g. [34])

A− A~x ⊆ (A− A)−~x , A+ A~x ⊆ (A+ A)~x (29)

very often.

Finally, recall some results from [33]. We begin with an analog of a definition from
[31].
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Definition 11. Let α > 1 be a real number, β, γ ∈ [0, 1]. A set A ⊆ G is called
(α, β, γ)–connected if for any B ⊆ A, |B| > β|A| the following holds

Eα(B) > γ

(
|B|
|A|

)2α

Eα(A) .

Thus, a set from Theorem 2 is a (2, β, γ)–connected set with β, γ � 1. The Hölder
inequality implies that if Eα(A) 6 γ−1|A|2α|A − A|1−α then A is (α, β, γ)–connected for
any β. As was proved in [31] that for α = 2 every set A always contains large connected
subset. For integers α > 2, see the Appendix.

Our first lemma from [33] (where some operators were used in the proof) provides a
nontrivial lower bound for Es(A), s ∈ [1, 2] in terms of E(A).

Lemma 12. Let A ⊆ G be a set, and β, γ ∈ [0, 1]. Suppose that A is (2, β, γ)–connected
with β 6 1/2. Then for any s ∈ [1, 2] the following holds

Es(A) > 2−5γ|A|1−s/2Es/2(A) . (30)

The second lemma from [33] provides an upper bound for eigenvalues of some oper-
ators. To avoid of using the operators notation we formulate the result in the following
way.

Lemma 13. Let A ⊆ G be a set. Then for an arbitrary function f : A→ C one has

E(A, f) 6 E
1/2
3 (A)‖f‖2

2 . (31)

Further, there is a set A′ ⊆ A, |A′| > |A|/2, namely,

A′ := {x : ((A ∗ A) ◦ A)(x) 6 2E(A)|A|−1} (32)

such that for any function f : A′ → C the following holds

E(A, f) 6
2E(A)

|A|
· ‖f‖2

2 . (33)

Moreover for any even real function g there is a set A′ ⊆ A, |A′| > |A|/2 such that for
any function f : A′ → C one has∑

x

g(x)(f ◦ f)(x) =
∑
x

g(x)(f ◦ f)(x) 6 2|A|−1
∑
x

g(x)(A ◦ A)(x) · ‖f‖2
2 . (34)
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Note that if f = Ã, Ã ⊆ A then bound (31) can be obtained using the Cauchy–Schwarz
inequality. Further, estimate (34) is a generalization of (33) which was proved in [33], see
Lemma 44. Bound (34) can be obtained in a similar way.

We finish the section noting a generalization of formula (23) of Lemma 8. That is just
a part of Lemma 4.2 from [33].

Lemma 14. Let A,B ⊆ G be finite sets, S ⊆ G be a set such that A+ B ⊆ S. Suppose
that ψ is a function on G. Then

|B|2 ·

(∑
x

ψ(x)(A ◦ A)(x)

)2

6 E3(B,A)
∑
x

ψ2(x)(S ◦ S)(x) . (35)

4 Structural results

In this section we obtain several general structural results, some of which have applications
to sum–products phenomenon, for example. These results are closely related to the Balog–
Szemerédi–Gowers Theorem. We adopt the convention of writing G as an additive group.
The proofs follow the arguments from [28] and [29].

Now we formulate the first result of the section.

Proposition 15. Let A ⊆ G be a finite set, and M > 1, η ∈ (0, 1] be real numbers. Let
E(A) = |A|3/K. Suppose that for some set P ⊆ A− A the following holds∑

s∈P

(A ◦ A)(s) = η|A|2 , (36)

and ∑
s∈P

|A± As| 6MK|A|2 . (37)

Then for any ε ∈ (0, 1), there are two sets H ⊆ G, Λ ⊆ G and z ∈ G such that

|(H + z) ∩ A| �M,η−1,Kε

E(A)

|A|2
, |Λ| �M,η−1,Kε

|A|
|H|

, (38)

|H −H| �M,η−1,Kε |H| , (39)

and
|A
⋂

(H + Λ)| �M,η−1,Kε |A| . (40)
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Proof. Using Lemma 8 with Q = P , we see that

E3(A) >
η2|A|4

MK
. (41)

We have ∑
s : |As|< |A|η

2

2KM

E(A,As) 6

(
|A|η2

2KM

)∑
s

|As||A| =
|A|4η2

2KM
.

Applying Lemma 7, that is the formula E3(A) =
∑

s E(A,As), combining it with (41), we
get ∑

s : |As|>2−1η2M−1K−1|A|

E(A,As) >
η2|A|4

2MK
. (42)

Put

µ := max
s : |As|>2−1η2M−1K−1|A|

E(A,As)

|A||As|2
.

Using (42), we have

µ|A|E(A) > µ|A| ·
∑

s : |As|>2−1η2M−1K−1|A|

|As|2 >
η2|A|4

2MK
.

Thus, µ > η2

2M
. Hence there is an s with |As| > 2−1η2M−1K−1|A| and such that

E(A,As) > 2−1M−1η2|A||As|2. Applying the asymmetric version of Balog–Szemerédi–
Gowers Theorem 6, we find two sets Λ, H such that (38)—(40) take place. This completes
the proof.

We write the fact that sets A,H,Λ satisfy (38)—(40) with η � 1 as

A ≈M,Kε Λ uH. (43)

Note that the degree of polynomial dependence in formula (43) is a function on ε.

Example 16. Let H ⊆ Fn
2 be a subspace and Λ ⊆ Fn

2 be a dissociated set (basis). Put
A = H u Λ, where u means the direct sum, and |Λ| = K. Detailed discussion of the
example can be found, e.g. in [33]. If s ∈ H then As = A and hence A+ As = A+ A. If
s ∈ (A+A) \H then As is the disjoint union of two shifts of H and thus |A+As| 6 2|A|.
Whence ∑

s∈A+A

|A+ As| 6 |H||A+ A|+ 2|A+ A||A| � K|A|2 ,

and E(A) ∼ |A|3/K. It means that condition (37) takes place in the case A = H u Λ.

Taking P = A − A and applying Proposition 15 as well as formulas (26), (27) of
Lemma 10, we obtain the following consequence.
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Corollary 17. Let A ⊆ G be a set, M ∈ R, ε ∈ (0, 1) and E(A) = |A|3/K. Then either

|A2 ±∆(A)| >MK|A|2

or A ≈M,Kε Λ uH.

Note that for any set A ⊆ G with E(A) = |A|3/K the inequality |A2±∆(A)| > K|A|2
follows from Lemma 8 and a trivial estimate E3(A) 6 |A|E(A). We will deal with the
reverse condition E3(A)� |A|E(A) in Proposition 20 and Theorem 21 below.

The next corollary shows that if a set A is not close to a set of the form Λ uH then
there is some imbalance (in view of Plünnecke–Ruzsa inequality (18)) between doubling
constant and additive energy of A or A− A.

Corollary 18. Let A ⊆ G be a set, M , ε ∈ (0, 1) be real numbers and |(A−A)±(A−A)| �
|A− A|3/|A|2. Then either

E(A)� M1/2|A|4

|A− A|
or E(A− A)� M |A− A|4

|(A− A)± (A− A)|

or A ≈M,Kε Λ uH, where K = |A− A|/|A|.

Proof. Put D = A − A. Suppose that E(A) � M1/2|A|4
|D| because otherwise we are done.

In view of Corollary 17 one can assume that
∑

s |A − As| > M1/2|A||D|. Thus, by the
Katz–Koester trick (28)

A− As ⊆ (A− A)−s , A+ As ⊆ (A+ A)s , (44)

and the Cauchy–Schwarz inequality, we get

|D|E(D) >

(∑
s∈D

(D ◦D)(s)

)2

>

(∑
s∈D

|A− As|

)2

> (M1/2|A||D|)2 .

Hence

E(D) >M |D||A|2 � M |D|4

|(A− A)± (A− A)|
where the assumption of the corollary has been used. This completes the proof.

The quantities E(A±A) (and hence |A2±∆(A)| in view of Lemma 10, see also Propo-
sition 29 below) appear in sum–products results (in multiplicative form). For example, in
[21] the following theorem was proved.

Theorem 19. Let A,B ⊆ R be finite sets. Then

|B + AA|3 � |B|E
×(AA)

log |A|
.

the electronic journal of combinatorics 21(3) (2014), #P3.44 13



Here E×(A) := |{a1a2 = a3a4 : a1, a2, a3, a4 ∈ A}|. Thus, by the obtained results, we
have, roughly, that either E×(A), E×(AA) can be estimated better then by Lemma 10,
see formulas (26), (27) or A has the rigid structure A ≈ Λ · H. Usually, the last case is
easy to deal with. Similar methods were used in [21].

Now we obtain another structural result. Using Lemma 8 as well as a trivial estimate
E3(A) 6 |A|E(A) one can derive Proposition 15 from Proposition 20 below.

Proposition 20. Let A ⊆ G be a set, and M > 1 be a real number. Suppose that

E3(A) >
|A|E(A)

M
. (45)

Then there is A′ ⊆ A such that

|A′| � E(A)

|A|2(M logM)5
(46)

and
|A′ − A′| �M15 log16M · |A′| . (47)

Further, take any ε ∈ (0, 1) and put K := |A|3
E(A)

. Then A ≈M,Kε Λ uH.

Proof. First of all prove (46), (47). Let

Pj = {x : 2j−1|A|/(22M) < |Ax| 6 2j|A|/(22M)} , j ∈ [L] ,

where L = [log(4M)]. By the pigeonhole principle there is j ∈ [L] such that

|A|E(A)

2ML
6

E3(A)

2L
6
∑
x∈Pj

|Ax|3 .

Put P = Pj and ∆ = 2j|A|/(22M). Thus

8ME(A)

22j|A|L
6
∑
x

P (x)(A ◦ A)(x) =
∑
x

A(x)(A ◦ P )(x) . (48)

Hence, by the Cauchy–Schwarz inequality

26M2E2(A)

24j|A|3L2
6 E(A,P ) 6 (E(A))1/2(E(P ))1/2 . (49)

Note that

E(A) >
∑
x∈P

|Ax|2 >
|P ||A|222j−2

24M2
,

and therefore
|P | 6 262−2jM2E(A)|A|−2. (50)
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It follows that

E(P ) >
212M4(E(A))3

28j|A|6L4
>

|P |3

26M222jL4
>

|P |3

210M4L4
:= µ|P |3 . (51)

By Theorem 5 there is P ′ ⊆ P such that |P ′| � µ|P | and |P ′−P ′| � µ−4|P ′|. Note that∑
x∈A

(A ◦ P ′)(x) =
∑
x∈P ′

(A ◦ A)(x) >
|P ′|2j−3|A|

M
,

and so there exists x ∈ A such that the set A′ := A ∩ (P ′ + x) has the size at least
|P ′|2j−3M−1. We have

|A′ − A′| 6 |P ′ − P ′| � µ−4|P ′| � µ−42−jM |A′| �M15L16|A′| . (52)

Finally, from (48), say, one has

|P | � M2E(A)

23j|A|2L
� E(A)

M |A|2L
(53)

and because
|A′| > |P ′|2j−3M−1 � µ|P | · 2j−3M−1

the result follows.
To obtain (38)—(40), that is A ≈M,Kε Λ uH, K = |A|3E−1(A), note that by the first

inequality of (49) and the bound |P | 6 262−2jM2E(A)|A|−2, we have

E(A,P ) >
26M2E2(A)

24j|A|3L2
>
|A||P |2

26L2M2
.

Also, by the definition of the number K, and inequality (53) the following holds

|A|/|P | �MLK �M K.

Applying the asymmetric version of Balog–Szemerédi–Gowers Theorem 6 with A = A,
B = P , and recalling (53), we obtain the required inequalities, excepting the first in-
equality of (38), where it remains to replace P by A. Put H ′ = (H + z) ∩ P . We have
|H ′| �M,Kε |P |. Thus, by the definition of the number ∆ and estimate (53), we obtain∑

x∈A

(A ◦H ′)(x) =
∑
x∈H′

(A ◦ A)(x) > 2−1∆|H ′| �M,Kε ∆|P | �M,Kε

E(A)

|A|
. (54)

Hence there is w ∈ A such that

|(H + w) ∩ A| > |(H ′ + w) ∩ A| �M,Kε

E(A)

|A|2
. (55)

This completes the proof.
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Assumption (45) of the Proposition 20 is a generalisation of the usual condition E(A) >
|A|3
M

(because E(A)|A|3M−1 6 E2(A) 6 E3(A)|A|2) and E3(A) > |A|4
M

(because E3(A) >
|A|4M−1 > |A|E(A)M−1). Further, one can check that the same consequences (38)—(40)
hold if we replace condition (45) by Es(A) > |A|Es−1(A)/M , s > 3. Let us write the
correspondent result.

Theorem 21. Let A ⊆ G be a set, s > 3 be a positive integer, and M > 1 be a real
number. Suppose that

Es(A) >
|A|Es−1(A)

M
. (56)

Take any ε ∈ (0, 1) and put K := |A|s
Es−1(A)

. Then A ≈s,M,Kε Λ uH, |H| �s,M,Kε |A|/K.

Proof. The arguments almost repeat the proof of Proposition 20, so we skip some details.
Using dyadic pigeonholing and the assumption, we find P ⊆ A − A, ∆ < |Ax| 6 2∆,
x ∈ P with

M−1|A|Es−1(A) 6 Es(A)�logM

∑
x∈P

|Ax|s �logM ∆s−1σP (A) .

Thus, by the Cauchy–Schwarz inequality

M−2|A|E2
s−1(A)∆−2(s−1) �logM E(A,P ) .

On the other hand |P |∆s−1 6 Es−1(A) and hence

E(A,P )�logM M−2|A||P |2 .

Note that by (56) and our choice of the set P , we have

|A|
|P |
�M

∆s

Es−1(A)
6

|A|s

Es−1(A)
,

and, again,

|P | ∼logM Es(A)∆−s >M−1|A|Es−1(A)∆−s =
|A|s+1

MK∆s
>
|A|
MK

.

After that apply the asymmetric version of Balog–Szemerédi–Gowers Theorem 6 and an
analog of the arguments from (54)—(55). This concludes the proof.

The more general assumption Es(A) > |A|kEs−k(A)/Mk implies that for some j ∈ [k]
one has Es−j+1(A) > |A|Es−j(A)/M . Thus, we have considered the common case. Note,
finally, that estimates (46), (47) are the best possible. Indeed, take G = Fn

2 , A = H u Λ,
where H 6 Fn

2 is a linear subspace and Λ is a dissociated set (basis).

Now we can prove a criterium for sets having critical relation between E(A) and E3(A)
energies.
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Theorem 22. Let A ⊆ G be a set, and M > 1, ε ∈ (0, 1) be real numbers. Put K := |A|3
E(A)

.
Then

E3(A)�M,Kε |A|E(A)

iff
A ≈M,Kε Λ uH .

Proof. In view of Proposition 20 it remains to prove that if A ≈M,Kε Λ u H then
E3(A)�M,Kε |A|E(A). Put A1 = A ∩ (H + Λ). We have |A1| �M,Kε |A|. Then

|A|2|H|2 �M,Kε |A1|2|H|2 6 E(A1, H)|A1 −H| 6 E(A,H)|Λ||H −H| �M,Kε E(A,H)|A| .

Thus

(|A||H|2)3 �M,Kε

(∑
x

(A ◦ A)(x)(H ◦H)(x)

)3

6 E3(A)E2
3/2(H) 6 E3(A)|H|5 .

In other words
E3(A)�M,Kε |A|3|H| �M,Kε E(A)|A| .

To get the last estimate we have used the fact |H| �M,Kε E(A)|A|−2. This completes the
proof.

Recall that

Tk(A) := |{a1 + · · ·+ ak = a′1 + · · ·+ a′k : a1, . . . , ak, a
′
1, . . . , a

′
k ∈ A}| .

We conclude the section proving a “dual” analogue of Proposition 20, that is we replace
the condition on E3(A) with a similar condition for T4(A) and moreover for Ts(A). Again,
the proof follows the arguments from [28].

Theorem 23. Let A ⊆ G be a set, and M > 1 be a real number. Suppose that

T4(A) >
|A|4E(A)

M
. (57)

Then there is A′ ⊆ A such that

|A′| � |A|
M3 log

16
3 |A|

, (58)

and

|nA′ −mA′| � (M3 log4 |A|)4(n+m)M |A′| · |A|
3

E(A)
(59)

for every n,m ∈ N.
Moreover, if

T2s(A) >
|A|2sTs(A)

M
, (60)

s > 2 then formulas (58), (59) take place. Conversely, bounds (58), (59) imply that
T2s(A)�M, log |A|, s |A|2sTs(A).
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Proof. Put Ts = Ts(A), T2s = T2s(A), a = |A|, Ls = [log(16Ma2s−1/Ts)]�s log a. Let

Pj = {x : 2j−1Ts/(2
4Mas) < (A ∗s−1 A)(x) 6 2jTs/(2

4Mas)} , j ∈ [Ls] .

Put fj(x) = Pj(x)(A ∗s−1 A)(x). Thus,

(A ∗s−1 A)(x) =
Ls∑
j=1

fj(x) + Ω(x)(A ∗s−1 A)(x) , (61)

where Ω = {x : (A ∗s−1 A)(x) 6 2−4M−1Tsa
−s}. Substituting formula (61) into the

identity

T2s(A) =
∑
x

((A ∗s−1 A) ◦ (A ∗s−1 A))2(x)

and using assumptions (57), (60), combining with the definition of sets Pj, Ω, we have

2−1T2s(A) 6
Ls∑

j1,j2,j3,j4=1

∑
x

(fj1 ◦ fj2)(x)(fj3 ◦ fj4)(x) .

Applying the Hölder inequality, we get

2−1L−3
s T2s(A) 6

Ls∑
j=1

∑
x

(fj ◦ fj)(x)(fj ◦ fj)(x) .

By the pigeonhole principle there is j ∈ [Ls] such that

a2sTs
2ML4

s

6
T2s

2L4
s

6
∑
x

(fj ◦ fj)(x)(fj ◦ fj)(x) . (62)

Put P = Pj, f = fj and ∆ = 2jTs/(2
4Mas). Thus

a2sTs
2ML4

s∆
4
6 E(P ) . (63)

Clearly, |P | 6 4Ts∆
−2. Using the last inequality, the definition of the number ∆ and

bound (63), we obtain

E(P ) >
a2sTs

2ML4
s∆

4
> |P |3 a2s∆2

27ML4
sT

2
s

> |P |3 22j

215M3L4
s

>
|P |3

215M3L4
s

:= µ|P |3 .

To estimate the size of P we note by (63) that

|P |3 > a2sTs
2ML4

s∆
4
. (64)
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After that use arguments (51)—(52) of the proof of Proposition 20. By Theorem 5 there
is P ′ ⊆ P such that |P ′| � µ|P | and |P ′ − P ′| � µ−4|P ′|. Applying Plünnecke–Ruzsa
inequality (18), we obtain

|nP ′ −mP ′| � µ−4(n+m)|P ′| (65)

for every n,m ∈ N. We have

∆|P ′| 6
∑
x

(A ∗s−1 A)(x)P ′(x) =
∑

x1,...,xs−1∈A

(A ◦ P ′)(x1 + · · ·+ xs−1) .

By (64) and the definition of the number ∆ there is x ∈ (s − 1)A such that the set
A′ := A ∩ (P ′ − x) has the size at least

|A′| � |P ′|∆a−(s−1) > µ|P |∆a−(s−1) � µ

(
Ts

ML4
s∆a

s−3

)1/3

� 25j/3a

M3L
16/3
s

� a

M3L
16/3
s

.

We have by (65) that

|nA′ −mA′| 6 |nP ′ −mP ′| � µ−4(n+m)|P ′| � µ−4(n+m)|A′|as−1∆−1 �

� µ−4(n+m)M |A′| · a
2s−1

Ts
for every n,m ∈ N.

Conversely, applying bound (59) with n = m = s, combining with the Cauchy–Schwarz
inequality, we obtain

|A′|4s 6

(∑
x

((A′ ∗s−1 A
′) ◦ (A′ ∗s−1 A

′))(x)

)2

6 T2s(A
′)|sA′ − sA′| �s

�s (M3 log4 |A|)8sM · |A′| |A|
2s−1

Ts(A)
T2s(A) .

Using (58), we get

T2s(A)�s Ts(A)|A′|4s−1|A|−(2s−1)(M3 log4 |A|)−8sM−1 �s

�s Ts(A)|A|2sM−36s+2 log−54s |A| .
In other words, T2s(A)�M, log |A|, s |A|2sTs(A). This completes the proof.

So, we have proved in Theorem 23 that, roughly speaking, A′ −A′ is a set with small
(in terms of the parameter M) doubling and vice versa. Thus, A′ does not equal to a
set with small doubling but A′ − A′ does. Results of such a sort were obtained in [28],
[32] and [33]. Note, that we need in multiple |A|3E−1(A) in (59), because by (58) and the
Cauchy–Schwarz inequality, we have the same lower bound for |A′ − A′|.

It is easy to see that an analog of Theorem 23 takes place if one replace (57) onto
condition Ts(A) > |A|2(s−2)E(A)/M , where s is an even number, s > 4, and, further, even
more general relations between Tk energies can be reduced to the last case (and Theorem
23) via a trivial estimate Ts(A) 6 |A|2Ts−1(A). We do not need in such generalizations
in the paper.
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5 Sumsets: preliminaries

Let A ⊆ G be a set. Before studying the energies of sumsets or difference sets we
concentrate on a following related question, which was asked to the author by Tomasz
Schoen. Namely, what can be proved nontrivial concerning lower bounds for |A ± As|,
s 6= 0? The connection with A ± A is obvious in view of Katz–Koester trick (28). We
start with a result in the direction.

Theorem 24. Let A ⊆ G be a set. If E3(A) > 2|A|3 then(
max
s 6=0
|A± As|

)3

� |A|10

|A− A|E2(A)
. (66)

Now suppose that A is (3, β, γ)–connected with β 6 1/2, and E3(A) > 24γ−1|A|3. Then(
max
s 6=0
|A± As|

)2

� γ
|A|5

E(A)
. (67)

Proof. Write E = E(A), E3 = E3(A), and a = |A|. Let us begin with (66). Denote by
ω the maximum in (66). By the Cauchy–Schwarz inequality and formula (31) of Lemma
13, we obtain

a2|As|2 6 E(A,As)|A± As| 6 E
1/2
3 |As||A± As| . (68)

Multiplying the last inequality by |As|, summing over s 6= 0 and using the assumption
E3(A) > 2|A|3, we get

a2E
1/2
3 � ωE . (69)

On the other hand, by Lemma 8, we have

a6 � E3

∑
s∈A−A, s 6=0

|A± As| 6 E3|A− A|ω . (70)

Combining (69) with (70), we obtain

ω3 � a10

|A− A|E2

as required.
Now let us obtain (67). Using Lemma 13, we find A′, |A′| > |A|/2 such that estimate

(33) takes place. As in (68), we get

a2|A′s|2 6 E(A,A′s)|A± A′s| 6
2E

a
|A′s||A± As| . (71)

By assumption E3(A) > 24γ−1|A|3. Using the connectedness, we obtain

E3(A′) > γ
|A′|6

|A|6
E3(A) > 2|A′|3 . (72)
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Multiplying inequality (71) by |A′s|, summing over s 6= 0, we have in view of (72) that

a2E3(A′)� a−1EE∗(A′)ω . (73)

Combining the last formula with first inequality from (72), we get

a2γE3(A)� a−1EE∗(A′)ω . (74)

On the other hand, summing the first estimate from (71) over s 6= 0 and applying Lemma
7, we see that

a2E∗(A′) 6 ωE3 . (75)

Combining (74), (75), we obtain

ω2 � γ
a5

E
.

This completes the proof.

From (66) it follows that if |A−A| = K|A|, E(A)� |A|3/K, E3(A) > 2|A|3 then there
is s 6= 0 such that |A−As| � K1/3|A| as well as there exists s 6= 0 with |A+As| � K1/3|A|.
It improves a trivial lower bound |A ± As| > |A|. Using bound (67) one can show that
there is s 6= 0 such that |A − As| � K1/2|A| (here E(A) � |A|3/K), provided by some
connectedness assumptions take place.

We need in lower bounds on Ek(A) in Theorem 24 and Proposition 25 below to be
separated from a very natural simple example, which can be called a “random sumset”
case. Namely, take a random A ⊆ G and consider A ± A. This “random sumset” has
almost no structure (provided by A ± A is not a whole group, of course) and we cannot
say something useful in the situation. It does not contradict Theorem 24 and Proposition
25 (see also the results of the next section) because the energies Ek(A) are really small in
the case.

Now we give another proof of estimate (67) which can be derived from inequality (77),
case k = 2 below. Actually, it gives us even stronger inequality, namely, |A2 −∆(As)| �
|A|5E−1(A) for some s 6= 0, or, more generally, (see formulas (79), (80) below)

max
s6=0
|Ak ±∆(As)| � max

r>1

{
|A|2k+1Er+1(A)

Er(A)Ek+1(A)

}
, (76)

provided by some connectedness assumptions take place. In particular, taking r = k and
r = 1 in the previous formula, we get

max
s 6=0
|Ak ±∆(As)| � max

{
|A|2k+1

Ek(A)
,
|A|2k−1E(A)

Ek+1(A)

}
.
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Proposition 25. Let A ⊆ G be a set, k > 2 be a positive integer. Take two sets D,S
such that A− A ⊆ D, A+ A ⊆ S. Then

γ|A|2k+1 �k

∑
x 6=0

(A ◦ A)k(x)dk(x) 6
∑
x 6=0

(A ◦ A)k(x)(D ◦D)k(x) , (77)

γ|A|2k+1 �k

∑
x 6=0

(A ◦ A)k(x)sk(x) 6
∑
x 6=0

(A ◦ A)k(x)(S ◦ S)k(x) , (78)

provided by A is (k+1, β, γ)–connected with β 6 1/2 and Ek+1(A) > 2k+2γ−1|A|k+1. Here
dk(x) =

∑
αDx(α)(D ◦Dx)

k−1(α), sk(x) =
∑

α Sx(α)(Sx ∗D)k−1(α).

Proof. Using Lemma 13, we find A′, |A′| > |A|/2 such that estimate (34) takes place with
g(z) = (A ◦ A)k(z). It follows that

|A|2k|A′x|2 6 |Ak ±∆(A′x)|Ek+1(A′x, A) 6 |Ak ±∆(Ax)|
2Ek+1(A)

|A|
|Ax| . (79)

Multiplying the last inequality by |A′x|k−1 and summing over x 6= 0 (to obtain (76) multiply
by |A′x|r−1), we get

γ|A|2k+1Ek+1(A)� |A|2k+1E∗k+1(A′)� Ek+1(A)
∑
x 6=0

|Ak ±∆(Ax)||Ax|k . (80)

Here we have used the fact

Ek+1(A′) > γ
|A′|2(k+1)

|A|2(k+1)
Ek+1(A) > 2|A′|k+1

and the assumption Ek+1(A) > 2k+2γ−1|A|k+1. Note that by Katz–Koester trick (29), one
has |Ak − ∆(Ax)| 6 dk(x), |Ak + ∆(Ax)| 6 sk(x) (or just see the proof of Proposition
29 below). Finally, dk(x) 6 |Dx|k, sk(x) 6 |Sx|k and we obtain (77). This completes the
proof.

Using Katz–Koester trick or just the Cauchy–Schwarz inequality one can show that
(77) trivially takes place in the case k = 1 without any conditions on connectedness of
A or lower bounds for any sort of energy. Under the assumptions of Proposition 25 from
(77) it follows that

γ2|A|4k+2 �k E
∗
2k(A)E∗2k(D)

and similarly for S. Some weaker results but without any conditions on A were obtained
in [28].

Results above give an interesting corollary on non–random sumsets/difference sets.
Put D = A − A, S = A + A. Then for an arbitrary positive integer k and any elements
a1, . . . , ak ∈ A, we have

A ⊆ (D+ a1)
⋂

(D+ a2) · · ·
⋂

(D+ ak) , A ⊆ (S− a1)
⋂

(S− a2) · · ·
⋂

(S− ak) . (81)
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In particular, there is x ∈ D, x 6= 0 such that |Dx|, |Sx| > |A| (also it follows from
Katz–Koester inclusion (29)). By Corollary 17 (see also Lemma 10) one can improve it
to |Dx|, |Sx| > Kε|A|, where K = |A|3E−1(A). Theorem 24 gives us even stronger result.

Corollary 26. Let A ⊆ G be a set, D = A − A, S = A + A, E(A) = |A|3/K, Suppose
that A is (3, β, γ)–connected, β 6 1/2, and E3(A) > γ−124|A|3. Then there is x 6= 0 such
that |Dx|, |Sx| � γ1/2K1/2|A|.

One can get an analog of Corollary 26 for multiple intersections (81) but another
types of energies will require in the case. Nevertheless, some weaker inequality of the
form |D~x| > Kε|A| can be obtained, using Proposition 20 and Theorem 21. Here K =
|A|k+1E−1

k (A), k > 2. Interestingly, we do not even need in any connectedness in this
weaker result.

Proposition 27. Let A ⊆ G be a set, k > 2 be a positive integer, c ∈ (0, 1] be a real
number, Ek(A) > k2Ek−1(A), and K = |A|k+1E−1

k (A) 6 |A|1−c, K1 = |A|3E−1(A). Then
for all sufficiently small ε = ε(c) > 0 there is ~x = (x1, . . . , xk−1) with distinct xj, j ∈ [k]
such that

|D~x| , |S~x| �k |A| ·min{Kε, cKεK1} , (82)

where the constant cKε satisfies cKε �Kε 1 and, again, the degree of the polynomial
dependence is a function on c.

Proof. Suppose not. Take any set P ⊆ Ak−1 −∆(A). Applying Lemma 7, one has

|A|2
(∑
~x∈P

|A~x|

)2

=

(∑
~x∈P

∑
z

(A ◦ A~x)(z)

)2

6 Ek+1(A)
∑
~x∈P

|A± A~x| 6

6 Ek+1(A)|P| ·max
~x∈P
|A± A~x| . (83)

Note that the assumption Ek(A) > k2Ek−1(A) implies

Ek(A) =
∑
~x

|A~x|2 6
′∑
~x

|A~x|2 +

(
k − 1

2

)
Ek−1(A) 6 2

′∑
~x

|A~x|2 , (84)

where the sum
∑′ above is taken over ~x = (x1, . . . , xk−1) with distinct xj. Now take P

such that ∆ < |A~x| 6 2∆ for ~x = (x1, . . . , xk−1) ∈ P , where all xj, j ∈ [k] are distinct
and ∑

~x∈P

|A~x|2 �
Ek(A)

logK
.

Of course, such P exists by the pigeonhole principle and bound (84). Using the last
inequality, and recalling (83), we obtain

|A|2Ek(A)

logK
� |A|2|P|∆2 � Ek+1(A)Kε|A| .
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In other words, Ek+1(A)�Kε |A|Ek(A). Put M = max{Kε, k}. Applying Proposition 20
as well as Theorem 21, we see that A ≈M ΛuH. After that put A′ = A∩ (H + Λ). Then
|A′| �M |A| and |H| �M |A|/K. Further, as in the proof of Theorem 22, we get

∑
~x, ‖x‖=k−1

Ck(A′)(~x)Ck(H)(~x) =
∑
s

(A′ ◦H)k(s) >
|H|k|A′|k

|A′ −H|k−1
�M

|H|k|A|k

|Λ +H −H|k−1

�M
|H|k|A|k

(|Λ||H −H|)k−1
�M |A||H|k

and hence ∑
~x, ‖x‖=k−1

|A′~x||H~x| �M |A||H|k . (85)

In particular, there are at least�M |H|k−1 elements ~x ∈ Hk−1−∆(H) such that |A′~x| �M

|A|. We can suppose that the summation in (85) is taken over ~x = (x1, . . . , xk−1) with
distinct xj because the rest is bounded by(

k − 1

2

)∑
x

(A ◦H)k−1(x) 6

(
k − 1

2

)
|H|k−1|A| �M |A||H|k .

The last estimate follows from the assumption K 6 |A|1−c. Choosing any such ~x and
using the Cauchy–Schwarz inequality, we obtain

|A± A~x| > |A′ ± A′~x| >
|A′|2|A′~x|2

E(A′, A′~x)
�M

|A|4

E(A)
= K1|A|

and in view of Katz–Koester trick (29), we see that |D~x| , |S~x| are huge for large K1. This
concludes the proof.

Using Proposition 27 one can derive an interesting dichotomy result.

Theorem 28. Let A ⊆ G be a set, D = A−A, S = A+A, k > 2, and M > 1, ε ∈ (0, 1)
be real numbers. Put K = |A|k+1E−1

k (A). Suppose that for any vector ~x = (x1, . . . , xk−1)
with distinct xj, j ∈ [k] the following holds

|D~x| 6M |A| or, similarly, |S~x| 6M |A| .

Then either Ek(A) �M, |A|ε, k |A|k or E(A) �M, |A|ε, k |A|3. Again, the degree of the poly-
nomial dependence is a function on ε.

Proof. Put K1 = |A|3E−1(A). Suppose, in contrary, that Ek(A)�M, |A|ε, k |A|k and
E(A) �M, |A|ε, k |A|3. Then K �M, |A|ε, k |A| and K1 �M, |A|ε, k 1. Trivially, Ek(A) 6
|A|k−2E(A) and hence

|A| �M, |A|ε, k K > K1 �M, |A|ε, k 1 .
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Finally, by the upper bound for the parameter K we see that the number c which is
defined as K = |A|1−c can by taken depending on ε only. Thus, everything follows
from Proposition 27, the only thing we need to consider is the situation when Ek(A) 6
k2Ek−1(A). But in the case

|A|k 6 Ek(A) 6 k2Ek−1(A) 6 k2|A|k−3E(A) .

In other words E(A)�k |A|3 and this concludes the proof.

Thus, if |D~x| , |S~x| are not much larger than |A| then either A is close to what we called
a “random sumset” or, on the contrary, is very structured. Clearly, the both situations
are realized.

6 Energies of sumsets

Let A ⊆ G be a set. Throughout the section we put D = A − A and S = A + A.
As was explained in the introduction one can hope to prove a good lower bound for
E3(D), E3(S). It will be done in Theorem 30 below but before this we formulate a simple
preliminary lower bound for EDk (D), EDk (S). Similar lower bounds for ED2 (D), ED2 (S) were
given in Corollary 5.6 of paper [21]. Further, it was proved in [28] (see Remark 8) that
σk+1(D) > |Ak −∆(A)|. Now we obtain a similar lower bound for EDk (D). Recall that by
ED1 (D) we mean σ3(D) = σD(D), that is

∑
x∈D(D ◦D)(x).

Proposition 29. Let A ⊆ G be a set. Put D = A− A, S = A + A. Then for all k > 1
one has

EDk (D) > |Ak+1 −∆(A)| > |A− A||A|k , (86)

and, similarly,∑
x

S(x)(S ∗D)k(x) > |Ak+1 + ∆(A)| > |A|k max{|A− A|, |A+ A|} ,

EDk (S) > |A|k−1|A2 + ∆(A)| > |A|k max{|A− A|, |A+ A|} . (87)

Proof. The second estimates in (86), (87) follow from Lemma 10. Further, it is easy to
get (or see e.g. [28]) that

|Ak+1 −∆(A)| 6
∑

x1,...,xk+1

D(x1) . . . D(xk+1)
∏
i 6=j

D(xi − xj) 6

6
∑

x1,...,xk+1

D(x1) . . . D(xk+1)D(x1−x2) . . . D(x1−xk+1) =
∑
x

D(x)(D ◦D)k(x) = EDk (D)
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as required. Similarly,

|Ak+1 + ∆(A)| 6
∑

x1,...,xk+1

S(x1) . . . S(xk+1)
∏
i 6=j

D(xi − xj) 6

6
∑

x1,...,xk+1

S(x1) . . . S(xk+1)D(x1 − x2) . . . D(x1 − xk+1) =
∑
x

S(x)(S ∗D)k(x) .

Finally, by Lemma 10, we get

EDk (S) =
∑
s∈D

(S ◦ S)k(s) >
∑
s∈D

|A+ As|k > |A|k−1
∑
s∈D

|A+ As| =

= |A|k−1|A2 + ∆(A)| > |A|k max{|A− A|, |A+ A|} .

This completes the proof.

Interestingly, that some sort of sumset, namely, An±∆(A) gives a lower bound for an
energy, although, usually, an energy provides lower bounds for cardinality of sumsets via
the Cauchy–Schwarz inequality. The trick allows to obtain a series of results in [28]—[30].
Although bounds (86), (87) are very simple they can be tight in some cases. For example,
take A to be a dissociated set or, in contrary, a very structural set as a subspace.

Now we formulate the main result of the section concerning lower bounds for some
energies of sumsets/difference sets. Again we need in lower bounds on Ek(A) in Theorem
30 below to be separated from the “random sumset” case.

Theorem 30. Let A ⊆ G be a set. Take two sets D,S such that D = A−A, S = A+A.
Then

E2
3(D,A,A), E2

3(S,A,A) >
|A|13

|A− A|2E(A)
, (88)

and

(ED3 (D))4 > max

{
|D|12,

|A|45

E9(A)|D|2

}
, (ED3 (S))4 > max

{
|S|12,

|A|45

E9(A)|D|2

}
. (89)

Further, let β, γ ∈ [0, 1] be real numbers, β 6 1/2. If A is (2, β, γ)–connected then

E2
3(D,A,A), E2

3(S,A,A)� γ|A|5E(A) . (90)

Suppose that A is (3/2, β, γ) and (2, β, γ)–connected, correspondingly. Then

ED3 (D), ED3 (S)� γ
|A|33/4E3/2(A)

E9/4(A) log |A|
, ED3 (D), ED3 (S)� γ

|A|17/2

E3/2(A) log |A|
, (91)

correspondingly.
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Proof. Write E = E(A), E3 = E3(A), and a = |A|. Let us obtain bounds (88), (90). Using
Lemma 13, we find A′, |A′| > |A|/2 such that estimate (33) takes place. As in the proof
of inequalities (68), (71), we get

a2|A′s|2 6 E(A,A′s)|A± A′s| 6
2E

a
|A′s||A± As| . (92)

Multiplying the last inequality by |A′s|, summing over s and using Katz–Koester trick, we
have

a2E3(A′)� a−1E · E3(D,A) (93)

and similar for S. On the other hand by the second part of Lemma 8, we obtain(
a4

|A− A|

)2

a2 � E2(A′)a2 � E3(A′) · E3(D,A) (94)

and using the first part of the lemma, we have the same bound for the set S(
a2

|A− A|

)2

a6 � σ2
D̃

(A′)(a′)2

(
(a′)2

2|D|

)2

6 E3(A′)
∑
x∈D̃

|Sx||Ax|2 6 E3(A′) ·E3(S,A) , (95)

where D̃ := {x ∈ D : |A′x| > (a′)2/2|D|}, σD̃(A′) > (a′)2/2 (for details, see [30]).
Another way to prove the same is to use Lemma 14 with A = B = A′, ψ(x) = (A′◦A′)(x).
Combining (93) and (94), (95), we get

E2
3(D,A) , E2

3(S,A)� |A|13

|A− A|2E(A)

Using the tensor trick (see [37] or [33]), we have (88). If A is (2, β, γ)–connected then

E(A′)� γE(A)

and combining the last inequality with (93) and the second bound from (94), we get (90)
(to obtain lower bound for E2

3(S,A) one should use Lemma 14).
It remains to prove (89) and (91). Returning to (92)—(93), we obtain

a3E3(A′)� E
∑
s

|A′s|2|A′ ± A′s|

or, by the Hölder inequality
a9E3(A′)� E3ED3 (D) . (96)

On the other hand, by Lemma 8 for any P ⊆ A′ − A′, we have

a2σ2
P (A′)� E3(A′)

∑
s∈P

|A′ ± A′s| .
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Applying the Hölder inequality, we get

a6σ6
P (A′)� E3

3(A′)|P |2ED3 (D) (97)

and similarly for S. Now choose P ⊆ A′−A′ such that P = {s ∈ A′−A′ : ρ < |A′s| 6 2ρ}
for some positive number ρ and such that∑

s∈P

|A′s|3/2 �
E3/2(A′)

log a
.

Of course, the set P exists by Dirichlet principle. Combining the last inequality with (97),
we obtain

a6E4
3/2(A′) log−4 a� a6(|P |ρ3/2)4 � E3

3(A′)ED3 (D) . (98)

Using estimates (96), (98), we have

(ED3 (D))4E9 � a33E4
3/2(A′) log−4 a . (99)

Thus

(ED3 (D))4 , (ED3 (S))4 � a45

E9|D|2 log4 a
.

Applying the tensor trick again, we get (89). To obtain (91) recall that A is (3/2, β, γ)–
connected set. Hence by (99), we obtain

(ED3 (D))4E9 � γ4a33E4
3/2(A) log−4 a

and the first formula of (91) follows. Further, because A is (2, β, γ)–connected set then
using Lemma 12 for A′ as well as (99), we have

(ED3 (D))2E3 � γ2a17 log−2 a

and the last estimate coincide with the second inequality in (91). This completes the
proof.

From (89), the definition of the number K as |D| = K|A| and the assumption E(A)�
|A|3/K, we get

E3(D)� K7/4|A|4 . (100)

An upper bound here is K2|A|4 and it follows from the main example of section 4, that
is G = Fn2 , A = H u Λ. Note also that the second inequality in formula (91) is weak but
do not depends on the size of A− A or on energy E3/2(A).

As for dual quantities Tk(D), Tk(S), our example A = H u Λ shows that there are
not nontrivial lower bounds for Tk(A ± A), in general, which are better than simple
consequences of Katz–Koester

Tk(D) > |A|2Tk−1(D) > . . . > |A|2(k−2)E(D) > |A|2k−2|D| ,
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Tk(S) > |A|2Tk−1(S, . . . , S,D) > . . . > |A|2(k−2)E(D) > |A|2k−2|D|
(just use (D ◦ D)(x) > |A|D(x) and (S ◦ S)(x) > |A|D(x)). The reason is that the
structure of A±A is similar to the structure of A in the case, of course. Nevertheless, it
was proved in [28], Lemma 3 that

|A|4k 6 E2k(A)Tk(A± A) , (101)

and also in [33], Note 6.6 that(∑
x∈P (A ◦ A)(x)

|A|

)4k

6 E2k(A)Tk(P ) , (102)

where P ⊆ D is any set. So, if we know something on E2k(A) then it gives us a new infor-
mation about Tk(A±A). Trivially, formula (101) implies that Tk(A±A) > |A|2k+2/E(A).
Again, the last inequality is sharp as our main example A = H u Λ shows.

Vsevolod F. Lev asked the author about an analog of (102) for different sets A and
B. Proposition 31 below is our result in the direction. The proof is in spirit of [33]. For
simplicity we consider the case k = 2 only. The case of greater powers of two is considered
similarly if one take M2,M4, . . . or just see the proof of Theorem 6.3 from [33] (the case
of any k). We do not insert the full proof because we avoid to use the operators from [32],
[33] in the paper which is considered to be elementary.

Proposition 31. Let k > 2 be a power of two, A,B ⊆ G be two sets, and P ⊆ A − B.
Then (∑

x∈P (A ◦B)(x)

|A|1/2|B|1/2

)4k

6 E2k(A, . . . , A,B, . . . , B)Tk(P ) .

Proof. Let k = 2. Define the matrix

M(x, y) = P (x− y)A(x)B(y)

and calculate its rectangular norm (e.g., see section 7)

λ4
1(M) 6

∑
j

λ4
j(M) =

∑
x,y,x′,y′

M(x, y)M(x′, y)M(x, y′)M(x′, y′) =

=
∑
x,x′∈A

∑
y,y′∈B

P (x− y)P (x′ − y)P (x− y′)P (x′ − y′) =

=
∑
α,β,γ

C4(B,A,A,B)(α, β, γ)P (α)P (β)P (α− γ)P (β − γ) ,

where λj(M) the singular numbers of M . Clearly,

λ1(M) >

∑
x∈P (A ◦B)(x)

|A|1/2|B|1/2
.
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Thus, by the Cauchy–Schwarz inequality, we get(∑
x∈P (A ◦B)(x)

|A|1/2|B|1/2

)8

6 E4(A,A,B,B)E(P )

as required. This completes the proof.

We end this section showing that there is a different way to prove our Theorem 30 using
slightly bigger sets Dx or Sx not A±Ax. The proof based on a lemma, which demonstrates,
in particular, that A±A contains approximately |A|3E−1(A) almost disjoint translates of
A, roughly. In the proof we use arguments from [1].

Lemma 32. Let A,B ⊆ G be two sets. Then there are

s > 2−4|A||B|2E−1(A,B) (103)

disjoint sets Aj ⊆ A+ bj, |Aj| > |A|/2, bj ∈ B, j ∈ [s].
Moreover, for any set S ⊆ A + B put σ =

∑
x∈S(A ∗ B)(x). Suppose that σ > 16|B|.

Then there are
s > 2−8σ3|A|−2|B|−1E−1(A,B) (104)

disjoint sets Sj ⊆ S ∩ (A+ bj), |Sj| > 2−3σ|B|−1, bj ∈ B, j ∈ [s].

Proof. Let us begin with (103). Put S = A+B. Our arguments is a sort of an algorithm.
At the first step of the algorithm take A1 = A + b, where b ∈ B is any element of B.
Suppose that we have constructed k disjoint sets A1, . . . , Ak. If there is b ∈ B such that
|(A+ b)\

⊔k
j=1Aj| > |A|/2 then put Ak+1 = (A+ b)\

⊔k
j=1 Aj and take bk+1 = b. Suppose

that our algorithm stops after s steps. If s > |B|/2 then we are done. Put U =
⊔s
j=1 Aj

and B∗ = B \ {b1, . . . , bs}. Then s|A|/2 < |U | 6 s|A| and |B∗| > |B|/2. We have

2−2|A||B| 6 2−1|A||B∗| 6
∑
x

(A ◦ U)(x)B∗(x) .

Using the Cauchy–Schwarz inequality, we obtain

2−4|A|2|B|2 6 E(A,B)|U | 6 E(A,B)s|A|

and the required lower bound for s follows.
Let us prove the second part of the lemma. Put a = |A|, b = |B|. First of all note

that
σ =

∑
x∈S

(A ∗B)(x) =
∑
x∈B

|S ∩ (A+ x)|

and hence there is x ∈ B such that |S ∩ (A + x)| > σb−1. Put b1 = x, and let S1 ⊆
S ∩ (A + b1) be an arbitrary set of size dεσb−1e, where ε = 1/8. After that using the
arguments as above, we construct a family of disjoint sets Sj ⊆ S∩ (A+ bj), |Sj| > εσb−1,
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bj ∈ B, j ∈ [s]. If s > σ/(4a) then we are done. If not then put U =
⊔s
j=1 Sj and

B∗ = B \ {b1, . . . , bs}. We have B∗ ⊆ B′∗
⋃
B′′∗ , where

B′∗ = {x ∈ B∗ : (A ◦ U)(x) > εσb−1} ,

B′′∗ = {x ∈ B∗ : |(A+ x) \ S| > a− 2εσb−1} .
Further, because

(a−2εσb−1)|B′′∗ | 6
∑
x∈B′′∗

|(A+ b)\S| 6
∑
x∈B

|(A+x)\S| 6 ab−
∑
x∈B

|(A+x)
⋂

S| = ab−σ

we see that |B′′∗ | 6 (b− σ/a)(1 + 4εσ/(ab)). Thus,

|B′∗| > b− s− (b− σ/a)(1 + 4εσ/(ab)) > σ/a− 4εσ/a− s > σ/4a .

Finally, we obtain

εσb−1 · σ/4a 6
∑
x

(A ◦ U)(x)B′∗(x) 6
∑
x

(A ◦ U)(x)B(x)

and hence, in view of the condition σ > 16b the following holds

(εσb−1)2 · (σ/4a)2 6 |U |E(A,B) 6 (2εσb−1)sE(A,B) .

Whence, s > 2−8σ3a−2b−1E−1(A,B). This concludes the proof.

Now let us show how to get (90), for example. Applying Lemma 32 with A = A,
B = −A, we obtain

E3(D,A,A) >
s∑
j=1

E3(Aj, A,A)� |A|3E−1(A)E3(A) (105)

provided by (3, β, γ)–connectedness assumptions, β, γ � 1 (by the way bound (105) is
tight as our main example H u Λ shows). On the other hand, we have by Lemma 8 that

E2(A)|A|2 6 E3(A)E3(D,A,A) .

Combining the last two bounds, we get (90).

Using similar arguments and the second part of Lemma 32, we obtain the following
consequence, which shows, in particular, that the popular difference sets [15], [37] have
some structure in the sense that they have large energy of some sort.

Corollary 33. Let A ⊆ G be a set, P ⊆ A− A. Suppose that A is a (3, β, γ)–connected
set, β 6 2−3σP (A)|A|−1. Then

E3(P,A,A) > 2−9γ1/2σ5
P (A)E(A)|A|−9 . (106)
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Proof. Let σ = σP (A). On the one hand, using Lemma 32 with A = A, B = −A, we
construct the family of disjoint sets Pj ⊆ P ∩ (A − aj), aj ∈ A, |Pj| > 2−3σ|A|−1, the
number s satisfies (104). Put Aj = Pj + aj ⊆ A. Thus, by connectedness of our set A, we
have

E3(P,A) >
s∑
j=1

E3(Pj, A) =
s∑
j=1

E3(Aj, A) > γ

(
|Aj|
|A|

)6

E3(A) > 2−18γ
σ6

|A|12
E3(A) .

On the other hand, applying Lemma 8, we get

σ4E2(A)|A|−6 6 E3(A)E3(P,A) .

Combining the last two inequalities, we obtain bound (106). This concludes the proof.

7 On Gowers norms

The notion of Gowers norms was introduced in papers [14, 15]. At the moment it is a
very important tool of investigation in wide class of problems of additive combinatorics
(see e.g. [8]—[15], [20], [24]) as well as in ergodic theory (see e.g. [2], [6], [16], [17], [35],
[36], [38], [39], [40]). Recall the definitions.

Let G be a finite set, and N = |G|. Let also d be a positive integer, and

{0, 1}d = {ω = (ω1, . . . , ωd) : ωj ∈ {0, 1}, j = 1, 2, . . . , d}

be the ordinary d—dimensional cube. For ω ∈ {0, 1}d denote by |ω| the sum ω1 + · · ·+ωd.
Let also C be the operator of complex conjugation. Let ~x = (x1, . . . , xd), ~x

′ = (x′1, . . . , x
′
d)

be two arbitrary vectors from Gd. By ~xω = (~xω1 , . . . , ~x
ω
d ) denote the vector

~xωi =

{
xi if ωi = 0,
x′i if ωi = 1.

Thus ~xω depends on ~x and ~x′.
Let f : Gd → C be an arbitrary function. We will write f(~x) for f(x1, . . . , xd).

Definition 34. Gowers Ud–norm (or d–uniformity norm) of the function f is the following
expression

‖f‖Ud =

N−2d
∑
~x∈Gd

∑
~x′∈Gd

∏
ω∈{0,1}d

C|ω|f(~xω)

1/2d

. (107)

A sequence of 2d points ~xω ∈ Gd, ω ∈ {0, 1}d is called d–dimensional cube in Gd or just
a d–dimensional cube. Thus the summation in formula (107) is taken over all cubes of
Gd. For example, {(x, y), (x′, y), (x, y′), (x′, y′)}, where x, x′, y, y′ ∈ G is a two–dimensional
cube in G×G. In the case Gowers norm is called rectangular norm.
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For d = 1 the expression above gives a semi–norm but for d > 2 Gowers norm is a
norm. In particular, the triangle inequality holds [15]

‖f + g‖Ud 6 ‖f‖Ud + ‖g‖Ud . (108)

One can prove also (see [15]) the following monotonicity relation. Let fxd(x1, . . . , xd−1) :=
f(x1, . . . , xd). Then

N−1
∑
xd∈G

‖fxd‖2d−1

Ud−1 6 ‖f‖2d−1

Ud (109)

for all d > 2.
If G = (G,+) is a finite Abelian group with additive group operation +, N = |G|

then one can “project” the norm above onto the group G and obtain the ordinary (“one-
dimensional”) Gowers norm. In other words, we put the function f(x1, . . . , xd) in for-
mula (107) equals “one-dimensional” function f(x1, . . . , xd) := f(pr(x1, . . . , xd)), where
pr(x1, . . . , xd) = x1 + · · · + xd. Denoting the obtained norm as Ud, we have an analog of
(109), see [15], [37]

‖f‖Ud−1 6 ‖f‖Ud (110)

for all d > 2. It is convenient to write

‖f‖Ud = N−d+1
∑
~x∈Gd

∑
~x′∈Gd

∏
ω∈{0,1}d

C|ω|f(pr(~xω)) = (111)

=
∑
x

∑
h1,...,hd

∏
ω∈{0,1}d

C|ω|f(x+ ω · ~h) . (112)

In the case f = A, where A ⊆ G is a set, we have by formula (112) that

‖A‖Ud =
∑
s1,...,sd

|Aπ(s1,...,sd)| ,

where π(s1, . . . , sd) is a vector with 2d components, namely,

π(s1, . . . , sd) =

(
d∑
j=1

sjεj

)
, εj ∈ {0, 1}d .

Note also
‖A‖Ud+1 =

∑
s1,...,sd

|Aπ(s1,...,sd)|2 . (113)

Further, ‖A‖U1 = E1(A) = |A|2 and ‖A‖U2 = E(A).

In definitions (107), (111) we have used the size of the set G/group G. The results of
the paper are local, in the sense that they do not use cardinality of the container group G.
Thus it is natural to ask about the possibility to obtain an analog of (110), say, without
any N in the definition. That is our simple result in the direction.
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Proposition 35. Let A ⊆ G be a set. Then for any integer k > 2 one has

‖A‖Uk+1 >
‖A‖(3k−2)/(k−1)

Uk

‖A‖2k/(k−1)

Uk−1

. (114)

In particular,

‖A‖U3 >
E4(A)

|A|8
. (115)

Proof. We have

‖A‖Uk =
∑
s1,...,sk

|Aπ(s1,...,sk)| =
∑

s1,...,sk−1

∑
sk

∑
z

Aπ(s1,...,sk−1)(z)Aπ(s1,...,sk−1)(z + sk) =

=
∑

s1,...,sk−1

∑
z

Aπ(s1,...,sk−1)(z) · |Aπ(s1,...,sk−1)| . (116)

Thus, if the summation in (116) is taken over the set

Qk := {(s1, . . . , sk−1) : |Aπ(s1,...,sk−1)| > ‖A‖Uk(2k‖A‖Uk−1)−1} (117)

then it gives us (1− 1/2k) proportion of the norm ‖A‖Uk . Let us estimate the size of Qk.
Clearly,

|Qk|‖A‖Uk(2k‖A‖Uk−1)−1 6
∑

s1,...,sk−1

|Aπ(s1,...,sk−1)| = ‖A‖Uk−1

and whence |Qk| 6 2k‖A‖2
Uk−1‖A‖−1

Uk . Certainly, the same bound holds for cardinality of
any set of tuples (si1 , . . . , sik−1

) defined similar to (117) and having the size k− 1. Hence,
by the standard projection results, see e.g. [5], we see that the summation in (116) is taken
over a set S of vectors (s1, . . . , sk) of size at most (2k‖A‖2

Uk−1‖A‖−1
Uk)

k/(k−1). Returning to
(116) and using the Cauchy–Schwarz inequality as well as formula (113), we obtain

2−2‖A‖2
Uk 6

 ∑
(s1,...,sk)∈S

|Aπ(s1,...,sk)|

2

6 |S|
∑
s1,...,sk

|Aπ(s1,...,sk)| 6

6 (2k‖A‖2
Uk−1‖A‖−1

Uk)
k/(k−1)‖A‖Uk+1 .

The last inequality implies that

‖A‖Uk+1 > Ck
‖A‖(3k−2)/(k−1)

Uk

‖A‖2k/(k−1)

Uk−1

,

where 0 < Ck < 1 depends on k only. Using the tensor trick we obtain the result. This
completes the proof.
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Remark 36. Estimate (114) is sharp as an example of a sufficiently dense random subset
of a group G shows. For higher Gowers norms one can obtain by induction a similar sharp
inequality ‖A‖Uk > E(A)2k−k−1|A|−(3·2k−4k−4). It demonstrates expected exponential (in
terms of E(A)) growth of the norms.

In the next section we will need in a statement, which is generalizes lower bound for
U3–norm (115).

Lemma 37. Let A,B ⊆ G be two sets. Then

∑
s1,s2

(∑
x

A(x)B(x+ s1)A(x+ s2)B(x+ s1 + s2)

)2

>
E4(A,B)

|A|4|B|4
. (118)

Proof. We use the same arguments as in the proof of Proposition 35. One has

E(A,B) =
∑
s1,s2

∑
x

A(x)B(x+ s1)A(x+ s2)B(x+ s1 + s2) =

=
∑
x

∑
s1

BA
s1

(x)|BA
s1
| =

∑
x

∑
s2

As2(x)|Bs2| .

Because of
∑

s |As| = |A|2,
∑

s |Bs| = |B|2, we get for the set S above that
|S| � (|A|2|B|2E−1(A,B))2. Thus

E2(A,B)� |S|
∑
s1,s2

(∑
x

A(x)B(x+ s1)A(x+ s2)B(x+ s1 + s2)

)2

and the result follows.

Using (115) and the Cauchy–Schwarz inequality, we have a consequence.

Corollary 38. Let A ⊆ G be a set and |A− A| 6 K|A| or |A+ A| 6 K|A|. Then

‖A‖U3 >
|A|4

K4
.

Inequality (115) gives us a relation between ‖A‖U3 =
∑

s E(As) and E(A). W.T.
Gowers (see [15]) constructed a set A having a random behavior in terms of E(A) (more
precisely, he constructed a uniform set, that is having small Fourier coefficients, see [15])
such that for all s the sets As have non–random (non–uniform) behavior in terms of E(As).
Nevertheless, it is natural to ask about the possibility to find an s 6= 0 with a weaker
notion of randomness, that is E(As) � |As|3−c, c > 0. This question was asked to the
author by T. Schoen. We give an affirmative answer on it.
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Theorem 39. Let A ⊆ G be a set, E(A) = |A|3/K. Suppose that for all s 6= 0 the
following holds

|As| 6
M |A|
K

, (119)

where M > 1 is a real number. Let K4 6 M |A|. Then there is s 6= 0 such that |As| >
|A|/2K and

E(As)�
M93/79

K1/198
· |As|3 . (120)

Proof. Let
P := {s : |As| > |A|/2K} .

Find the number L satisfying L := maxs∈P |As|3E−1(As). In other words for all s ∈ P ,
one has E(As) > |As|3/L. Our task is to find a lower bound for L.

Put
C(x, y) = C3(A)(x, y) := |A ∩ (A− x) ∩ (A− y)|

and
C̃(x, y) = C4(A)(x, y, x− y) := |A ∩ (A− x) ∩ (A− y) ∩ (A− x+ y)| .

Clearly,
C̃(x, y) 6 C(x, y) 6 min{|Ax|, |Ay|} . (121)

for any x, y. Put also

P := {(x, y) : C̃(x, y) > |A|/(4KL)} .

We will write Px := P ∩ ({x} ×G), and Py := P ∩ (G× {y}). Put also

Pλ := P ∩ {(x, y) : x− y = λ} .

Our first lemma says that the size of P and some characteristics of the set can be
estimated in terms of L and M .

Lemma 40. We have
|A|2

4LM2
6 |P| 6 4L|A|2 . (122)

Further, for any nonzero y and λ the following holds

|Py| , |Pλ| 6
4M2L|A|

K
. (123)
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Proof. By the Cauchy–Schwarz inequality, we have∑
s∈P

|As|3 > 2−1E3(A) > 2−1|A|4/K2 .

Hence
|A|4

2K2L
6

1

L

∑
s∈P

|As|3 6
∑
s∈P

E(As) 6
∑
s

E(As) =

=
∑
s

∑
z,x,y

As(z)As(z + x)As(z + y)As(z + x− y) =
∑
x,y

C̃2(x, y) .

We can assume that |A| > 4KL1/2 because otherwise the result is trivial in view of the
condition K4 6M |A|. Since ∑

x,y

C̃(x, y) = E(A) =
|A|3

K
,

it follows by (121) and the assumption |A| > 4KL1/2 that

|A|4

4K2L
6

∑
06=(x,y)∈P

C̃2(x, y) 6

(
M |A|
K

)2

|P| .

In other words |A|2
4LM2 6 |P|. On the other hand

|A|
4KL

|P| 6
∑

(x,y)∈P

C̃(x, y) 6
∑
x,y

C̃(x, y) = E(A) =
|A|3

K

and we obtain the required upper bound for the size of P .
Further, for any fixed y 6= 0 the following holds

|Py| 6
4KL

|A|
∑
x

C̃(x, y) =
4KL

|A|
|A−y||Ay| 6

4M2L|A|
K

.

Finally,

|Pλ| =
∑

(x,y) : x−y=λ

P(x, y) 6
4KL

|A|
∑

(x,y) : x−y=λ

∑
x

C̃(x, y) =
4KL

|A|
|Aλ|2 6

4M2L|A|
K

as required.

Now, we show that some norm of P is huge. Actually, we use the function C not C̃ in
the proof.
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Lemma 41. One has

|A|5

29KL4M6
6
∑
y,x′,y′

|
∑
x

P(x, y + x)P(x′ + x, y′ + x)|2 . (124)

Proof. As in the proof of Lemma 40, we get

|A|3

4KLM
6

∑
(x,y)∈P

C(x, y) =
∑
z

A(z)
∑
x,y

P(x, y)A(z + x)A(z + y) .

Using the Cauchy–Schwarz inequality, we obtain

|A|5

16K2L2M2
6
∑
z

A(z)
∑
x,y

∑
x′,y′

P(x, y)A(z + x)A(z + y)P(x′, y′)A(z + x′)A(z + y′) 6

6
∑

x,y,x′,y′

P(x, y + x)P(x′ + x, y′ + x)C4(A)(y, x′, y′) .

Applying the Cauchy–Schwarz inequality again, we have

|A|10

28K4L4M4
6
∑
y,x′,y′

|
∑
x

P(x, y + x)P(x′ + x, y′ + x)|2 × E4(A) 6

6
∑
y,x′,y′

|
∑
x

P(x, y + x)P(x′ + x, y′ + x)|2 × 2M2|A|5

K3

because K3 6 K4 6M |A| 6M2|A| and hence

E4(A) 6 |A|4 +
M2|A|2

K2
E(A) 6

2M2|A|5

K3
. (125)

This concludes the proof of the lemma.

In terms of the sets Pλ we can rewrite expression (124) as∑
y,x′,y′

|
∑
x

P(x, y + x)P(x′ + x, y′ + x)|2 =
∑
y,x′,y′

|
∑
x

P−y(x)Px′−y′(x′ + x)|2 =

=
∑
y,x′,y′

|
∑
x

Py(x)Py′(x′ + x)|2 =
∑
λ,µ

E(Pλ,Pµ) .

In view of estimate (124), a trivial inequality∑
λ,µ

E(Pλ,Pµ) 6
∑
λ,µ

|Pλ|2|Pµ| � |P|2 ·max
λ 6=0
|Pλ|
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and bounds for size of Pλ of Lemma 40 the sets Pλ should look, firstly, like some sets
with small doubling (more precisely as sets with large additive energy) and, secondly,
the large proportion of such sets must correlate to each other. A model example here is
Pλ(x) = Q(x+α(λ)), where α is an arbitrary function and Q is an arithmetic progression
of size approximately Θ(|A|/K). Now we prove that the example is the only case, in some
sense.

Put l = log(LM). Note that l 6 log(KM) because if L > K then the result is trivial.
We can suppose that

217M6K3L7 6 |A| (126)

because otherwise the result follows immediately in view of the condition M |A| > K4.
Reducing zero terms, we have

|A|5

210KL4M6
6
∑
λ,µ6=0

E(Pλ,Pµ)

because Lemma 40, estimate (126), a bound

|P0| 6 4KL|A|−1
∑
x

|Ax| = 4KL|A|

and a calculation

2(4KL|A|)24L|A|2 6 |A|5

210KL4M6
.

Below we will assume that any summation is taken over nonzero indices λ, µ. By Lemma
40 and a trivial estimate∑

λ

|Pλ| = |P| 6 4L|A|2 , E(Pλ,Pµ) 6 |Pλ||Pµ|2

the following holds
|A|5

211KL4M6
6

∑
λ,µ : |Pλ|, |Pµ|>∆∗

E(Pλ,Pµ) ,

where ∆∗ = |A|
216KL6M6 . Using the pigeonhole principle and Lemma 40, we find a number

∆ such that ∆∗ 6 ∆ 6 4M2L|A|
K

and

|A|5

lKL4M6
�

∑
µ : ∆<|Pµ|62∆

∑
λ: |Pλ|>∆∗

E(Pλ,Pµ) . (127)

From (127) and the Cauchy–Schwarz inequality one can see that the summation in the
formula is taken over

E(Pµ)� |Pµ|3

l2L14M16
:= ε|Pµ|3 .
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By inequality (122) of Lemma 40 there is µ with

ζ
|A|3∆

K
:=

|A|3∆

lKL5M6
�

∑
λ : |Pλ|>∆∗

E(Pλ,Pµ) . (128)

Put Q = Pµ. We have E(Q) > ε|Q|3. Applying a trivial general bound

E(A,B) 6 |A||B| ×max
x
|A ∩ (B − x)| ,

we get by Lemma 40

|A|3∆

lKL5M6
� ∆

4M2L|A|
K

×
∑

λ : |Pλ|>∆∗

max
x
|Pλ ∩ (Q− x)| .

Given an arbitrary λ let the maximum in the last formula is attained at point x := α(λ).
Thus, we have

|A|2

lL6M8
�

∑
λ : |Pλ|>∆∗

|Pλ ∩ (Q− α(λ))| =
∑

λ : |Pλ|>∆∗

∑
x

P(x, x− λ)Q(x+ α(λ)) .

Hence we find a set Q of the required form, that is having large additive energy and
which is correlates with sets Pλ. Now, we transform the obtained information into some
knowledge about the original set A.

Using the definition of the set P , we obtain

|A|3

lL7M8K
�
∑
x,λ

Q(x+ α(λ))
∑
z

A(z)A(z + x)A(z + x− λ)A(z + λ) =

=
∑
z,λ

(Q ◦ A−λ)(z − α(λ))Aλ(z) . (129)

We know that E(Q) > ε|Q|3. By Balog–Szemerédi–Gowers Theorem 5 we find Q′ ⊆ Q,
|Q′| � ε|Q| such that |Q′ −Q′| � ε−4|Q′|. We will prove shortly that the set Q in (129)
can be replaced by a set Q̃, namely

c(ε)
|A|3

K
�
∑
z,λ

(Q̃ ◦ A−λ)(z − α(λ))Aλ(z) , (130)

where c(ε) > 0 is some constant depends on L and M only and Q̃ has small doubling.
Indeed, starting with (128), put Q′1 = Q′, and define inductively disjoint sets Q′j ⊆ Q,

Bj =
⊔j
i=1 Q

′
j, B̄j = Q\Bj, j ∈ [s], applying Theorem 5 to B̄j. Put also E(B̄j) = νj|Q|3 6

8νj∆
3. If at some stage j

ζ
|A|3∆

2K
>

∑
λ : |Pλ|>∆∗

E(Pλ, B̄j) (131)

the electronic journal of combinatorics 21(3) (2014), #P3.44 40



then we stop the algorithm. Let the procedure works exactly s steps and put B = Bs,
B̄ = Q \B. We claim that s� ε−1. To prove this note that if (131) does not hold then

ζ
|A|3∆

K
� E1/2(B̄j)

∑
λ : |Pλ|>∆∗

|Pλ|3/2 � ν
1/2
j ∆

M2L|A|
K

L|A|2 .

In other words, E(B̄j) � ε|Q|3 and, hence, |Q′j| � ε|Q|, |Q′j − Q′j| � ε−4|Q|. It means,
in particular, that after s� ε−1 number of steps our algorithm stops indeed. At the last
step, we get by the construction that

ζ
|A|3∆

2K
6

∑
λ : |Pλ|>∆∗

E(Pλ, Q)−
∑

λ : |Pλ|>∆∗

E(Pλ, B̄, B̄) 6

6
∑

λ : |Pλ|>∆∗

E(Pλ, B,B) + 2
∑

λ : |Pλ|>∆∗

E(Pλ, B, B̄)) .

Let us prove the following estimate

ζ
|A|3∆

K
�

∑
λ : |Pλ|>∆∗

E(Pλ, B) .

If not then by the Cauchy–Schwarz inequality and the choice of B̄, we obtain

(
ζ
|A|3∆

K

)2

�

 ∑
λ : |Pλ|>∆∗

E(Pλ, B, B̄)

2

6
∑

λ : |Pλ|>∆∗

E(Pλ, B) · ζ |A|
3∆

2K

and we get a contradiction. Hence the following holds

ζ
|A|3∆

K
�

∑
λ : |Pλ|>∆∗

E(Pλ, B) .

Applying the Hölder inequality, we find a set Q′j such that

ζ
|A|3∆

s2K
�

∑
λ : |Pλ|>∆∗

E(Pλ, Q′j) .

So, putting Q′ := Q′j we get (130) with c(ε) � ζε2

lL2M2 . Of course, the summation in the

obtained formula can be taken just over λ with |Aλ| � c(ε) |A|
K

and we will assume this.

Denote by Ω the set

Ω := {(z, λ) : Aλ(z) = 1 , and (Q̃ ◦ A−λ)(z − α(λ)) >
c(ε)|A|

2K
} .
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From (130) and our assumption (119) we have |Ω| � c(ε)M−1|A|2. On the other hand,
considering Ωλ := {z : (z, λ) ∈ Ω} for any fixed λ, one has

|Ωλ|
|A|
K
c(ε)�

∑
z

Aλ(z)(Q̃ ◦ A−λ)(z − α(λ)) 6 |Aλ||Q| � |Aλ|∆�
M3L|A|2

K2
.

Hence there are at least� c2(ε)KM−4L−1|A| sets Aλ such that there exists some z = z(λ)
with (Q̃ ◦Aλ)(z−α(λ))� c(ε)|A|/2K. Denote the set of these λ by T . For any such Aλ
there exists a shift of the set Q̃ such that |Aλ ∩ (Q̃ + w(λ))| � c(ε)|A|/2K �ε,M |Aλ|.
Put A′λ := Aλ ∩ (Q̃ + w(λ)). We have by Lemma 4 that for any λ1, λ2 ∈ T the following
holds

|A′λ1 + A′λ2| 6 |Q̃+ Q̃| � ε−8M
2L|A|
K

.

In particular,

E(A′λ1 , A
′
λ2

)� c4(ε)ε8|A|3

M2LK3
.

Finally, using (125) as well as Lemma 7 with k = l = 2, we obtain

|A|5

l64M458L395K
� ζ8ε24|A|5

l8M26L19K
� c8(ε)ε8|A|5

M10L3K
� |T |2 · c

4(ε)ε8|A|3

M2LK3
�

∑
λ1,λ2∈T

E(A′λ1 , A
′
λ2

) 6

6
∑

λ1,λ2∈T

E(Aλ1 , Aλ2) 6 E4(A) 6
2M2|A|5

K3

with the required lower bound for L. This completes the proof of Theorem 39.

We finish the section by analog of Definition 11, which we will use in the the last part
of the paper.

Definition 42. For β, γ ∈ [0, 1] a set A is called Uk(β, γ)–connected if for any B ⊆ A,
|B| > β|A| the following holds

‖B‖Uk > γ

(
|B|
|A|

)2k

‖A‖Uk .

Again, if, say, γ−1|A|8/|A ± A|4 > ‖A‖U3 then by inequality (115) one can see that
A is U3(β, γ)–connected for any β. The existence of Uk(β, γ)–connected subsets in an
arbitrary set is discussed in the Appendix.
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8 Self–dual sets

Inequality (115) gives us a relation between ‖A‖U3 and E(A). It attaints at a random
subset A of G, where by randomness we mean that each element of A belongs to the set
with probability E(A)/|A|3. On the other hand, it is easy to see that an upper bound
takes place

‖A‖U3 =
∑
s

E(As) 6
∑
s

|As|3 = E3(A) . (132)

A weaker estimate follows from (132) combining with the Cauchy–Schwarz inequality

‖A‖2
U3 6 E4(A)E(A) . (133)

In the section we consider sets having critical relations between ‖A‖U3 and E4(A), E(A)
that is the sets satisfying the reverse inequality to (133) (actually, we use just a slightly
stronger estimate then reverse to (132)). It turns out that they are exactly which we
called self–dual sets.

Let us recall a result on large deviations. The following variant can be found in [7].

Lemma 43. Let X1, . . . , Xn be independent random variables with EXj = 0 and E|Xj|2 =
σ2
j . Let σ2 = σ2

1 + · · · + σ2
n. Suppose that for all j ∈ [n], we have |Xj| 6 1. Let also a be

a real number such that σ2 > 6na. Then

P
(∣∣∣∣X1 + · · ·+Xn

n

∣∣∣∣ > a

)
6 4e−n

2a2/8σ2

.

We need in a combinatorial lemma.

Lemma 44. Let ∆, σ, C > 1 are positive numbers, t be a positive integer, and M1, . . . ,Mt

be sets, ∆ 6 |Mj| 6 C∆, j ∈ [t], σ 6 10−4t2∆, where

σ :=
t∑

i,j=1

|Mi

⋂
Mj| .

Then there are at least t2∆
16(2C+1)σ

disjoint sets M̃l ⊆Mil such that |M̃l| > ∆
4(2C+1)

.

Proof. We will choose our sets M̃i deterministically from a randomly chosen family. The
family will be taken with probability at least 1/4.

First of all, we note that

10−4t2∆ > σ >
t∑
i=1

|Mi| > t∆ . (134)

Put p = t∆2−1σ−1. In view of (134), we get p ∈ (0, 1/2]. Let us form a new family of sets
taking a set Mi from M1, . . . ,Mt uniformly and independently with probability p. Denote
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the obtained family as M ′
1, . . . ,M

′
s. By Lemma 43 and bound (134), we have after some

calculations that
2−1pt 6 s 6 2pt (135)

with probability at least 3/4. Further the expectation of σ equals

E
t∑

i,j=1

|Mi

⋂
Mj| =

∑
x

t∑
i=1

EMi(x) +
∑
x

t∑
i,j=1, i 6=j

EMi(x)Mj(x) =

= p
t∑
i=1

|Mi|+ p2

t∑
i,j=1, i 6=j

|Mi

⋂
Mj| 6 Cpt∆ + p2σ 6 (2C + 1)p2σ

by our choice of p. Hence, by Markov inequality, with probability at least 1/2 one has

s∑
i,j=1

|M ′
i

⋂
M ′

j| 6 (4C + 2)p2σ

and by the Cauchy–Schwarz inequality, we get

|
s⋃
i=1

M ′
i | >

(
∑s

i=1 |M ′
i |)2∑s

i,j=1 |M ′
i ∩M ′

j|
>

s2∆2

(4C + 2)p2σ
>

2s2σ

(2C + 1)t2
:= q .

Now find disjoint subsets M̃i ⊆ M ′
i , i ∈ [s], taking it consequently and using greedy

choice. Thus, we have at most s nonempty sets M̃i such that
⊔
i M̃i =

⋃s
i=1 M

′
i . Hence

2
∑

i : |M̃i|>q(2s)−1

|M̃i| >
∑
i

|M̃i| = |
s⋃
i=1

M ′
i | > q . (136)

By our choice of parameters and estimates (135) the following holds

|M̃i| >
q

2s
=

sσ

(2C + 1)t2
>

pσ

(4C + 2)t
=

∆

(8C + 4)
.

Similarly, the number n of the sets M̃i can be estimated from (136)

n >
q

2∆
=

s2σ

(2C + 1)t2∆
>

p2σ

(8C + 4)∆
=

t2∆

(32C + 16)σ
.

This completes the proof.

Let us remark an interesting consequence of Lemma 44.

Corollary 45. Let A ⊆ G be a (2, β, γ)–connected set, β 6 0.5 be a constant. Then
there is a set P ⊆ {x : (A ◦A)(x) > ∆} satisfies EP (A)� E(A) log−1 |A|, and there are
k � γ|A|∆−1 log−1 |A| disjoint sets Ãj ⊆ Asj with |Ãj| � ∆.
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Proof. Using Lemma 13, we find A′, |A′| > |A|/2 such that estimate (33) takes place. We
want to apply Lemma 44 to the sets A′s ⊆ As, s ∈ P ′, where P ′ = {x : (A′ ◦A′)(x) ∼ ∆},
EP
′
(A′) � E(A′) log−1 |A|. Of course, such set P ′ exists by the pigeonhole principle. To

apply Lemma 44, we need to calculate the quantity σ

σ :=
∑
s,t∈P ′

|A′s
⋂

A′t| =
∑
x,y

C3(A′)(x, y)P ′(x)P ′(y) .

By the last identity and estimate (33) (for details, see [33]), we get

σ � E(A)

|A|
· |P ′| .

Applying Lemma 44, we find disjoint sets Ãj ⊆ A′sj ⊆ Asj , sj ∈ P ′, j ∈ [k] such that

k � |P
′|2∆|A|

E(A)|P ′|
� γ

|A|
∆ log |A|

.

In the last inequality we have used (2, β, γ)–connectedness of A. To complete the proof
note that P ′ ⊆ {x : (A ◦ A)(x) > ∆}.

Clearly, the bound on k in Corollary 45 is the best possible up to logarithms. Calcu-
lating E(A,Aj)/|Aj| and comparing its with E3 (see [33]) one can obtain an alternative
proof of lower bounds for |A± As| as of section 5. Another result on a family of disjoint
As is proved in Proposition 49 below.

Now we are able to obtain the main result of the section.

Theorem 46. Let A ⊆ G be a set, and M > 1 be a real number. Put l = log |A|. Suppose
that A is U3(β, γ) and (2, β, γ)–connected with β 6 0.5. Then inequality

‖A‖2
U3 �M E4(A)E(A) (137)

takes place iff there is a positive real ∆ ∼M, l E3(A)E(A)−1 and a set

P ⊆ {s ∈ A− A : ∆ < |As|} ,

such that |P | �M, l |A|, P = −P , further,

EP (A)�M, l E(A) , EP3 (A)�M, l E3(A) , EP4 (A)�M, l E4(A) . (138)

and such that for any s ∈ P there is Hs ⊆ As, |Hs| �M, l ∆, with

|Hs −Hs| �M, l |Hs| , (139)

and E(A,Hs)�M, l |Hs|3.
Moreover there are disjoint sets Hj ⊆ Asj , |Hj| �M, l ∆, sj ∈ P , j ∈ [k] such that all Hj

have small doubling property (139), E(A,Hj)�M, l |Hj|3 and k �M, l |A|∆−1.
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Proof. Put a = |A|, E = E(A), E3 = E3(A), E4 = E4(A). Let us begin with the necessary
condition. Using Lemma 13, we find A′, |A′| > |A|/2 such that estimate (33) takes place.
Because of A is U3(β, γ) and (2, β, γ)–connected with β 6 0.5, we have ‖A′‖U3 ∼ ‖A‖U3

and E(A′) ∼ E(A). Combining assumption (137) with the Cauchy–Schwarz inequality, we
get

‖A‖2
U3 �M E4(A)E(A) > E2

3(A) (140)

In particular, by the last inequality and (132), (133), we obtain

E2
3(A′) > ‖A′‖2

U3 � ‖A‖2
U3 >M E2

3(A) ,

E4(A′)E(A′) > ‖A′‖2
U3 � ‖A‖2

U3 >M E4(A)E(A) > E4(A)E(A′)

and, hence, E3(A′) ∼M E3(A), E4(A′) ∼M E4(A). With some abuse of the notation we
will use the same letter A for A′ below. By Lemma 7, we have

‖A‖U3 =
∑
s

E(As) =
∑
s

∑
t

(As ◦ As)2(t)�M

∑
s

|As|3 =
∑
s

E(A,As) = E3 . (141)

One can assume that the summation in the last formula is taken over s such that |As| �M

E3E
−1 and E(As)�M |As|3, |As|3 �M E(A,As). Let us consider the condition E(As)�M

|As|3. By Balog–Szemerédi–Gowers Theorem we can find Hs ⊆ As with |Hs| �M |As|,
and |Hs−Hs| �M |Hs|. Loosing a logarithm l = log a we can assume that the summation
in (141) is taken over |As|, ∆ < |As| 6 2∆, ∆ �M, l E3E

−1 and E(As) �M, l |As|3,
|As|3 �M, l E(A,As). By P denote the set of such s. Thus, |P |∆3 �M, l E3 and it is easy
to check that P = −P . Note also that E(A,Hs)�M, l |Hs|3 for any s ∈ P . We have∑

s,t∈P

(As ◦ As)2(t)�M E3 . (142)

Returning to (140), we obtain

(|P |∆3)2 �M, l max{|P |∆4E,E4|P |∆2}

and hence |P |∆2 �M, l E, |P |∆4 �M, l E4. Thus, ∆ ∼M, l E3E
−1
2 and

E4 ∼M, l ∆E3 ∼M, l ∆2E ∼M, l ∆4|P | .

So, we know all energies E, E3, E4 if we know |P | and ∆. Let us estimate the size of the
P . Taking any s ∈ P , we get by Lemma 13 that

∆3 �M, l E(As) 6 E(A,As)� Ea−1∆�M, l |P |∆3a−1

or |P | �M a. So, we have proved (138)—(139).
Further ∑

s,t∈P

|Hs ∩H t| 6
∑
s,t∈P

|As ∩ At| := σ .
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Applying Lemma 44, we find disjoint sets Hj ⊆ Asj , |Hj| �M |Asj |, |Hj − Hj| 6 |Hj −
Hj| �M, l |Hj|, |Hj| � ∆ ∼M, l E3(A)E(A)−1, j ∈ [k] and k � |P |2∆σ−1. Arguing as in
Corollary 45, we get σ � E|P ||A|−1 and hence k � |P |∆|A|E−1 �M, l |A|∆−1. Of course
the last bound on k is the best possible up to constants depending on M , l. We have
obtained the necessary condition.

Let us prove the sufficient condition. Using the Cauchy–Schwarz inequality and for-
mulas (138)—(139), we have

‖A‖2
U3 >

(∑
s∈P

E(As)

)2

>

(∑
s∈P

E(Hs)

)2

�M, l

(∑
s∈P

|Hs|3
)2

�M, l

�M, l |P |2∆6 �M, l E(A)E4(A)

as required. This completes the proof.

Remark 47. In the statement of Theorem 46 there is the set of popular differences P
and the structure of A is described in terms of the set P . Although, we have obtained
a criterium it can be named as a weak structural result. Perhaps, a stronger version
avoiding using of the set P takes place. Namely, under the hypothesis of Theorem 46
there are disjoint sets Hj ⊆ Asj , |Hj| �M, l ∆, ∆ ∼M, l E3(A)E(A)−1, j ∈ [k] such that
(139) holds and

k∑
j=1

|Hj|4 �M, l E3(A) ,
k∑
j=1

|Hj|3 �M, l E(A) ,
k∑
j=1

|Hj|5 �M, l E4(A) . (143)

It is easy to see that it is a sufficient condition. Indeed, because the sets Hj ⊆ A are
disjoint, we have

‖A‖U3 >
k∑
j=1

‖Hj‖U3 .

Using the assumption |Hj−Hj| �M, l |Hj|, the first bound from (143), as well as Corollary
38, we obtain

‖A‖U3 �M, l

k∑
j=1

|Hj|4 �M, l E3(A)

and, similarly, by the second and the third inequality of (143), we get

‖A‖2
U3 �M, l E(A)E4(A)

as required.

the electronic journal of combinatorics 21(3) (2014), #P3.44 47



Example 48. Let A ⊆ G be a set having small Wiener norm, that is the following
quantity ‖A‖W := N−1

∑
ξ |Â(ξ)| := M is small. Then for any B ⊆ A, applying the

Parseval identity, one has

|B| =
∑
x

B(x)A(x) = N−1
∑
ξ

B̂(ξ)Â(ξ) .

Using the Hölder inequality twice (see also [19]), we get

|B|4 6

(
N−1M

∑
ξ

|B̂(ξ)|2|Â(ξ)|

)2

6M2|B|E(A,B)

or, in other words,

E(A,B) >
|B|3

M2
. (144)

By the multiplicative property of Wiener norm, we have ‖As‖W 6 M2. In particular,

E(As) > |As|3
M4 . Hence ‖A‖U3 > M−4E3(A). Further, E(A) > M−2|A|3, E3(A) > M−4|A|4

and hence
‖A‖2

U3 >M−8E2
3(A) >M−16E(A)E4(A) .

Thus, an application of Theorem 46 gives us that A has very explicit structure (2–
connectedness follows from (144) and U3–connectedness can be obtained via formula (118)
in a similar way). Another structural result on sets from Fp with small Wiener norm was
given in [19].

If Theorem 39 does not hold that is E(As) � |As|3 for all s then, clearly, ‖A‖U3 �
E3(A) and we can try to apply our structural Theorem 46. On the other hand, if A is
a self–dual set, that is a disjoint union of sets with small doubling then for any s 6= 0
one has exactly E(As) � |As|3. It does not contradict to Theorem 39 because condition
(119).

Roughly speaking, in the proof of Theorem 46 we found disjoint subsets of As, contain-
ing huge amount of the energy (see also Corollary 45). One can ask about the possibility
to find some number of disjoint As (and not its subsets) in general situation. Our next
statement answer the question affirmatively.

Proposition 49. Let A ⊆ G be a set, D ⊆ A− A. Put

σ :=
∑
s∈D

|A− As| . (145)

Then there are at least l > |D|2/(4σ) disjoint sets As1 , . . . , Asl. In particular, if

|A2 −∆(A)| 6 |A− A|
2

M
(146)

then there are at least l >M/4 disjoint sets As1 , . . . , Asl.
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Proof. Our arguments is a sort of an algorithm. By (145) there is s1 ∈ D such that
|A − As1| 6 σ/|D|. Put D1 = D \ (A − As1). If |D1| < |D|/2 then terminate the
algorithm. If not then by an obvious estimate∑

s∈D1

|A− As| 6 σ

we find s2 ∈ D1 such that

|A− As2| 6
σ

|D1|
6

2σ

|D|
.

Put D2 = D1 \ (A− As2). If |D1| < |D|/2 then terminate the algorithm. And so on. At
the last step, we obtain the set Dl = D \

⋃l
j=1(A− Asj), |Dl| < |D|/2. It follows that

|D|
2

6 |
l⋃

j=1

(A− Asj)| 6
l∑

j=1

|A− Asj | 6 l
2σ

|D|
.

Thus l > |D|2/(4σ). Finally, recall that

t ∈ A− As iff At ∩ As 6= ∅ . (147)

Thus all constructed sets As1 , . . . , Asl are disjoint.
To get (146) put D = A− A and recall that by Lemma 10 the following holds |A2 −

∆(A)| =
∑

s∈A−A |A− As|. This completes the proof.

One can ask is it true that not only E3 energy but U3–norm of sumsets or difference sets
is large? It is easy to see that the answer is no, because of our basic example A = H uΛ,
|Λ| = K. In the case E(A) ∼ |A|3/K, E3(A) ∼ |A|4/K but ‖A‖U3 ∼ |A|4/K2 and similar
for A± A.

9 Appendix

In the section we prove that any set contains a relatively large connected subset. The
case k = 2 of Proposition 55 below was proved in [31] (with slightly worse constants) and
we begin with a wide generalization.

Definition 50. Let X, Y be two nonempty sets, |X| = |Y |. A nonnegative symmetric
function q(x, y), x ∈ X, y ∈ Y is called weight if the correspondent matrix q(x, y) is
nonnegatively defined.

Having two sets A and B put Eq(A,B) :=
∑

x,y q(x, y)A(x)B(y), Eq(A) := Eq(A,A).
Clearly, Eq(A,B) 6 |A||B|‖q‖∞. The main property of any weight is the following.

Lemma 51. Let q be a weight. Then for any sets A,B, one has

(Eq(A,B))2 6 Eq(A)Eq(B) .
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Example 52. Clearly, the function q(x, y) = (B ◦ B)k(x − y) for any set B and an
arbitrary positive integer k is a weight. Further, by the construction of Gowers Ud–norms
it follows that

qd(x1, x
′
1) =

∑
x2,...,xd∈G

∑
x′2,...,x

′
d∈G

∏
ω∈{0,1}d

f(pr(~xω)) (148)

is also a weight for any nonnegative function f . In formula (148), we have ~x = (x1, . . . , xd),
~x′ = (x′1, . . . , x

′
d), and pr(y1, . . . , yd) := y1 + · · ·+ yd. Another example of a weight is

q∗d(x, y) =
∑

h1,...,hd−1

∏
ω∈{0,1}d−1, ω 6=0

f(x+ ω · ~h)f(y + ω · ~h) , (149)

where f is an arbitrary nonnegative function again and ~h = (h1, . . . , hd−1).

For two sets S, T ⊆ G, S 6= ∅, T ⊆ S put µS(T ) = |T |/|S|. Now we prove a general
lemma on connected sets and quantities Eq, where q is a weight.

Lemma 53. Let A,B ⊆ G be two sets, β1, β2, ρ ∈ (0, 1] be real numbers, β1 6 β2,
ρ < β1/β2. Let q be a weight. Suppose that Eq(A) > c|A|2‖q‖∞, c ∈ (0, 1]. Then there is
A′ ⊆ A such that for any subset Ã ⊆ A′, β1|A′| 6 |Ã| 6 β2|A′| one has

Eq(Ã) > ρ2µ2
A′(Ã) · Eq(A′) , (150)

and besides
Eq(A′) > (1− β2ρ)2sEq(A) , (151)

where s 6 log(1/c)(2 log(1−β2ρ
1−β1 ))−1.

Proof. Put b = ‖q‖∞. We use an inductive procedure in the proof. Let us describe
the first step of our algorithm. Suppose that (150) does not hold for some set C ⊆ A,
β1|A| 6 |C| 6 β2|A|. Put A1 = A \C. Then |A1| 6 (1− β1)|A|. Using Lemma 51, we get

Eq(A) = Eq(C,A) + Eq(A1, A) < ρµA(C)Eq(A) + E1/2
q (A1)E1/2

q (A) .

Hence
Eq(A1) > Eq(A)(1− µA(C)ρ)2 > Eq(A)(1− β2ρ)2 .

After that applying the same arguments to the set A1, find a subset C ⊆ A1 such that (150)
does not hold (if it exists) and so on. We obtain a sequence of sets A ⊇ A1 ⊇ · · · ⊇ As,
and |As| 6 (1− β1)s|A|. So, at the step s, we have

c|A|2b(1− β2ρ)2s 6 Eq(A)(1− β2ρ)2s < Eq(As) 6 |As|2b 6 (1− β1)2s|A|2b . (152)

Thus, our algorithm must stop after at most s 6 log(1/c)(2 log(1−β2ρ
1−β1 ))−1 number of

steps. Putting A′ = As, we see that inequality (150) takes place for any Ã ⊆ A′ with
β1|A′| 6 |Ã| 6 β2|A′|. Finally, by the second estimate in (152), we obtain (151). This
concludes the proof.
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Let us formulate a useful particular case of Lemma 53.

Lemma 54. Let A,B ⊆ G be two sets, β1, β2, ρ ∈ (0, 1] be real numbers, β1 6 β2,
ρ < β1/β2. Suppose that E(A,B) > c|A|2|B|, c ∈ (0, 1]. Then there is A′ ⊆ A such that
for any subset Ã ⊆ A′, β1|A′| 6 |Ã| 6 β2|A′| one has

E(Ã, B) > ρ2µ2
A′(Ã) · E(A′, B) , (153)

and besides
E(A′, B) > (1− β2ρ)2sE(A,B) , (154)

where s 6 log(1/c)(2 log(1−β2ρ
1−β1 ))−1.

Lemma 54 implies the required statement, generalizing the result from [31].

Proposition 55. Let A ⊆ G be a set, β ∈ (0, 1) be real numbers, and k > 2 be an integer.
Put c = Ek(A)|A|−(k+1). Then there is A′ ⊆ A such that

Ek(A
′, A) > (1− 2−1β)2sEk(A) , (155)

where s 6 log(1/c)(2 log( 2−β
2−2β

))−1, and A′ is (k, β, γ)–connected with

γ > 2−(2sk+2k−2s)β2k(2− β)2s(k−1) . (156)

In particular,
|A′| > (1− 2−1β)sc1/2|A| . (157)

Proof. Note that T ⊆ S iff ∆(T ) ⊆ ∆(S). Applying Lemma 54 with A = ∆(A), B =
Ak−1, β1 = β, β2 = 1, ρ = β1/(2β2) = β/2, and using formula (17), we find a set A′ ⊆ A
such that for any subset Ã ⊆ A′, β|A′| 6 |Ã| one has

Ek(Ã, A) > ρ2µ2
A′(Ã) · Ek(A′, A) , (158)

and
Ek(A

′, A) > (1− 2−1β)2sEk(A) , (159)

where s 6 log(1/c)(2 log( 1−ρ
1−β ))−1. We have obtained inequality (155). From (158), (159)

and the Hölder inequality, we get

Ek(Ã) > ρ2kµ2k
A′(Ã)Ekk(A

′, A)E
−(k−1)
k (A) > (2−1β)2k(1− 2−1β)2s(k−1)µ2k

A′(Ã)Ek(A
′, A) >

> (2−1β)2k(1− 2−1β)2s(k−1)µ2k
A′(Ã)Ek(A

′) .

Thus, the set A′ is (k, β, γ)–connected with γ satisfying (156). To obtain (157) just apply
(159) and a trivial upper bound for Ek(A

′, A)

|A′|2|A|k−1 > Ek(A
′, A) > (1− 2−1β)2sEk(A) = (1− 2−1β)2sc|A|k+1

as required. This completes the proof.

In view of Lemma 53 and Example 52 one can obtain an analog of Proposition 55 for
Uk(β, γ)–connected sets, see Definition 42. We leave the details to an interested reader.
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